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1  Probability Theory

1.1 Terminology

¢: random experiment (activity where the outcome is
randomly influenced)

[

sample space (set of all possible outcomes of ¢
which may consist of a finite, infinite countable or
uncountable number of elements)

& elementary event (possible outcome of ¢,
lL.e. e E)
. impossible event (empty set @={})
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E: event (collection of some of the possible outcomes
of ¢, i.e. ECE)

S o-field, i.e. a system of subsets of = satisfying
1)E €S
2)ifEeS then E=Z\E €S
3)if E;eS fori=1,2,...then | ] E, €S

Corollary:
1) eS

2)IfE,,E, €S thenE,nE,eS and E\\E, €S
3)ifE;eS fori=1,2,..then ()" E eS
(£,S): measurable space
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1.2 Definition of Probability
1.2.1 Relative Frequency and Probability

If a random experiment is performed n times and where
the event of interest E is observed with frequency h (E),
then the relative frequency of the occurrence of E is de-

fined by

H,(E)= =)

with 0<H _(E)<1.
Empirical law of large nhumbers

For sufficiently large n we can write with a high degree
of certainty that

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 7



1.2.2 Axiomatic Approach to Probability
Consider an experiment ¢ with measurable space (&,S).
A probability measure P is then defined as a mapping

P:S—>R

which satisfies the following axioms
1) if E€ S then P(E) >0,

2) PE)=1,
3) if E;eS fori=1,2,... and E,mEj:Q for i=j then

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 8
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The triple (£,S,P) is called probability space.

Implications:
1) P(D) =0,
2) if E, E,eS with E;cE, then
P(E,) < P(E,),
3) if E,, E, €S then
P(E,VE,)=P(E,)+ P(E,) - P(E,NE,).

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 9
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1.2.3 Classical Definition of Probability

Suppose that an experiment has a finite number n of pos-
sible outcomes, &,, &,,..., £, and we are interested in an
event E = {5,1,5,2,...,§,m} with {i,,i,,....i } = {1,2,....n}. If
we assume that all outcomes &, &,,..., £, are equally
likely, then

P(E) = number of outcomes favorable to E _m

total number of outcomes n

This is a basic result which assigns probabilities to events
purely on the basis of combinatorial arguments.

However, its application is strictly limited to experiments
of a finite number of equally likely outcomes.

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 10
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1.3 Conditional Probability

Let (2,S,P) be a probability space with E., E, €S and
P(E,) > 0. The conditional probability of E, given that
E, occurred is defined by

P(E,NE,)

P(E1|E2): P(E)

One can easily show that the conditional probability sat-
isfies the axioms of a probability measure.
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Implications:
1) Bayes’ Formula

P(E, | E,)=P(E,| E,) P(E,) ! P(E,).
Furthermore, assuming
E.NE =@, i#j and ECUE,
we can derive the Total Probability

:ZP(ElEi)P(Ei)
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and the generalised Bayes’ Formula

PEP(ETE,)
>, P(E)PEIE)

P(E | E)= P(E)>

2) Two events E, and E, are called independent if
'D(E1 | Ez) = P(E1)
holds. Consequently, we can stipulate
P(E, N E,) = P(E,) P(E,).
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INSTITUTE OF

2 WATERACOUSTICS,

5/ SONAR ENGINEERING AND
SIGNAL THEORY

Hochschule Bremen
) City University of Applied Sciences

1.4 Random Variables
A mapping
X 2> R,

such that to each &£ € = there corresponds a unique real
number X(¢&) € R, is called random variable or measur-

able function with respect to S, if for each set B c R
the inverse image

X B)={&: X(¢) e B}
IS element of S.
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To assign probabilities to random variables one has to
translate statements about the values of random varia-
bles as follows.

Py(B) = P(X~'(B)) = P{&: X(&) € B})

Furthermore, a o-field has to be defined over R. One

can show that such a o-field should include all intervals
of the kind (-0, x].

The power set P(R) includes the desired intervals but its
cardinality is to high to be able to implement the mea-
surability properties.
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However, one can show that a particular o-field exists,
called Borel-field B, that is the smallest possible includ-

ing all the intervals (-0, Xx] and that guarantees the mea-
surability of all sets element of B

Thus, we can define by
(R,B) the measurable space

and
(R,B,Py) the probability space

of a random variable X.

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 16
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1.5 Distribution Functions

Given a random variable X, the distribution function of X
F,(x), is defined by

Fy(X) = Py((=0,x]) = P({¢ : X(S) < x}) = P(X < X).

One can show that F,(x) uniquely determines all the
probabilistic properties of the random variable X.

In particular, for any a,b € R with a < b we have
P(X<b)=P(X<a)+Pla<X<b),
cf. Axiom 3. Hence

P(a <X < b)=P(X<b) - P(X<a) = Fy(b) - Fy(a).

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 17
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Distribution functions have the properties:
(1) 0<F (x)<1forall x e R,

(since Fy (x) is a probability)
(2) lim,  F.(x)=0,lim__F(x)=1,

(since lim X "((~0, x]) = @D A lim__ X "((~o0, X]) = E)

X—>—00

(3) Fy(x)is a non-decreasing function, i.e. forany h = 0
and all x, F, (x+h) = F, (),
(since Fy(x+h) - F (x)=P(x < X< x+h)=0)
(4) F,(x) is right-continuous, i.e. for all x
im, .4, F (X+h) = F(x).
(the limit h — 0 is taken through positive values only)

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 18
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Any distribution function F,(x), can be expressed by
F.(x) =a, FX’1(X) + a, FX’Z(X) + ay FX,B(X),
where
a>0fori=1,2,3, a,+a,+a;=1

and
F, .(x) is continuous everywhere and differenti-
able for almost all x, i.e. absolute continuous,

Fy»(x) is a step-function with a finite or count-
able infinite number of jumps,

FX,3(x) Is a singular function, that is continuous
with zero derivative almost everywhere.

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 19
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Fy 4(x) and F, ,(x) correspond to the two basic types of
probability distributions one usually encounters in prac-
tise, I.e. the

continuous and discrete distribution,
respectively.

Since F, ,(x) is highly pathological, it can be safely as-
sumed that it does not arise in real applications.

In practice we therefore ignore F, ;(x) and assume that
all distribution functions can be simply represented by

Fi(X) = AF(X) + (1 = ) Fy5(x)
with 0 < 1< 1.
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1.5.1 Purely discrete case (1 =0)

The distribution function F,(x) = Fy ,(x) is a simple step-
function with jJumps p; at the points x; fori=1,2,3,...

F,.(x) would typically have the form

F(x) |

1_.

Ps
0.8F : _

0.6 o i _

0.4} [ | | -

0.2} | | i | -
p 1 : 1 1 |

0 | ! 1 1 )

6 4 2 0 2 4 6
X4 X, X3 X4 Xs X
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If an interval (a, b] does not contain any of the jump points
X;, then clearly

P(a < X < b) = F(b) — Fy(a) = 0.

Hence, X cannot take any value lying between to succes-
sive jump points.

For each /i and any small h > 0 we can write

P(x,—h<X<x+h)=F/(x;+h)-F,(x,—h)=p,.

Letting h — 0O, we obtain
PX=x)=p, i=1,2,3,...

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 22
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Thus the only values X can take are those correspond-
Ing to the jump points. Therefore, X is called discrete ran-
dom variable.

The jump p; at point x; represents the probability that X
takes the value x.. Furthermore, (x,,p,).(X,,p,),... are used
to define the so-called probability mass function p, (x).

px (X)
03} Px(X1) =Py Px (X4) = P4 i
02| Px(X2) = P Px(X5)=ps
01} Px (X3) = P; .
0 | | | | | :
-6 -4 -2 0 2 4 6
X, X, X, X, X5 X
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Discrete distribution functions possess the properties:

(1) F(x)= Z p,(x;), where the summation extents over
fXj <X all values of i for which x; < x,

(2) 0<py(x)<T,

(since py(x) is a probability mass function)

(3) Y px(x) =1,

(since lim, , F,(x)=Z; p(x)=1)
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1.5.2 Purely continuous case (1=1)

The distribution function Fy(x) = F, ;(x) is absolutely con-
tinuous, i.e. differentiable for almost all x.

F,.(x) would typically possess a graph as shown below.

Fx() 1

1 I I I I I I I I !

0.8 -

0.6 -

0.4} -

0.2F -

0 l l l l l l l l l

-10 -8 -6 -4 -2 0 2 4 6 8 10

v
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X can, in general, take any value either on a finite or an
infinite interval and is therefore called continuous ran-
dom variable.

Thus continuous random variables are suitable models
for measuring physical quantities such as pressures, volt-
ages, temperatures, efc.

