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1 Probability Theory
1.1 Terminology
E: random experiment (activity where the outcome is

randomly influenced)
Ξ: sample space (set of all possible outcomes of E

which may consist of a finite, infinite countable or
uncountable number of elements)

ξ : elementary event (possible outcome of E, 
i.e. ξ∈ Ξ)

Ø: impossible event (empty set Ø = { })
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E: event (collection of some of the possible outcomes
of E, i.e. E ⊂ Ξ )

 : σ -field, i.e. a system of subsets of Ξ satisfying 
1) Ξ ∈
2) if E ∈ then = Ξ \E ∈
3) if Ei ∈ for i = 1, 2,… then

Corollary:  
1) Ø ∈
2) if E1,E2 ∈ then E1 ∩ E2 ∈ and E1\E2 ∈
3) if Ei ∈ for i = 1, 2,… then

(Ξ,): measurable space

∞

=
∈

 1 ii
E 

∞

=
∈

 1 ii
E 

E
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1.2 Definition of Probability
1.2.1 Relative Frequency and Probability
If a random experiment is performed n times and where
the event of interest E is observed with frequency hn(E),
then the relative frequency of the occurrence of E is de-
fined by

Empirical law of large numbers
For sufficiently large n we can write with a high degree
of certainty that

( )( ) with 0 ( ) 1.n
n n

h EH E H E
n

= ≤ ≤

).()( EHEP n≅
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1.2.2 Axiomatic Approach to Probability
Consider an experiment E with measurable space (Ξ,).
A probability measure P is then defined as a mapping

P :  → 

which satisfies the following axioms
1) if  E ∈  then P(E) ≥ 0,

2) P(Ξ) = 1,
3) if  Ei ∈  for i = 1,2,… and  Ei ∩ Ej = Ø for  i ≠ j  then

∞ ∞

==

 
= 

 
∑

11
( ).i i

ii

P E P E
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The triple (Ξ,,P) is called probability space.

Implications:
1) P(Ø) = 0, 
2) if  E1, E2 ∈ with  E1 ⊂ E2 then

P(E1) ≤ P(E2),
3) if  E1, E2 ∈  then

P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2).
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1.2.3 Classical Definition of Probability
Suppose that an experiment has a finite number n of pos-
sible outcomes, ξ1, ξ2,…,ξn and we are interested in an
event E = {ξi1,ξi2,…,ξim} with {i1, i2,…, im} ⊂ {1,2,…,n}. If
we assume that all outcomes ξ1, ξ2,…,ξn are equally
likely, then

This is a basic result which assigns probabilities to events
purely on the basis of combinatorial arguments.
However, its application is strictly limited to experiments
of a finite number of equally likely outcomes.

number of outcomes favorable to ( ) .
total number of outcomes

E mP E
n

= =



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 11

1.3 Conditional Probability
Let (Ξ,,P) be a probability space with E1, E2 ∈  and
P(E2) > 0. The conditional probability of E1 given that
E2 occurred is defined by

One can easily show that the conditional probability sat-
isfies the axioms of a probability measure.

∩
= 1 2

1 2
2

( )( | ) .
( )

P E EP E E
P E
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Implications:
1) Bayes’ Formula 

P(E2 | E1 ) = P(E1 | E2) P(E2) / P(E1).

Furthermore, assuming

we can derive the Total Probability

Ø, andi j i
i

E E i j E E∩ = ≠ ⊂


= ∑( ) ( | ) ( )i i
i

P E P E E P E
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and the generalised Bayes’ Formula

2) Two events E1 and E2 are called independent if
P(E1 | E2) = P(E1)

holds. Consequently, we can stipulate
P(E1 ∩ E2) = P(E1) P(E2).

= >
∑

( ) ( | )( | ) , ( ) 0.
( ) ( | )
k k

k
i ii

P E P E EP E E P E
P E P E E
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1.4 Random Variables
A mapping

X:  Ξ → ,

such that to each ξ ∈ Ξ there corresponds a unique real
number X(ξ) ∈ , is called random variable or measur-
able function with respect to , if for each set B ⊂ 
the inverse image

X −1(B) = {ξ :  X(ξ) ∈ B}
is element of .  
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To assign probabilities to random variables one has to
translate statements about the values of random varia-
bles as follows.