Furthermore, F,(x) can be represented by
Fe(x)= [ fi(x)ax,

where f, (x) is said to be the probability density function
(PDF) of X.
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INSTITUTE OF

2 WATERACOUSTICS,

5/ SONAR ENGINEERING AND
SIGNAL THEORY

¥, HSB

If f,(x) is continuous at x, then
dFy (x)
dx
exists. For a small interval (x, x+ Ax] we can now write

F>’<(X): :fx(X)
P(x < X<x+Ax)=F,(x+Ax)-F,(x)= jxxwfx(x’)dx’

or
P(x < X < x+ Ax)=1,(x)Ax +0(Ax),

where o(Ax) represents a term of smaller order of magni-
tude than Ax.
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The latter equation forms the basis for interpreting f, (x)
as a density function, namely, f, (x) defines the density
of probability in the neighbourhood of the point x.

Remarks:
= f(x) itself does not represent a probability,
= f(X)-Ax has a probabilistic interpretation,

= f(x) completely determines F,(x) and therefore
completely specifies the properties of a continu-
ous random variable.
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Probability density functions satisfy the properties:
(1) f,(x)=0forall x e R,

(since F, (x) is a non-decreasing function)
(2) | fo(x)dx=1

(since lim F, (x)= |” f(x)ax=1)
(3) Forany a,b e R witha<b

P(a< X <b)=F,(b)-F,(a)= j
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1.6 Some Special Distributions
1.6.1 Discrete Distributions
Binomial distribution

Consider an experiment which has only two possible out-
comes, “success” and “failure”, with probability p and
(1—p), respectively.

The number of “successes” occurring in n independent
repetitions of the experiment is a random variable X that
can take the values k=0,1,...,n.

Within a sequence of n independent trials, k successes
can occur in

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 30



ny n!
[k] ~ k!(n—k)!

different arrangements. The probability of a specific ar-
rangement is obviously

pk (1 B p)n—k-

Thus, the probability for observing k successes in n inde-
pendent trials is given by

P({-ff : X(8) = k}) =P(X=k)= (Z] p" (1—p)"_k =b, (k).

The b, (k) (k=0,1,...,n) are called binomial probabilities.
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Exploiting the binomial theorem one can verify that

anp Z [ij" (1-p)" ™  =(p+(1-p))" =1.

k=0

Thus, the distribution function of the so-called binomial
distribution B(n, p) can be defined by

Fy(x)=P(X < x) =ibnp i [ijkﬁ—p)”",

k=0

where m=|x] € Z, i.e. m < x < m+1 (Gauss bracket).

Example: 1,0,0,0,0 I 1,1,0,0,0; 1,0,1,0,0; 1,0,0,1,0; 1,0,0,0,1 |
0,100 1 1,1,00,0; 0,1,1,0,0; 0,1,0,1,0; 0,1,0,0,1 |
0,0,1,00 I 1,0,1,0,0; 0,1,1,0,0; 0,0,1,1,0; 0,0,1,0,1 | ...
00010 1 1,00,1,0, 0,1,0,1,0; 0,0,1,1,0; 0,0,0,1,1 |
0,000, I 1,00,0,1, 0,1,0,0,1; 0,0,1,0,1; 0,0,0,1,1 |
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Poisson distribution

Consider the limiting form of the binomial probabilities
when n— o and p—0 in such a way that np=a,— a, a
positive constant.

Substituting p by «,/n, we obtain

n! an Kk i % n-k
bn,‘);’n(k):k!(n—k)!(nj (1 (” D

n on-1 n-k+1 1—(ﬂj B 1—(%j LA
P n n n)) k'
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As n tends to infinity, we have

The p (k) (k=0,1,...) are called Poisson probabilities.

Note that the sum of the infinitely many but countable

Poisson probabilities satisfies
o0 0 k
> p, (k)= e‘“za— e %e” =1

k=0 koo K!

for all c.
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Hence, the distribution function of the so-called Poisson
distribution P(«) is given by

F () =P(X <x)=Yp,(K)=e

m k

=N 1K
where m=|x] € Z, i.e. m < x < m+1 (Gauss bracket).

In practice, the Poisson distribution is used for approxi-
mating the binomial distribution in cases, where in a large
number of independent trials (large n) the number of oc-
currences of a rare event (small p) is of interest.
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1.6.2 Continuous Distributions
Uniform (rectangular) distribution

A continuous random variable X is uniformly distributed
on the interval [a,b] (in abbreviated form X ~ R(a,b)), if

the probability density function is defined by

1
fX(X):E1[a,b](X) XER,

where 1,,(x) denotes the indicator function of the set M

c R, I.e.
1 xeM
1,(X) = .
u(X) {O otherwise
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The distribution function can be expressed as follows:

Fex) = [ X == [ 4,5 (x) X
0 x<a
=:(x-a)/(b-a) xe]a,b].
1 X=>b

.

A uniformly distributed random variable X ~ ‘R(-x,x) is

often used for modeling a random initial phase of a sinu-
soidal signal.
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Normal (Gaussian) distribution

A continuous random variable X is said to be normally
distributed with parameters 1 € R and o2 (X~ N(u,c?)),

iIf the probability density function is defined by

2
f(X)= 1 exp _x=p) x e R.
X 2 2
270

20

The normal distribution function

FX(X):IX f(x")dx' = 1 g exp{— (X’Z_/g)z}dx,

—00

can not be expressed in explicit form.
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However, to check that £, (x), where £, (x) > 0 Vx e R, rep-

resents a valid form of a probability density function we
have to show that j_ f(x)dx =1.

With the substitution x = (x' — )/o we can derive

( (X’_ILI)Z\

1 » 1 (o X
exp- — X' =— | exp<i——"tdx.
J270? LO P 20° 27 LO p{ 2}

Since f,(x) >0 Vx e R, itis equivalent to proof that

2
1 (o X2
——— | exps——'(dx| =1.
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Thus, after introducing a double integral, employing po-
lar coordinates and finally substituting u = r4/2, the valid-
ity of the equation can be shown:

[% I_i exp(—x2/2)dxj =

- i'f_i exp{—(x* +y?)/2} dxdy
B 1 c2r
"o Jo

= j: exp(-r?/2)rdr = IOOO exp(—u)du =1.

jooo exp(-r?/2)rdrdg
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The special form N(0,1), i.e. u=0 and %=1, is called
standardized normal distribution.

Its distribution function is usually denoted by ®(x), i.e.

D(x) = % I_Xoo exp {—%} dx’.

There are extensive tables of the function ®(x) available

In the literature. These tables enable us to evaluate the
distribution function of X ~ N(u,o?) as follows.
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Let X ~ N (u,o?) and therefore (X — u)/o ~ N(0,1) then
Fue(x)=P({& -0 < X(&) < x})

:P({@f:—oo< Xle)=n X‘”}j:@(’(—“j.

The normal distribution is by far the most important dis-
tribution in probability theory and statistical inference.

Its prominence is attributed to central limit theorems,
which roughly state, that the sum of a large number of
(independent) random variables obeys an approximate
normal distribution.
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Gauss density function
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Exponential distribution

A continuous random variable X, taking positive values
only, is said to satisfy an exponential distribution with pa-
rameter 4 > 0 (X ~ £(A)), if its probability density func-
tion is of the form

fX(X) — ieXp(—ﬂ,X)'][o,oo)(X) X e R.

Hence, its distribution function is given by
F, (x)= I_Xw f (X')dx' = j_xoo Aexp(—Ax' )1, (X" )dx’
= [1-exp(=Ax)]1,..,(X).
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The exponential distribution is used as a model for the life
times of items when ageing processes can be neglected.

density function distribution function
1 ‘ : : : :
0.9 | (I ——
0.8f .
0.77 i 0-8
0.6
— =~ 0.6
X 05| =
WX LL><
0.4 0.4
0.3
0.2 1 0.2
0.1}
0 0
0 1 2 3 4 5 0 1 2 3 4 5
X X
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Weibull distribution

When either ageing or initial failures processes have to
be taken into account, a suitable model for the life time
of an item can be provided by a continuous random va-
riable X obeying a Welibull distribution with parameters
A>0,n>0 (X~ W(A,n)).

The probability density function of the Weibull distribu-
tion is defined by

fo(X)=Anx""exp(=Ax")15.(X)  xeR.
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For the distribution function we obtain

Fy(x)= j-_xoo f (x')dx' = j_xoo X" exp(=AX" )1, (X")dX’

= (1-exp(=2AX")) 110,y (X).

By selecting a value for n, the following three cases can
be qualitatively distinguished:

n=1 obviously W(A4,1) = £(A),
n>1 ageing process is incorporated,

O<n<1 initial failure process is considered.

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 50



INSTITUTE OF
WATERACOUSTICS,
SONAR ENGINEERING AND
SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Weibull density function Weibull distribution function
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Cauchy distribution

A continuous random variable Xis said to follow a Cauchy
distribution with parameters 1z € R and v> 0 (X ~ C(x,v)),
iIf the probability density function is given by

LX) = Y _ ] 1 X eR.
ZviH(x=u)® v+ [(x-p)v]

The distribution function can be derived as follows:
1 X 1

VI (X - ,u)/v]

dx’:...

F,.(x)= jf(xdx
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T T | 4

...:ij(xﬂ)/V%dX":1+larctan(x_’uj.
o0 1+ X" 2

The Cauchy distribution possess so-called long tails, i.e.
its density function decays slowly as x tends either to
plus or minus infinity.

Consequently, Cauchy distributed random variables are
suitable models for experiments where large measure-
ment values can be observed with certain likelihood.
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Cauchy density function
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Cauchy distribution function

— #=0, v=1
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1.7 Bivariate Distribution

The theory of random variables discussed so far dealt
only with univariate distributions, i.e. the probability dis-
tributions describe the properties of single random vari-
ables.

However, the modeling of experimental results often re-
quires several random variables, e.g. the results of meas-
uring the simultaneous values of pressure and tempera-
ture in a gas of constant volume have to be described by
two random variables.
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1.7.1 Bivariate Distribution Function
A bivariate distribution function F,. (x,y) is defined by

Fo(X,Y)=P({£: X(£) < x,Y(E) < y})=P(X < x,Y < y).

It can be computed in the discrete and continuous case by

Fuy(X,Y) = Z prv Xuyj) y

X <X J.y;<y

X /

and
X y / ! ! /
Fuy(X,y)= j_wj_wfxy(x,y )dx'dy’,

respectively, where p,. (x,y) denotes the bivariate prob-
ability mass function and f,,(x,y) the bivariate density

function.
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Bivariate distribution functions possess the properties:
(1) lim Fyy (X,y) = Fyy(00,00) = 1.

X—0, y—wo " XY

(2) lim,__ Fyy(Xy) = Fyy(-0,y) =0,
im,_, ., Fyy(X.y) = Fyy(X,—o0) = 0.
(3) Fyy(x.,y)is right-continuous in x and y, respectively,
i.e. lim,_ . F, (x+hy)=F,(Xy),
im, .o, Fyy (X, y+h) = F (X))
(4) F,,(x)y)is a non-decreasing function, i.e. for any

h>0is Fy,(x+hy) > Fy,(xy)forall xand any y,
F.(x,y+h) > F,,(x,y) for all y and any x.
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Example:

second difference (n-th difference for n = 2)
Any((a,b]) =

= Fyy(b4,b,) = Fyy(by,8,) — Fyy(@y,b5) + Fyy(ay,a,

=P({&: (X(&),Y(9) e (a,b]})

where
(a,b]

P((X,Y) e (a,b]) > 0,

(81!82)T’ b1’b2)T]
a;,b,] x (a,,b,].

S

e
e

=1
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1.7.2 Bivariate Density Function
If f,,(X,y) is continuous at (x,y), then

82ny(xa)/) _ azny(XaY)
OX Oy oy OX

fy (X)) =

exists. Bivariate density functions satisfy the properties:
(1) fiy(x,y)>0 forall (x,y)" € R*

@) [ ] Coy)dxdy =1.
(3) Forany (a,b] =(a,,b,] x (a,,b,] = R?

P((X.YY e@bl)=[ [ fi(xy)dxdy.

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 59



INSTITUTE OF

2 WATERACOUSTICS,

5/ SONAR ENGINEERING AND
SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

1.7.3 Marginal Distribution and Density Function

For a given bivariate distribution of (X,Y), the univariate
distributions of the individual random variables X and Y
can be deduced from the expressions

l‘i‘i‘o F.,(x,y)=F, (X,0)=P(X < x,Y <)
=P(X < x)=F,(x)

and
imF,, (X,y)=F(0y)=P(X <Y <y)

=P(Y<y)=F,(y).
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For the marginal distribution and density functions of X
and Y we may write

Fe(x) =" f(xYdx' = [ " £, (x,y)dydx

with
fe(X)= j_oofxy(x’y)dy
and
y 4 / y ® / /
Fo(y)=" f(y)dy' =] [ i (x.y")dxdy
with

f(y)=] Fo(xy)dx,
respectively.
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1.7.4 Conditional Distribution and Density Function

The conditional probability of {& : X(&) < x} knowing that
{&: Y(&) <y} occurred is given by, cf. Chapter 1.3,

P({X<x}n{Y<y})

PIXsxIY<y)=——53 )

CifP(Y<y)>0.

Hence, the conditional distribution function of X under the
condition {Y < y} can be defined by

F.(x|YSy)=P(X<x|Y<Yy)
=P(X<x,Y<y)/P(Y<Yy)
:FXY(X’y)/FY(y)’ IfFY(y)>O
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The conditional density function of X under the condition
{Y < y} can be deduced from

Fe(x|Y<y)=[ f(x'|Y<y)dx =Fy(x.y)/F,(y)

[ [ f (X [Fy ()

such that

Lot

F(y)
If f,,(X,y) is continuous at (x,y), we can also write

dF, (x|Y<y) 0OF(xy)/ox
dx ) F.(y) |
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Let now {&: y < Y(&) < y + Ay} denote an event satisfy-
ing P(y < Y<y+ Ay)> 0. Then, we can derive

Fo(x|y<Y<y+Ay)=

a P(X<Xx,y<Y<y+Ay)
Ply<Y<y+Ay)

X /

P(X<XYSy+Ay)-P(X<x,Y<Vy)
PlYY<y+Ay)-P(Y LYy)

FXY(X’y+Ay)_ny(X,y).1/Ay.
F,(y +Ay)-F,(y) 1/ Ay
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Assuming f,. (x,y) to be continuous at (x,y) and f,.(y) > O,
the limit

im Fy (x| y <Y <y +Ay) = 2 (XY)/0y
. dF,(y)/dy

exists and the conditional distribution function of X un-
der the condition {Y = y} can be expressed by

E(x|Y = y)= S (X y)/oy _ 0F (xy)/oy

df, (y)/dy f,(y)
j_xwfxy(xlaY)dX' I_Xw foy (X, y)dX’
Ry Iifxy(x,y)dx'
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Furthermore, exploiting

X , - oex Fo (X, ,
Fe(x1Y =y)=[" f(x1Y =y)ax'=[" X;‘(y)y )
Y

the conditional density function of X under the condition
{Y = y} can be represented by

ny(X Y) XY(X y)
f Y =

GZFXY (X,y) /axﬁy dF,(x]Y =y)
dF, (y)/dy dx
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Conditional density functions exhibit the properties:

(1) f(x|Y =y)-Ax = fey (X, ¥)- AX- Ay

f (y)-Ay
Px< X<Xx+AX,y <Y <y+Ay)
Py <Y <y+Ay) |

(2) fXY(X’y) — fX(X | Y = .V)fy(y) = fy(y | X = X)fx(x)-
Bayes’ Formula:
F(X1Y =y)=£,(y| X =x)f(x)/f,(y), if ,(y)>0.

(3) fiu(x)= [ f (xy)dy = [ fi(x]Y =y)f,(y)dy.
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1.7.5 Independent Random Variables

We say that two continuous random variables, X and Y

are independent if the events {X < x} and {Y < y} are in-
dependent for all x,y € R, i.e. cf. Chapter 1.3 that

ny(x’}/) — Fx(X) Fy(}/)a fxy(X’y) — fx(X) fy(y)
and consequently
Fx(X|Y =y) = Fy(x), Fy(y|X=Xx)=Fy(y),

f (x| Y =y) =1 (x) and £, (y|X=x)=Ff,(y)
For notational convenience we define

f(x]y) =f (x| Y=y), fy(yx) = f,(y| X = x),
F.(x|ly) =F,(x|Y=Yy) and F,(y|x) =F, (y|X=X).
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1.7.6 Bivariate Normal Distribution

Two continuous random variables X and Y are said to
obey a bivariate normal distribution with parameters ,,
ty, |pl <1, o> 0, o,> 0 if their probability density func-
tion is given by

1 1
fo,(X,¥)= exp{— X
- 20,0, \1- p° 2(1-p°)
B 2 27
X=Hy _2,0(X_/Ux)(y_:uy)+ Y= ||l
O x OxOy Oy

forall x,y € R.
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Bivariate Normal Density Function
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Employing vector/matrix notation the bivariate normal den-
sity function can be expressed by

1 1
i (X) = exp{——(x—u ) I (x - )},
0 27 [det(Z,) 2 T "
where M, denotes the vector of the expected/mean val-
ues and Z, represents the so-called covariance matrix,
l.e.