PX (B) = P(X −1(B)) = P({ξ : X(ξ) ∈ B })

Furthermore, a σ -field has to be defined over . One
can show that such a σ -field should include all intervals
of the kind (−∞,x].
The power set () includes the desired intervals but its
cardinality is to high to be able to implement the mea-
surability properties.
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However, one can show that a particular σ -field exists,
called Borel-field , that is the smallest possible includ-
ing all the intervals (−∞, x] and that guarantees the mea-
surability of all sets element of 

Thus, we can define by
(,) the measurable space

and 
(,,PX) the probability space

of a random variable X.
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1.5 Distribution Functions
Given a random variable X, the distribution function of X,
FX (x), is defined by

FX (x) = PX ((−∞,x]) = P({ξ : X(ξ) ≤ x}) = P(X ≤ x).

One can show that FX (x) uniquely determines all the
probabilistic properties of the random variable X.
In particular, for any a,b ∈  with a ≤ b we have

P(X ≤ b) = P(X ≤ a) + P(a < X ≤ b), 
cf. Axiom 3. Hence 

P(a < X ≤ b) = P(X ≤ b) − P(X ≤ a) = FX (b) − FX (a).
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Distribution functions have the properties:
(1) 0 ≤ FX (x) ≤ 1 for all  x ∈ ,

(since FX (x) is a probability)

(2) limx→−∞ FX (x) = 0, limx→∞ FX (x) = 1,
(since limx→−∞ X −1((−∞, x ]) = Ø ∧ limx→∞ X −1((−∞, x ]) = Ξ)

(3) FX (x) is a non-decreasing function, i.e. for any h ≥ 0
and all x, FX (x + h) ≥ FX (x),
(since FX (x + h) − FX (x) = P(x < X ≤ x + h) ≥ 0)

(4) FX (x) is right-continuous, i.e. for all x
limh→0+ FX (x + h) = FX (x). 

(the limit h → 0 is taken through positive values only)
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Any distribution function FX (x), can be expressed by
FX (x) = a1 FX,1(x) + a2 FX,2(x) + a3 FX,3(x), 

where 
ai ≥ 0 for i = 1, 2, 3,    a1 + a2 + a3 = 1 

and 
FX,1(x) is continuous everywhere and differenti-
able for almost all x, i.e. absolute continuous,
FX,2(x) is a step-function with a finite or count-
able infinite number of jumps,
FX,3(x) is a singular function, that is continuous
with zero derivative almost everywhere.
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FX,1(x) and FX,2(x) correspond to the two basic types of
probability distributions one usually encounters in prac-
tise, i.e. the

continuous and discrete distribution,
respectively.
Since FX,3(x) is highly pathological, it can be safely as-
sumed that it does not arise in real applications.
In practice we therefore ignore FX,3(x) and assume that
all distribution functions can be simply represented by

FX (x) = λ FX,1(x) + (1 – λ ) FX,2(x) 
with 0 ≤ λ ≤ 1.
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1.5.1 Purely discrete case (λ = 0)
The distribution function FX (x) = FX,2(x) is a simple step-
function with jumps pi at the points xi for i = 1, 2,3,…
FX (x) would typically have the form 

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

x2

p2

p3

p4

p5

x3x1 x4

p1

x5

FX(x)

x



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 22

If an interval (a,b] does not contain any of the jump points
xi, then clearly

P(a < X ≤ b) = FX (b) − FX (a) = 0.

Hence, X cannot take any value lying between to succes-
sive jump points.

For each i and any small h > 0 we can write 
P(xi − h < X ≤ xi + h) = FX (xi + h) − FX (xi − h) = pi .

Letting h → 0, we obtain
P(X = xi) = pi i = 1, 2, 3,…
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Thus the only values X can take are those correspond-
ing to the jump points. Therefore, X is called discrete ran-
dom variable.
The jump pi at point xi represents the probability that X
takes the value xi. Furthermore, (x1,p1),(x2,p2),… are used
to define the so-called probability mass function pX (x).

x2

pX (x2) = p2

pX (x3) = p3

pX (x4) = p4

pX (x5) = p5

x3x1 x4

pX (x1) = p1

x5
x

pX (x)

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3
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Discrete distribution functions possess the properties:

(1) where the summation extents over
all values of i for which xi ≤ x,

(2) 0 ≤ pX (x) ≤ 1,
(since pX (x) is a probability mass function)

(3)

(since limx→∞ FX (x) = Σi pX (xi) = 1)

=∑ ( ) 1.X i
i

p x

≤

= ∑
,

( ) ( ),
i

X X i
i x x

F x p x
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1.5.2 Purely continuous case (λ = 1)
The distribution function FX (x) = FX,1(x) is absolutely con-
tinuous, i.e. differentiable for almost all x.
FX (x) would typically possess a graph as shown below.
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X can, in general, take any value either on a finite or an
infinite interval and is therefore called continuous ran-
dom variable.
Thus continuous random variables are suitable models
for measuring physical quantities such as pressures, volt-
ages, temperatures, etc.
Furthermore, FX (x) can be represented by

where fX (x) is said to be the probability density function
(PDF) of X.