lLlX1 U)2<1 pGX1GX2
My = , Ly = .|
Hx, POxOx, Ox,
and one writes
X:(X1’X2)T ~ Ny (Hy, Zx)-
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Marginal density functions
The marginal density functions of X and Y are given by

; -
* N o 1 1( X —
fX(X):j_wfxy(X’Y)dy:\/Za exp<—E G_“X '
X X
and
* : : 1 1(y-uY
(0= ] fo(Xy)ax = ——expi 2| =5 | |
Y Y

Hence, the marginal probability distributions of X and Y
are N(u,,0%) and N (u,,07), respectively.
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Conditional density functions

The conditional density function of X under the condition
{Y =y} is given by

f(le:y):fxy(XaY): 1 o
) () J2rei(1-p?)
( .
exp4— L X — + &(y— )| ¢
2050-p9) " TP,

.

and we can write in abbreviated form

O
X|Y=y~N ﬂx+pa—x(y—uy),0§(1—p2) -

Y
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Analogous, the conditional density function of Y under
the condition {X = x} is given by

):fxy(x,)/) 1

= X

fr(X) \/27rc7$(1—p2)

f,(y| X=x

-

exp-

1
<
|
TN
=
_I_
ke
XQ ‘_9
™)
|
=
X
~
—

20,(1- p*)

\ J

Thus, we can write

O
Y|XZXNN(:UY +,OO_—Y(X—,UX),U$(1—,02))-

X
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1.8 Transformations of Random Variables

1.8.1 Function of One Random Variable
Let g : R —> R be a measurable function, i.e. Yy € R is

97 (o y])={x:g(x)< y} e B.

Then, we can define a random variable Y : = — R by

& Y(E)=9g(X(9))

possessing a distribution function determined by
F(y)=P(Y <y)=P(g(X)<y)
=P({¢:9(X(€)<y})=P(X (g7 ((=0¥1))).
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Strictly Monotonic Function

a) Suppose that g(x) is a strictly monotonic increasing
function. The distribution function can be written as

F(y)=P(Y<y)=P(g(X)<y)
=P(X<g"'(y))=Fe (g7 )
_ j_“]w1(y’fx(x)dx.

Moreover, if £, (x) is continuous and g(x) continuously
differentiable at x = g~'(y) we can derive the density
function £, (y) by applying the chain role of calculus.
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(o997 (y)
f. (g7 (y) for a<y<b
f, () =+ * ( ) dy
0 elsewhere
( 1
fx(g (y)) for a<y<b
=<dg(x)/dx o)
0 elsewhere

with
a=g(-») and b=g(x).
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b) Let g(x) be a strictly monotonic decreasing function.
Consequently, we have

F(y)=P(Y <y)=P(g(X)<y)=P(X=g7(y))
=1- P(X<g <y>)= -Fy(97'(y)-0)
—1- j ', (x)d j;(y)fx(x)dx.
Again, if f,(x) is continuous and g(x) continuously dif-

ferentiable at x = g~'(y) the density function f,(y) can
be determined by employing the chain role of calculus.
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(o 997(Y)
—f. (g7 (y) for a<y<b
f (V) =1 . ( ) dy

0 elsewhere

e f 1
B X(g (y)) for a<y<b
=) “(y)

0 elsewhere

with
=g(0) and b=g(—x).
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Exploiting the property
dg(x)/dx >0 for g(x) strictly monotonic increasing
<0 for g(x) strictly monotonic decreasing
the results of case a) and b) can be summarised.

Let £, (x) be continuous at x = g~ '(y) and g(x) any strictly
monotonic function that is continuously differentiable at
x =g '(y). Then f,(y) can be calculated by

f(y)=h(g <y>)|d9 (y)|

with
a=min{g(-=),g()} and b=max{g(-x),g(x)}.

for a<y<b
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Exercise 1.8-1:
Linear function
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Non-Monotonic Function
Theorem:

Let 1, (x) denote the continuous density function of the
random variable X and let g(x) be a continuously differ-
entiable function. Furthermore, suppose that equation
y = g(x) may possess n solutions for a particular y, i.e.

y=9(x)=...=9(x,).
Then, f,,(y), the continuous density function of the ran-
dom variable Y = g(X) can be determined by
- (X))
Wy)= Z\arg (x,)/dx]

x=g;'(y)
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Exercise 1.8-2:
Quadratic function
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1.8.2 One Function of Two Random Variables

Suppose (X,Y) are random variables with bivariate den-
sity function f,. (x,y). Let g(x,y) be a function such that

Z=9(X)Y)
represents a random variable, i.e.forall z e R is

D, ={(x,y):9(x,y)<z} eB.

Then the distribution function of Z is given by
F,(z)=P(Z<z)=P(9(X)Y)<2z)

=P((X.Y)eD,) =[], fiy(x.y)dxdy.
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Exercise 1.8-3:
Sum of two random variables

Exercise 1.8-4:

Magnitude of the difference of two independent random
variables
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1.8.3 Two Functions of Two Random Variables

Let (X,Y) be random variables with bivariate density func-
tion £, (x,y). Suppose g.(x,y) and g,(x,y) are functions
such that

U=g,X)Y) and V =g,(X,Y)

are random variables, i.e. for all u,v € R are
D, ={(xy):g,(x.y)<u}eB,
D, ={(x,y):g,(x,y)<v}eB
and consequently
D, =D,nD, ={(x,y):g,(x,y)<u,g,(x,y)<v|eB.
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The bivariate distribution function of (U, V) is given by
F,, (uv)=PU<u,V <v)

P(9,(X,Y)<u,g,(X,Y)<v)
P((X,Y)eD,,)=|[, fiy(x.y)dxdy.

Assume that the equation system

(U,V) = (91(X’Y)792(X’y))
has the unique solution

(x.y)=(9:"(u.v),g;" (u,v)).
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Furthermore, suppose g,(x,y), 9,(x,y) have continuous
partial derivatives and the determinant of the Jacobian

Sy~ 209u82) _ (agwx 891/5)/]
77 a(xy) \ag,/ox g, /dy
does not vanish, i.e.

det(J(x,y)) = 0.
Then the bivariate density function of (U,V) is given by
ey (97" (U,V), 9, (U,V))
det(J(g7"(uv).g;'wv)))|

fUV(U,V)z
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Alternatively, using the Jacobian
Sy~ 29ih.") (09 /ou og"fov
| o(u,v) 0g,'/ou  og,"/ov

and exploiting the well known results
~ —1
Ju,v)=d(g;"(uv).g;"(uv))

and
det(J(u,v)) = 1/det(J(g1‘1(u,v),g2‘1(U,V)))

we can write

o (V) =y (97 (WV),95 ' (u,v) |det (J(w,v))|
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Exercise 1.8-5:
Linear transformation

Exercise 1.8-6:
Product of two random variables

Exercise 1.8-7:
Quotient of two random variables

Exercise 1.8-8:
Rayleigh distribution
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1.9 Expectation Operator
1.9.1 Expectation for Univariate Distributions

Expected Value of a Random Variable

The expected value of a random variable X, also called
mean value, is defined by

> x;py(x;)  when X is discrete

py =E(X) =1 .
xf,(x)dx when X is continuous

provided that the sum respectively integral converges
absolutely.

The two cases can be summarized by introducing the
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so-called Stieltjes-Integral

« =E(X)=[ xdFy(x).

Remark:

Let a=x, <X, <...<x,=b be points that provide a par-
tition of [a, b] into n subintervals (x,,x, ] (k=0,...,n-1)
and X, € (x,,x,_.].

k" k+1
Then the Stieltjes-Integral is defined by
b . n—1 N
| gxdF(x) = lim ¥ (R )(F(X,.1) - F(X,)).

ml?x(x,m—xk )—0 k=0
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Exercise 1.9-1:
Expected value for Poisson distribution

Exercise 1.9-2:
Expected value for exponential distribution

Exercise 1.9-3:
Expected value for normal distribution

Exercise 1.9-4.
Expected value for Cauchy distribution
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Expected Value of a Function of a Random Variable

For a measurable function, g(X), of the random variable
X, we define the expected value of g(X) by

® 0O

E(Q(X))= _Oog(x)dFX(x)
rZQ(X,-)PX(X,-) when X is discrete

j_oo g(x)f,(x)dx when X is continuous

provided that the sum respectively integral converges
absolutely.
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Let F,(y) denote the distribution function of the random
variable Y = g(X), then by using the definition of integra-
tion it is easy to establish that

E(9(X)) = | g(x)dFy(x)= [ ydF,(y)=E(Y).

Consequently, the expected value of a function of a ran-
dom variable g(X) can be computed directly without de-
termining first the distribution function of the random var-

lable Y = g(X).
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Moments
If g(X) = X* with k > 0, the expected value of g(X), i.e.

m, =E(X*) = O:OxdeX(x)

> x'p,(x,)  when X is discrete

_[_OO x“f,(x)dx  when X is continuous

is called k-th moment of X provided that the integral con-
verges absolutely. For k= 1, we obtain the mean value

Hy = my = E(X).
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Centralised Moments

Suppose g(X) = (X — u, ) with k > 0, then the expected
value of g(X), i.e.

(K
Ck:E((X_lux)k):E[Z(mj(_ﬂx)mxkm]
S ¢
:Z(mj(_“x)mE( )

is called k-th centralised moment of X.

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 97



INSTITUTE OF

2 WATERACOUSTICS,

5/ SONAR ENGINEERING AND
SIGNAL THEORY

Hochschule Bremen
) City University of Applied Sciences

For k = 2, the centralised moment given by
oy =Var(X)=c, =E((X — uy )’ ) =E(X?) - 115

IS called variance.

The positive root of the variance is denoted by o, and is
called standard deviation.

Absolute Moments
The k-th absolute moment of X is defined by

E(1X[)= [ |X]" dFy ().
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x i

Because of the inequality
X[ <X for k=12,

we can state that the existence of the k-th absolute mo-
ment insures the existence of the (k—1)-th moment.

Chebyschev Inequality
Let X be a random variable. For k> 1 and any ¢> 0 the

inequality
E(\x\")

k
&

P(\X\ > g) <
holds.
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Exercise 1.9-5:
Second order moments for Poisson distribution

Exercise 1.9-6:
Second order moments for exponential distribution

Exercise 1.9-7:
Second order moments for normal distribution

Exercise 1.9-8:
Application and proof of the Chebyschev inequality
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Characteristic Function

The characteristic function of the random variab_le XIs de-
fined by taking the expected value of g(X) = e’ i.e.

D, (s)=E(e’*) = T e’**dF, (x)

> e/*p,(x,) when X is discrete

=< w
_[ e’**f (x)dx when X is continuous

\_—0

where s € R.
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Characteristic functions have the properties:

= @, (s)is continuous in s.
(absolute and uniform convergence of the sum resp. integral)

= |D,(s)|<1forall s e R.

» ,(0)=E(%) =E(1)=1.

(characteristic function takes its maximum at s = 0)

Note:
|cDx(S)| - Z ejSXi px(X/)

/

< Z‘ej“"
i

S J. ‘ejSX

pX(X,-) = pr(xi) =1

D (s)| = T e’**f, (x)dx

—00

f (x)dx = ]3 f (x)dx =1
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Moreover, one can easily observe that ®, (-w) equals
the Fourier transform of f, (x).

Hence, the properties of a characteristic function are es-
sentially equivalent to the properties of a Fourier trans-
form (one-to-one mapping).

Consequently, the probability distribution of a random var-
lable is uniquely defined by the inverse Fourier transform
of the characteristic function @, (s), i.e.

fX(x):i [e7®,(s)ds.
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Let X be a random variable with characteristic function
®,(s) and Y =aX + b. Thus, the characteristic function
of Y can be easily determined by

(Dy(S) _ E(ejSY) _ E(ejs(aX+b)) _ eij E(ejaSX) _ eij(DX(aS).

Its probability density function can be derived by apply-
iIng the inverse Fourier Transform as follows

_ 17 —jsy _ 17 —js(y—b)
fY(y)_E_jooe (DY(S)dS_E_jwe d, (as)ds

_ U istyebya 1 (y bj
\a\zn_[oe D, (s)ds’ ‘a‘f — |
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Moment Theorem

Suppose that E(X*) exists for any k> 1, i.e. E(|X|¥) < o,
and therefore

k k jsX k ~jsX _

d cD)i{(S):d E(ek ):E a ek :jk E(xkejSX)
ads as 0S

holds, i.e. the order of differentiation and integration can

be interchanged, we can deduce the so-called moment
theorem

1 d“®,(s)

m, =E(X) = j©  ds”

s=0
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Exercise 1.9-9:
Characteristic function of univariate normal distributions

Exercise 1.9-10:
Higher order moments of univariate normal distributions

Exercise 1.9-11:
Non-negative definiteness of the characteristic function
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1.9.2 Expectation for Bivariate Distributions
Expected Value of a Function of two Random Variables

For a measurable function g(X.Y) of the random variables
X and Y, the expected value of g(X,Y) is defined by

_[ J- (x,y)d’ Fyy (XY )=
/ZZQ(X,-,Y, Pxy(X;,¥;) inthe discrete case
i

_[ j g(x,y)f. (x,y)dxdy inthe continuous case
\—oo —00

provided that the sum respectively integral converges ab-
solutely.
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F,(z) may denote the distribution function of the random
variable Z = g(X,Y). Then analogue to the univariate case,
we can show that

E(g(X,Y))

[ [ a(xy)d®Fy (xy)

—00

= [ zdF,(z)=E(2).
That is, the expected value of a function of two random
variables g(X,Y) can be computed directly without deter-

mining first the distribution function of the random vari-
able Z=g(X)Y).
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Expected Value of a Linear Combination
The expected value of a linear combination leads to

E(Zai gI(X,Y)j N Ijojjozal gi(X’y)szXY(X’y) =

= ij:oj:a’ g,.(x,y)szXy(X,y) = Zai E(g/(X’y))

Thus, the expected value of a linear combination equals
the linear combination of the expected values.

We note in particular that
E(aX“+bY")=aE(X")+bE(Y") for k >1.
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Bivariate Moments

The (k,/)-th moment and centralised moment of discrete
distributed random variables are defined by

m,=EXY)=D > Xy Pyy(X,y;) k=12,..51=12,...

and -

i =E((X )" (Y ~E(V)) ) =E((X — e (Y = 11, )
=Zil;(xi—ﬂx)"(y,-—ﬂy)’ny(X,-,y,-)

k=12,...;1=12,...,
respectively.
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In case of continuously distributed random variables, the
(k,/)-th moment and centralised moment are defined by

m, =E(X*Y') = jo‘; j"; X“y' f,., (X, y)dxdy

k=12,....1=12,...
and

6 =E((X—EOO)) (Y =E(Y) ) =E((X = i (Y - 14, )

= [ | (= Yy = 1) Fio (X, ) dlxly
k=12,...;1=12,...,
respectively.
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On setting k=0 or / = 0, the moments reduce to the cor-
responding moments of the marginal distributions of X
and Y.

However, if k> 1 and [ > 1, the moments become func-
tions of the complete bivariate distribution.

In particular, setting k = /=1, the centralised moment,
called the covariance between X and Y, is given by

6,y = COV(X,Y) = E((X = XY = i1, ))
= ZZ(X/ _:uX)(yj —ﬂy)ny(X,-,yj)

and
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Ciy = COV()(,Y) = E((X_lux)(y_:uy ))
= J-j:o_‘.i(x_ﬂx)(y — iy )y (X, y)dxdy

for the discrete and continuous case, respectively.

The covariance can be expressed by first and second or-
der moments as follows

Cry = Cov(XY) =E((X — 1, )(Y = 1)) = E(XY) = ey 1y
Furthermore, we have
Cyo = COV(X, X) =E((X -1 ')
=Var(X)=E(X?)- 1. =o.
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The covariance measures the degree of linear associa-
tion between XY, i.e. the larger resp. smaller the mag-
nitude of the covariance the larger resp. smaller is the
linear association.

To achieve an unified understanding about what is large
and small, we introduce the normalized quantity

_ Cov(X,Y) __ Cy
pXY) JVar(X)Var(Y) /¢, Cyy

which is called the correlation coefficient between X,Y.
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Exercise 1.9-12:
Covariance and correlation coefficient of bivariate normal
distributions
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Theorem:

For all bivariate distributions with finite second order mo-
ments the Cauchy Schwarz inequality

(E(XY))” <E(X?)E(Y?)
holds and the correlation coefficient satisfies the inequality
P (XY)| <1,

where the equality sign is taken, if, with probability 1, a
linear relationship between X and Y exists.
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Exercise 1.9-13:
Proof of the inequalities
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Uncorrelatedness, Orthogonality and Independence
Let X,Y be random variables. Then X,Y are called

(1) uncorrelated, if
o(X,Y)=0= Cov(X,Y)=0
= E(XY)=E(X)E(Y),

(2) orthogonal, if
E(XY) j j xy f,, (x,y)dxdy =0,
(3) independent, if for all x,y € R
Fav (X, Y ) =F (X)-1,(y).
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Implications:

1) If X and Y are independent random variables and
9,(x) and g,(y) are measurable functions then U=
9,(X) and V=g,(Y) are independent and uncorre-
lated random variables.