( ) ( ) ,
x

X XF x f x dx
−∞

′ ′= ∫
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If fX (x) is continuous at x, then

exists. For a small interval (x,x + ∆x] we can now write

or 

where o(∆x) represents a term of smaller order of magni-
tude than ∆x.

( )( ) ( )X
X X

dF xF x f x
dx

′ = =

( ) ( ) ( ) ( )
x x

X X Xx
P x X x x F x x F x f x dx

+∆
′ ′< ≤ + ∆ = + ∆ − = ∫

( ) ( ) o( ),XP x X x x f x x x< ≤ + ∆ = ∆ + ∆
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The latter equation forms the basis for interpreting fX (x)
as a density function, namely, fX (x) defines the density
of probability in the neighbourhood of the point x.
Remarks:

 fX (x) itself does not represent a probability,
 fX (x) ⋅ ∆x has a probabilistic interpretation, 
 fX (x) completely determines FX (x) and therefore

completely specifies the properties of a continu-
ous random variable.
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Probability density functions satisfy the properties:
(1) fX (x) ≥ 0 for all  x ∈ ,

(since FX (x) is a non-decreasing function)

(2)
(since                                           )

(3) For any a,b ∈  with a ≤ b

∞

−∞
=∫ ( ) 1,Xf x dx

lim ( ) ( ) 1X Xx
F x f x dx

∞

−∞→∞
= =∫

< ≤ = − = ∫( ) ( ) ( ) ( ) .
b

X X Xa
P a X b F b F a f x dx
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1.6 Some Special Distributions
1.6.1 Discrete Distributions
Binomial distribution
Consider an experiment which has only two possible out-
comes, “success” and “failure”, with probability p and
(1 − p), respectively.
The number of “successes” occurring in n independent
repetitions of the experiment is a random variable X that
can take the values k = 0,1,…,n.
Within a sequence of n independent trials, k successes
can occur in
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different arrangements. The probability of a specific ar-
rangement is obviously

Thus, the probability for observing k successes in n inde-
pendent trials is given by

The bn,p(k) (k = 0,1,…,n) are called binomial probabilities.

!
!( )!

n n
k k n k

 
=  − 

( ) −
−1 .n kkp p

{ }( ) ( ) ( ) ,: ( ) 1 ( ).n kk
n p

n
P X k P X k p p b k

k
ξ ξ − 

= = = = − = 
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Exploiting the binomial theorem one can verify that

Thus, the distribution function of the so-called binomial
distribution  (n, p) can be defined by

where m = x ∈ , i.e. m ≤ x < m + 1 (Gauss bracket).

,
0 0

( ) ( ) ( ) (1 ) ,
m m

k n k
X n p

k k

n
F x P X x b k p p

k
−

= =

 
= ≤ = = − 

 
∑ ∑

( ),
0 0

( ) (1 ) (1 ) 1.
n n

nk n k
n p

k k

n
b k p p p p

k
−

= =

 
= − = + − = 

 
∑ ∑

Example: 1,0,0,0,0   I   1,1,0,0,0;  1,0,1,0,0;  1,0,0,1,0;  1,0,0,0,1  I 
0,1,0,0,0   I   1,1,0,0,0;  0,1,1,0,0;  0,1,0,1,0;  0,1,0,0,1  I 
0,0,1,0,0   I   1,0,1,0,0;  0,1,1,0,0;  0,0,1,1,0;  0,0,1,0,1 I …
0,0,0,1,0 I   1,0,0,1,0;  0,1,0,1,0;  0,0,1,1,0;  0,0,0,1,1 I 
0,0,0,0,1  I   1,0,0,0,1;  0,1,0,0,1;  0,0,1,0,1;  0,0,0,1,1 I
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Poisson distribution
Consider the limiting form of the binomial probabilities
when n → ∞ and p → 0 in such a way that np = αn → α, a
positive constant.
Substituting p by αn /n, we obtain 

( ),

!( ) 1
! !