2) If Xand Y are orthogonal random variables then
E(X+Y)?=E(X?) + E(Y?) holds.

3) If Xand Y are orthogonal random variables and
E(X) =0 or/and E(Y) =0 then X and Y are uncor-
related random variables.
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Remarks:

= |[f X and Y are uncorrelated random variables then

U=g,(X)and V = g,(Y) are not necessarily uncorre-
lated random variables.

= |[f X and Y are uncorrelated random variables then

X and Y are not necessarily independent random var-
lables.

= |[f X and Y are uncorrelated and normally distributed

random variables then X' and Y are also independent
random variables.
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Exercise 1.9-14:
Verification of the remarks
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Conditional Expected Value

Suppose that X and Y are bivariate distributed continu-
ous random variables. The conditional expected value
of X, given Y =y, written as E, (X|Y = y) is defined by

Ex(X|Y=y)=[ xfi(x|Y=y)dx

=" foY(X’y)dx: LI xf,, (X, y)dx
o f(Y) f(y)

provided that the integral converges absolutely.

The corresponding expression for the discrete case is
obtained with obvious modifications.
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In general, the value of E, (X|Y = y) will vary as we vary
the value of y.

Thus, E, (X]Y = y) will be a function of y and we can write
Ex(X1Y =y)=w,(y),
where . (y) is called the regression function of X on Y.

Analogously, the conditional expected value of Y, given
X = x, is defined by

E, (Y] X = x) =y (X)

where v, (x) denotes the regression function of Y on X.
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More generally, if we consider a measurable function of
X, g(X), whose expected value exists, then the conditional
expected value of g(X), given Y =y, is given by

E, (9(X)1Y =y)=[ g (x|Y =y)dx

—Q0

= fyzy)jig(x)fxy(x’y)dx =Vg00lY):

Similarly, the conditional expected value of g(Y), given
X = x, is defined by

E, (9(Y)] X = X) = pyp0,(X).
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Conditional Expectation

Let us now consider the random variable WQ(X)(Y), which
we obtain by replacing y by Y in the function wg(x)(-).

The random variable l//g(X)(Y) Is called the conditional ex-
pectation of g(X), given Y, and we write

Wg(X)(Y) =E, (Q(X) | Y)-

For the random variable wg(y)(X), we analogous write
'4 Y)(X) =E, (g(Y) | X)
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Properties of conditional expectations:

(1) E, (Ex(X1Y))=E(X), E4(E (Y|X)):E(
or more generally E, (E,(9(X)Y))=E(g(X)).
E, (Ey (9(Y)I1X)) =E(g(Y)).

(2) Moreover, if h(Y) is a function such that E(g(X)h(Y))
exists, then

E,(g(X)h(Y)IY =y)=h(y)E,(g(X)Y =y)
(conditional on Y=y, h(Y) can be treated as constant)
and hence we have

E, (Ex(9(X)n(Y)Y))=E, (h(Y)E,(g(X)|Y))
=E(g(X)h(Y)).
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Exercise 1.9-15:
Verification of the properties

Exercise 1.9-16:
Determination of E(XY') for bivariate normal distributed
random variables
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Bivariate Characteristic Function

The bivariate characteristic function of the random varia-
bles X and Y is defined by

®,.(s,S,)= E(exp(j(s1X+32Y))) with (s,,s,)” e R?,
and we can write
(DXY S1’S Zzexp( (SX +82ym))pXY(Xn’ym)

and
D,y (S1,8,) = j_ij: exp(j(s1x T Szy))fxy(X=Y)dXdy

for the discrete and continuous case respectively.
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Properties of bivariate characteristic functions:

d,.(S,,S,) is continuous in s, and s,.

|, (S4,8,)| < 1 forall (s,,8,)" e R%
d,.(s,,0)=D,(s;) and D, (0,s,)=D(S,).
®,.(0,0) =E(e%) =E(1) =1.

D, (—w,,—w,) is the 2d-Fourier transform of 1, (x,y)

1
(27

= f(X,y)= j'_oo j_oo e /@ (s,s,)ds,ds,.

The random variables X and Y are independent, iff
Dy (S4,8;) = Dy (S1) - Dy (S,)-
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Exercise 1.9-17:
Determine the density of Z=X+Y, if X and Y are inde-
pendent random variables
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Moment Theorem

Supposing the moments m,,= E(X*Y’) exist and therefore
e!(s X+32Y))

+ k+1
0Dy (s,5,) _ OE(
0s/os, s/ os,

_ jk+/ E(Xky/ej(s1 X+32Y)),

holds, i.e. the order of differentiation and integration can
be interchanged, we can deduce the moment theorem

k+/
My =E(XY) = i g )
J S, 0S,

S»] :0,32 :O
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1.9.3 Mean Square Error Estimation
Non-linear Mean Square Error Estimation

We wish to estimate the random variable Y by a function
of the random variable X. Our aim is to find any function
g(X) such that the mean square error

a(@)=E((Y ~90))’) =" [ (v =g(x))" fey (x,y ) dxcly
IS minimum.

Over the class of all functions g for which the expected
value exists, g(g) is minimized by choosing

g(x) =y, (X)=E, (Y| X =X).
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Exercise 1.9-18:
Proof of the non-linear mean square error estimation re-
sult
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Linear Mean Square Error Estimation

Now we wish to estimate the random variable Y by a lin-
ear function of X, i.e. g(X) = a,X + a,. The objective is to
minimise the mean square error

Q(awao) = E((Y _(a1X T4, ))2)

by varying the parameters a, and a,,.

That is, we want to solve the minimisation problem

a=(a,4, )T =argmin(q(a,a,))-

a,,dy

The mean square error is minimum if the equation system
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E((Y-4,X-4,)X)
a,=&, E(y —é1X — éO)

dp =4y

=0

(6q(a1,ao )/da, j

oq(a,,a,)/0a,

Is satisfied. Solving the equation system provides
5 _ E(XXY)-E(X)E(Y) m,-m,,m,, Cov(X,Y)
E(X?)-(E(X))”  myu-my  Var(X)

1

= p(X,Y)o, /o
and
- - ~ m..m.,, —m.,.m
8, =E(Y)—4E(X)=m,, —&m,, =—2 0101
mzo_m120
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Substitution of a, and a, by 4, and &, in g(a,,a,) gives the
minimum mean square error

[(y—(é1X+éo ))2)

(
\

= Var(Y)-2a,Cov(X,Y)+a’Var(X)
= ov (1-p*(X.Y)).

Q(éwéo) =E

=E

(Y—E(Y)—é1(X—E(X)))2)

Moreover, the minimum mean square errors of the linear
and non-linear approach obviously satisfy the relationship

q(a,,8,) > q(g).
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Exercise 1.9-19:
Mean square error estimation for bivariate normal distri-
buted random variables
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110 Vector-valued Random Variables
1.10.1 Multivariate Distributions
Muiltivariate Distributions and Density Functions

The basic ideas of bivariate distributions are easily ex-
tended to the general case, where instead of two, n ran-
dom variables X, X,,..., X are considered.

Thus, the distribution function of the random vector X =
(X;, X,,-.., X ) is defined by
F(X)=Fy  x (X0 X,) = P(X, < X0, X, £X,)

n

and the density function is given by
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e (X) =1y x, (Xpses X)) = Fo « (Xph..0X%,).

Marginal Distributions and Density Functions

For a given multivariate distribution function of X, X,,...,
X, the marginal distribution and density function of X, X,,
..., X, can be expressed by

FX1...Xk(X1,""Xk) — FX1...Xk...Xn(X1""’Xk’0()""’oo)

and
fX1---Xk(X1’.”’Xk):v" I fX1...Xk...Xn(X1""’Xk1Xk+1"--an)ka+1”'an
respectively.
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Conditional Distributions and Density Functions

The conditional distribution and density function of X.,...,
X, under the condition {X, ,=Xx,.,,...,X, =X} Is given by

Fu s, (Xpeo s X [ Xy = X000 X, = X,) =

:P(X,] £X1""’Xk Sxk|Xk+1:Xk+11-"!Xn:Xn)
and
f, +(X,...,X)
fy x (Xpooan X | Xy = X5 s X, = X)) = SN :
1 k * 4 1 ka+1 Xn(Xk+17 '7Xn)
140
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Notation:

FX

1

.__Xk(x1,...,xk|xk+1,...,xn) =

= FX1...Xk(X1”"’Xk|Xk+1 = Xk+1""’X — Xn)
and
fX1'..Xk(x1,...,xk|xk+1,...,xn) =

= fX1...Xk(X1""’Xk|Xk+1 = Xk+1""’Xn - Xn)'

Exercise 1.10-1:
Calculations with conditional densities

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 141



INSTITUTE OF

2 WATERACOUSTICS,

5/ SONAR ENGINEERING AND
SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Independent Random Variables

The random variables X, X,,...,X_ are said to be inde-
pendent, if the multivariate distribution or density func-
tion breaks down into the product of n marginal distribu-
tions or density functions.

Thus X, X,,..., X are independent if the multivariate dis-
tribution can be written in the form

Fx1...x,,(X1v"’Xn) = HFX,-(Xi)
i=1

(valid for the discrete and continuous case)
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or if the density function can be written in the form

fx1...x,,(X1v“’Xn) = HfX,(Xi)
i=1

(applies for the continuous case).

The random variables X,..., X, are independent from the
random variables X, .,...,X_ if the multivariate distribu-
tion or the density function can be expressed by

Fx1...x,,(x1v“’xn) = FX1...Xk(X1""’Xk) ' FXk+1...Xn(Xk+1""’Xn)
or

fx1...x,,(x1’“-’xn) = fX1ka(X1,...,Xk) ' ka+1...Xn(Xk+1""’Xn )-
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1.10.2 Transformation of Vector-valued Random
Variables

Suppose X, X,,...,X, are random variables and g,,...,g,,
are functions with m < n such that

Y =g.(Xpo.s X)) Y, =G ( Xy X))

are random variables. Then the multivariate distribution
of Y., Y,,..., Y s given by

F\ﬁ...vm(yv“"ym):
:F)(g1(>(1,---,)(n)S y1a'°"gm(>(1”"’)(n)S ym)
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The multivariate density function of Y.,Y,,..., Y, can be
determined as follows. In case of m < n we define n—m
auxiliary variables (functions)

Y. =9:(X...,X,) for i=1....m
y,=Xx =¢g/(x,...,x,) for i=m+1..,n.

Assume that the equation system
Voreeor¥a) = (G Xpreeer X )G (X X,))

has the unique solution

(Xps- oo X)) =(91‘1()/1,--.,yn),---,9;1(y1,-.-,y,,))T-
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Furthermore, suppose g,(X{,X,,...,X,),..., 9, (X1, X5,..., X,)
have continuous partial derivatives and the determinant
of the Jacobian

(09, . 069,
OX, OX,,

G ... %
_ OX, oX,, )

does not vanish, i.e.
det(J(x,,...,x,)) =0,
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then the multivariate density function of Y.,Y,,...., Y, is
given by

_F (XX
detJ(x,....,X, )

f\q...vn(yw---’yn)

X1=91" (V1r-a¥n)

X0 =Gn (V1r-sYn)

Finally, integration over y_.,,...,y, provides the multivar-
late density function of Y.,Y,,..., Y,

f\q...vm()/w-“’ym): j _[ f\q...vn(Y1’°--’yn)dym+1"'dyn
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Exercise 1.10-2:
Density of a linear combination of random variables
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1.10.3 Expectations for Vector-valued Random
Variables

Expected Value

For a measurable function g(X., X,,...,X,) the expected
value of g(X., X,,...,X ) is defined by

E(9(Xen X)) = [ [ g X, )0 Fy (X X,)

(Z' ' 'ZQ(XM yeees X )pi1...in

.[ .[g eee X ) X(X1’ LX) dx,--dx,

1+

provided that the sum resp. integral converges absolutely.
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Conditional Expected Value

Let X,, X,,..., X, are multivariate distributed continuous
random variables.

The conditional expected value of X,, given X, = x,,...,
X, = x, is defined by

Jeo)

E(X 1 X, =X, X, =X,) = | X6y (X ] X,i..00X, )X

7, fx1“_xn(x1,...,xn)dx
=~ (X X))

Xg... X,

=Wy (Xp. 0, X,).
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Conditional Expectation

Now, replacing x,,...,x, by X,,..., X, In gux1(x2,...,xn) we
obtain the random variable

Wy (X X,) = E(X, ] Xpoe, X))

which is called the conditional expectation of X., given
Xosoos X

n:

Properties of conditional expectations:
E(E(X, | X,.... X)) =E(X)),
E(X. X, | X5)=E(E(X,X, | X5, X;)| X;)
=E(XE(X, ]| X5, X;) | X;).
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Uncorrelated and Orthogonal Random Variables

The random variables X.,..., X are called uncorrelated
resp. called orthogonal if for all / # j

E(X, X;)=E(X,)E(X;) resp. E(X;X;)=0
holds.
Consequently, if X,,...,X_are uncorrelated resp. are or-

thogonal and
U=y X,
=1

we can write
o, =Y 0% resp. E(U?)=)E(X?)
] i=1
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Moments

Let X,,..., X, be multivariate distributed continuous ran-
dom variables. Then common moments of X.,..., X can
be determined by

o =E(X LX)

n n

my .

J— k kn
= _[x11---xn fX1...Xn(x1,...,xn)dx1---dxn

and where the order of the moments is defined by
r=K+---+k.
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Characteristic Functions

The characteristic function of the multivariate distributed
random variables X.,..., X Is given by

D, (s)= Dy x (Sy5---5S,)
-E exp(jzn:s,.X,j =E(exp(js"X)).

Hence, if the random variables X,,..., X are independent,
we obtain

(DX(S)ZE(ﬁ exp(jSiXi )j:ﬁE(eXp(jSiXi )):f[q)x,(si)-
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Let X,,..., X, be now independent random variables and

u-¥x.
i=1

then the characteristic function of U is given by

®,(s)=E(exp(jsU))=E exp(jzn:sxij — ﬁq)x,- (s).

If in addition, the X,,..., X possess the density functions
fy»---» Ty, the density function of U can be determined by

fU(U):(fx1*fX2*"'*fxn)(u)-
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Exercise 1.10-3:
Sample mean and sample variance of independent nor-
mally distributed random variables
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Moment Theorem

Suppose that the moments m, , = E(X1"1---X,’,‘") exist
and therefore

8k1+m+k”q)x1...x (81,...,Sn) ak1+---+knE(ej(s1X1+...+snX,,))

oS/t .- 08/ 0s{t--- 08/
= jk1+'”+knE(X1k1 X,l;n ej(S1X1+"'+San ),

holds, we can deduce the moment theorem

K+ -+k,
m —E(Xk1...xkn)_ 1 0 Dy x (Sps--5S,)
ky..k, 1 n )7 ik+etk, K K _
j (98 as 5=0
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Exercise 1.10-4:
Application of the Moment Theorem
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1.10.4 Mean Square Error Estimation
Non-linear Mean Square Error Estimation

To estimate the random variable X, by means of the ran-
dom variables X.,..., X , we want to find any function
g(X,,...,X,) that minimizes the mean square error

a(9) =E((Xo=9(Xyso-. X))

00 o0

_ J'...j(xo_g(x1,...,xn))2 fy . x (Xgseens X,)0AXg X,

—00 —00

Over the class of all functions g for which the expected
value exists, g(g) is minimised by choosing

~n

I(Xr 0 X)) = Wy (X X)) =By (Xo | X=X, X, =X,,).
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Linear Mean Square Error Estimation

Now we wish to estimate the random variable X, by a lin-
ear function of X,,..., X, i.e.

g(X,... X, )=aX, ++a,X,=> aX =a'X,
=1
such that the mean square error
n 2
g(a)=q(a,...,a,)=E (XO —Za,X,j = E((X0 —aTX)Z)
i=1

IS minimized by varying the parameter vector a.
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Thus, we have to solve the minimisation problem

a=(a,....a,) =argmin(q(a,,...,a,)).

a,...,a,
The mean square error is minimum if

) —ze((x,-arx)x ) -0

a=a

Is satisfied for i = 1,...,n. After some manipulations we
obtain the equation system

where
R = E(XXT) and r =E(X,X).
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With the estimate a =R™'r the minimum mean square er-
ror is given by

(% -
=E(X,X, —2r'R"XX, +r"/R"XX'Rr}
(X3)-2r'Rr+r'/R'RR'r

(
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Orthogonality Principle

The coefficient vector a that minimizes the mean square
error satisfies the equation

E((X,-a"X)X,)=0, i=1..,n.

Thus, the residual
M=X,-a'X=X,-X,

is orthogonal to the observations X,,..., X . This is known
as the orthogonality principle.
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A geometric interpretation of this result is shown in the
figure below, where X, R and X,..., X, are thought of as
vectors.
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Consequently,

1) )A(O is the orthogonal projection of X, onto the sub-
space U spanned by the observations X,..., X_.

2) R is orthogonal to the subspace U and therefore or-
thogonal to the observations X,,..., X..

3) g(a) = E((xO —>“<0)2) = E((x0 ~X,)X,) =0 if and only
iIf X, lies within the subspace U, i.e. X, is linearly de-
pendent on X,,...,X , thus X,=a’X.