1 1 1 1 .
!

n

n kk
n n

n
n

k n k
n n n

nb k
k n k n n

n n n k
n n n n n k

α
α α

α α α

−

−

    = −    −     
    − − +     = ⋅ − −       

        




I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 35

As n tends to infinity, we have

The pα (k) (k = 0,1,…) are called Poisson probabilities.

Note that the sum of the infinitely many but countable
Poisson probabilities satisfies

for all α.

,
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nn
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Hence, the distribution function of the so-called Poisson
distribution  (α) is given by

where m = x ∈ , i.e. m ≤ x < m + 1 (Gauss bracket).

In practice, the Poisson distribution is used for approxi-
mating the binomial distribution in cases, where in a large
number of independent trials (large n) the number of oc-
currences of a rare event (small p) is of interest.

0 0
( ) ( ) ( ) ,

!

km m

X
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1.6.2 Continuous Distributions
Uniform (rectangular) distribution
A continuous random variable X is uniformly distributed
on the interval [a,b] (in abbreviated form X  (a,b)), if
the probability density function is defined by

where 1M (x) denotes the indicator function of the set M
⊂ , i.e.

[ , ]
1( ) 1 ( ) ,X a bf x x x

b a
= ∈

−


1
1 ( ) .

0 otherwiseM

x M
x

∈
= 





I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 39

The distribution function can be expressed as follows: 

A uniformly distributed random variable X  (−π,π) is
often used for modeling a random initial phase of a sinu-
soidal signal.

[ , ]
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Normal (Gaussian) distribution
A continuous random variable X is said to be normally
distributed with parameters µ ∈  and σ 2 (X(µ,σ 2)),
if the probability density function is defined by

The normal distribution function

can not be expressed in explicit form.

2
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However, to check that fX (x), where fX (x) > 0 ∀x∈, rep-
resents a valid form of a probability density function we
have to show that

With the substitution x = (x' − µ) /σ we can derive

Since fX (x) > 0  ∀x ∈ , it is equivalent to proof that 

( )2 2
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2 222
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Thus, after introducing a double integral, employing po-
lar coordinates and finally substituting u = r 2/2, the valid-
ity of the equation can be shown:
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The special form  (0,1), i.e. µ = 0 and σ 2 = 1, is called
standardized normal distribution.
Its distribution function is usually denoted by Φ(x), i.e.

There are extensive tables of the function Φ(x) available
in the literature. These tables enable us to evaluate the
distribution function of X   (µ,σ 2) as follows.

21( ) exp .
22

x xx dx
π −∞

 ′
′Φ = − 
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Let X   (µ,σ 2) and therefore (X − µ) /σ   (0,1) then 

The normal distribution is by far the most important dis-
tribution in probability theory and statistical inference.
Its prominence is attributed to central limit theorems,
which roughly state, that the sum of a large number of
(independent) random variables obeys an approximate
normal distribution.

{ }( )( ) : ( )
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Exponential distribution
A continuous random variable X, taking positive values
only, is said to satisfy an exponential distribution with pa-
rameter λ > 0 (X   (λ)), if its probability density func-
tion is of the form

Hence, its distribution function is given by

[0, )( ) exp( )1 ( ) .Xf x x x xλ λ ∞= − ∈

[ ]
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The exponential distribution is used as a model for the life
times of items when ageing processes can be neglected.

x x
0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f X
(x

)

density function

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

F X
(x

)

distribution function

λ = 1



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 49

Weibull distribution
When either ageing or initial failures processes have to
be taken into account, a suitable model for the life time
of an item can be provided by a continuous random va-
riable X obeying a Weibull distribution with parameters
λ > 0,η > 0 (X  (λ,η)).