4) q(8) =E((X, — X,)X,) =E(X?) if and only if X, is or-
thogonal to the subspace U.
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1.10.5 Multivariate Normal Distribution

Characteristic Function of a Normally Distributed Vector-
valued Random Variable

Let U,,..., U, be m independent standardized normally
distributed random variables, i.e. U, ~ N(0,1).

The characteristic function of U, is given by

Iy

o, 0)-ex -1 |

cf. Exercise 1.9-9.

Consequently, the characteristic function of the random
vector U = (U,,...,U ) is

m
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Transformation of the random vector U by a (nxm) ma-
trix A provides the random vector

V=(V,.,V) =AU
that possesses the characteristic function
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®,(s)=E(exp(js"V))=E(exp(js’AU))

1

=D, ((s"A)") = exp(—ESTA(sTA)Tj

= exp(—%sTAATsj: exp(—%sTZ sj,
where
Z=E(VV')=E(AU(AU) )=E(AUU'A")
~AE(UU")A” = AIA” = AA
represents the covariance matrix of V.
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Translation of the random vector V by a constant vector
M=(u,...,.,)" leads to the random vector

W=W,..,W) =V+u=AU+pu.

The characteristic function of W can be expressed by
®,,(s)=E(exp(js"W))=E(exp(js’(V+p)))

= exp(jsTp)E(eXp(jsTV)) = exp(jsTp —%STZ sj.

d,,(s) represents the characteristic function of the nor-
mally distributed random vector, where g and £ denote
the vector-valued expected value and the symmetric and
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non-negative definite covariance matrix, respectively, i.e.
E(W)=E(V+p)=E(V)+p=p

and E((W-p)(W-p)" )=E(W')=Z=T1,
s'¥s>0 VseR"
Theorem:

Let X ~ N _(My,Z,) and Y =AX+Db, where the entries of
the (nxm) matrix A and the (nx1) vector b are constants.

Then Y ~ N, (uy,Z,) with
Hy =E(Y)=Auy, +b

and
Z, =E((Y-u )(Y-p,) )=ALA".

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 170



INSTITUTE OF
WATERACOUSTICS,
SONAR ENGINEERING AND
SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Exercise 1.10-5:
Proof of the Theorem
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Density Function of a Normally Distributed Vector-valued
Random Variable

Let U,,..., U, be mindependent standardized normally
distributed random variables, i.e. U, ~ N (0,1).

Thus, the density function of the random vector U = (U,,
...,U_ )" can be written as

m

f,(u) = H (u,)= lﬂ[(—exp(—%u D

1

k
i 1
=(2r7) 2 exp( 22 ,fj 27) 2 exp(—EuTuj

k=1
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Now, we transform the random vector U by
V=(V,..,V ) =AU+,
where A denotes a regular (mxm) matrix, i.e. det(A)=0.

With the inverse transform
U= A‘1(V —M),
the determinant of the Jacobian

- O(Vireo Vi) |
det(J(u)) = det St =det(A),

the well known identities
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det(A)=det(A")
det(Z) = det(AAT)

= det(A)det(A") = (det(A))" >0
> =(AAT) T =(AT) AT = (AT)TA”

and the result derived for determining the density of a
transformed random vector

fu (A7 (v—))
det(A)

fv(V) —
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we obtain
fv(v>=<2n>r5\det<A>\1exp[—%(A1<v—u>)T A%v—u)j
> <2n>r5\det<A)\1exp[—%(v—u)T(A1 )TA%v—u)j
:<2n>r5\det<A>\1exp[—%<v—u)T(AAT )%v—u)j
- (27) * det(z) Zexp —%(v—u)Tr(v—u)j.
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Exercise 1.10-6:
Transformation to standardized normal distribution
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Composed Vector-valued Random Variables
Theorem:

Let X be a random vector composed of the random vec-
tors X,, X, and obeying the distribution

X = X1 NN M= “1 Y — Z11 Z12
X2 ) “2 Z21 z22
Then X, and X, possessing the marginal distributions
X, ~ k1(“1’z11) X, ~ N (”2’ 22)
and the conditional distribution

X[ X, =%, ~ Nk1<|"1 T Z1222_21 (X, —H,), 2, _21222_21221)-
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Exercise 1.10-7:
Proof of the Theorem

Exercise 1.10-8:
Mean square error estimation

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 178



INSTITUTE OF

2 WATERACOUSTICS,

5/ SONAR ENGINEERING AND
SIGNAL THEORY

Hochschule Bremen
b City University of Applied Sciences

111 Sequences of Random Variables

1.11.1 Convergence Concepts

Let (X,) = X,, X,,... be a sequence of random variables.
For any specific &, (X (£)) is a sequence that might or
might not converge and where the notion of convergence
can be given several interpretations.

Recall, that a deterministic sequence (x,) tends to a limit
X, if for any given &> 0, we can find a number N_such that

X, —X|<e Vn>N,_.
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Convergence (everywhere)

If the sequence (X (<)) tends to a number X(¢&) for every
¢ e £, then we say that the random sequence (X)) con-
verges everywhere to the random variable X and we

write this as

imX, =X or X, ———X.

Nn—

Convergence almost surely (a.s.)
If the probability of the set of all events & that satisfy
im__. X (&) =X(&), equals 1, i.e.

P({ézmxn(éh X(é)})=P(mxn - X)=1
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or equivalently

lim P(sup‘Xn —X‘Zgj:O Ve >0

m-—oo n>m

then we say that the random sequence (X,) converges
almost surely (with probability 1) to the random variable

X and we write this as
imX, =X or X, ——=—X.

n—»o0 —®

Convergence in Mean Square (m.s.)

Let (X)) be a sequence of random variables. We say that
the sequence converges in mean square to a random
variable X if
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imE((X, - X)*)=0

n—oo

holds and we write this as
Lim. X =X or X ——— X,

N—>00 Nn—o0

where |.I.m. denotes the limit in mean.

Convergence in Probability (p)

A sequence of random variables (X ) is said to converge
in probability to a random variable X if for every ¢ > 0,

we have
limP(|X, - X|>&)=0

n—oo

and we write this as
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plimX =X or X —2— X,

n—>o0 =50

where plim denotes the limit in probability.

Convergence in Distribution (d)

Let (F, ) be the sequence of distribution functions of the
sequence of random variables (X,). Then (X)) is said to
converge in distribution (or in Law) to a random variable
X with the distribution function F,, if

F, > F,

at all continuity points of F,. Such a convergence is ex-
pressed by
X —2—>X or X ———X.

n n— n—
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Relationships among the various types of convergence

1) Convergence with probability 1 implies convergence in
probability.

2) Convergence with probability 1 implies convergence in
mean square, provided second order moments exist.

3) Convergence in mean square implies convergence in
probability.

4) Convergence in probability implies convergence in dis-
tribution.
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Exercise 1.11-1:
Proof of statement 1) and 3)
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1.11.2 Laws of Large Numbers
Chebyschev’s Theorem (Weak Law of Large Numbers)

Let (X,) be a sequence of pairwise uncorrelated random
variables with

E(X,)=p, Var(X,)=0; and Iim%Za,fzo.

Nn—o0 n =1

Then we have

X m.S. N lLl,

n n—oo

where

X, :lZH:Xk and Iimlzn:,uk = L.

n = =% N Y
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Exercise 1.11-2:
Proof of Chebyschev’s Theorem
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Kolmogorov’s Theorem (Strong Law of Large Numbers)

Let (X,) be a sequence of independent and identically
distributed (i.i.d.) random variables. Furthermore, the mo-
ments E(X,) exist and are equal to .. Then we have

X, na':;o > LU,
where
_ 1 n
Xn:_ZXk
n =
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1.11.3 Central Limit Theorems

Lindeberg-Levy’s Theorem

Let (X,) be a sequence of independent and identically
distributed random variables, such that E(X,) = ¢ and
Var(X,)=oc°+0. Then the distribution function of the ran-
dom variable

Y —Jn [ alln “]
O
tends to that of a standardized normal distribution as n
approaches infinity, i.e.

F, (y)——— O(y).

n

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 189



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Exercise 1.11-3:
Proof of Lindeberg-Levy’s Theorem
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Liaponov’s Theorem
Let (X,) be a sequence of independent distributed ran-
dom variables, such that E(X, )=y, Var(X,)=c7#0 and
E|X, —u,| = B,. Furthermore, let
n 1/3 n 1/2 _ B
B :(Zk:1ﬂk) , C. :(Zk21a,f) and Ilmc—”:O.

n—oo

Then the distribution function of the random variable

1 n
Yn - C_Zk:1(xk —,uk)

n

tends to that of a standardized normal distribution as n
approaches infinity, i.e.

F, (y) ——— ©(y).

n
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