The probability density function of the Weibull distribu-
tion is defined by

1
[0, )( ) exp( )1 ( ) .Xf x x x x xη ηλη λ−

∞= − ∈
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For the distribution function we obtain

By selecting a value for η, the following three cases can
be qualitatively distinguished:
η = 1 obviously  (λ,1) =  (λ),

η > 1 ageing process is incorporated, 
0 < η < 1 initial failure process is considered. 
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Cauchy distribution
A continuous random variable X is said to follow a Cauchy
distribution with parameters µ ∈  and ν > 0 (X  (µ,ν)),
if the probability density function is given by

The distribution function can be derived as follows:

[ ] 22 2
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The Cauchy distribution possess so-called long tails, i.e.
its density function decays slowly as x tends either to
plus or minus infinity.
Consequently, Cauchy distributed random variables are
suitable models for experiments where large measure-
ment values can be observed with certain likelihood.
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1.7 Bivariate Distribution
The theory of random variables discussed so far dealt
only with univariate distributions, i.e. the probability dis-
tributions describe the properties of single random vari-
ables.
However, the modeling of experimental results often re-
quires several random variables, e.g. the results of meas-
uring the simultaneous values of pressure and tempera-
ture in a gas of constant volume have to be described by
two random variables.
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1.7.1 Bivariate Distribution Function
A bivariate distribution function FXY (x,y) is defined by

It can be computed in the discrete and continuous case by

and

respectively, where pXY (x,y) denotes the bivariate prob-
ability mass function and fXY (x,y) the bivariate density
function.

( , ) ( , ) ,
x y
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Bivariate distribution functions possess the properties:
(1) limx→∞, y→∞ FXY (x,y) = FXY (∞, ∞) = 1.

(2) limx→−∞ FXY (x,y) = FXY (−∞,y) = 0,
limy→−∞ FXY (x,y) = FXY (x, −∞) = 0.

(3) FXY (x,y) is right-continuous in x and y, respectively,
i.e.  limh→0+ FXY (x + h,y) = FXY (x,y),

limh→0+ FXY (x,y+ h) = FXY (x,y). 

(4) FXY (x,y) is a non-decreasing function, i.e. for any
h ≥ 0 is FXY (x + h,y) ≥ FXY (x,y) for all x and any y,

FXY (x,y+ h) ≥ FXY (x,y) for all y and any x.
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(5) second difference (n-th difference for n = 2)
∆FXY ((a,b]) =
= FXY (b1,b2) − FXY (b1,a2) − FXY (a1,b2) + FXY (a1,a2)
= P ({ξ : (X(ξ),Y(ξ))T∈ (a,b]}) 
= P ((X,Y)T∈ (a,b]) ≥ 0,          Example:

where
(a,b] = ((a1,a2)

T,(b1,b2)
T] 

= (a1,b1] × (a2,b2]. 

=( , ) 1XYF x y

=( , ) 0XYF x y

1b

2a

2b

1a

=1 2( , ) 1XYF b b=1 2( , ) 1XYF a b

=1 2( , ) 0XYF a a
=1 2( , ) 1XYF b a

:Example
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1.7.2 Bivariate Density Function
If fXY (x,y) is continuous at (x,y), then

exists. Bivariate density functions satisfy the properties:
(1) fXY (x,y) ≥ 0  for all  (x,y)T ∈ 2.

(2)

(3) For any (a,b] = (a1,b1] × (a2,b2] ⊂ 2

∞ ∞

−∞ −∞
=∫ ∫ ( , ) 1.XYf x y dxdy

2 2( , ) ( , )( , ) XY XY
XY

F x y F x yf x y
x y y x
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= =
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1.7.3 Marginal Distribution and Density Function
For a given bivariate distribution of (X,Y), the univariate
distributions of the individual random variables X and Y
can be deduced from the expressions

and

lim ( , ) ( , ) ( , )

( ) ( )
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For the marginal distribution and density functions of X
and Y we may write

with

and  

with

respectively.
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1.7.4 Conditional Distribution and Density Function
The conditional probability of {ξ : X(ξ) ≤ x} knowing that
{ξ : Y(ξ) ≤ y} occurred is given by, cf. Chapter 1.3,

Hence, the conditional distribution function of X under the
condition {Y ≤ y} can be defined by
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≤ ≤ = ≤ >
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The conditional density function of X under the condition
{Y ≤ y} can be deduced from

such that 

If fXY (x,y) is continuous at (x,y), we can also write
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Let now {ξ : y < Y(ξ) ≤ y + ∆y} denote an event satisfy-
ing P(y < Y ≤ y + ∆y) > 0. Then, we can derive

< ≤ + ∆ =

≤ < ≤ + ∆
=

< ≤ + ∆

≤ ≤ + ∆ − ≤ ≤
=

≤ + ∆ − ≤

+ ∆ − ∆
= ⋅

+ ∆ − ∆

( | )

( , )
( )

( , ) ( , )
( ) ( )

( , ) ( , ) 1 .
( ) ( ) 1

X

XY XY

Y Y

F x y Y y y

P X x y Y y y
P y Y y y

P X x Y y y P X x Y y
P Y y y P Y y

F x y y F x y y
F y y F y y

′x

′y

x

y





+ ∆y y
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Assuming fXY (x,y) to be continuous at (x,y) and fY (y) > 0,
the limit

exists and the conditional distribution function of X un-
der the condition {Y = y} can be expressed by

0

( , )lim ( | )
( )

XY
Xy

Y

F x y yF x y Y y y
dF y dy∆ →

∂ ∂
< ≤ + ∆ =

( , ) ( , )( | )
( ) ( )

( , ) ( , )
.

( ) ( , )

XY XY
X

Y Y
x x

XY XY

Y XY

F x y y F x y yF x Y y
dF y dy f y

f x y dx f x y dx

f y f x y dx
−∞ −∞

∞

−∞

∂ ∂ ∂ ∂
= = =

′ ′ ′ ′
= =∫ ∫

∫
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Furthermore, exploiting 

the conditional density function of X under the condition
{Y = y} can be represented by

( , )( | ) ( | )
( )

x x XY
X X

Y

f x yF x Y y f x Y y dx dx
f y−∞ −∞

′
′ ′ ′= = = =∫ ∫

2

( , ) ( , )( | )
( ) ( , )

( , ) ( | ) .
( )

XY XY
X

Y XY

XY X

Y

f x y f x yf x Y y
f y f x y dx

F x y x y dF x Y y
dF y dy dx

∞

−∞

= = =

∂ ∂ ∂ =
= =

∫
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Conditional density functions exhibit the properties:

(1)

(2)
Bayes’ Formula:

(3)

⋅ ∆ ⋅ ∆
= ⋅ ∆ =

⋅ ∆

< ≤ + ∆ < ≤ + ∆
≈

< ≤ + ∆

( , )( | )
( )

( , ) .
( )

XY
X

Y

f x y x yf x Y y x
f y y

P x X x x y Y y y
P y Y y y

= = = =( , ) ( | ) ( ) ( | ) ( ).XY X Y Y Xf x y f x Y y f y f y X x f x

∞ ∞

−∞ −∞
= = =∫ ∫( ) ( , ) ( | ) ( ) .X XY X Yf x f x y dy f x Y y f y dy

= = = >( | ) ( | ) ( ) ( ), if ( ) 0.X Y X Y Yf x Y y f y X x f x f y f y
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1.7.5  Independent Random Variables
We say that two continuous random variables, X and Y
are independent if the events {X ≤ x} and {Y ≤ y} are in-
dependent for all x,y ∈ , i.e. cf. Chapter 1.3 that

FXY (x,y) = FX (x)FY (y), fXY (x,y) = fX (x) fY (y)
and consequently

FX (x |Y = y) = FX (x), FY (y |X = x) = FY (y),
fX (x |Y = y) = fX (x)         and fY (y |X = x) = fY (y).   

For notational convenience we define 
fX (x|y) := fX (x |Y = y), fY (y |x) := fY (y |X = x),
FX (x |y) := FX (x |Y = y)   and FY (y |x) := FY (y |X = x).
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1.7.6 Bivariate Normal Distribution
Two continuous random variables X and Y are said to
obey a bivariate normal distribution with parameters µX,
µY, |ρ | < 1, σX > 0, σY > 0 if their probability density func-
tion is given by

for all x,y ∈ .

22

2 2

1 1( , ) exp
2(1 )2 1

( )( )2

XY

X Y

X X Y Y

X X Y Y

f x y

x x y y

ρπσ σ ρ

µ µ µ µρ
σ σ σ σ


= − × −− 

    − − − −  − +    
      



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 70

Bivariate Normal Density Function
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Employing vector/matrix notation the bivariate normal den-
sity function can be expressed by

where denotes the vector of the expected/mean val-
ues and represents the so-called covariance matrix,
i.e.

and one writes

11 1( ) exp ( ) ( ) ,
22 det( )

Tf
π

− = − − − 
 

X X X X
X

x x μ Σ x μ
Σ

1 1 1 2

2 1 2 2

2

2
, ,X X X X

X X X X

µ σ ρ σ σ

µ ρ σ σ σ

  
 = =       

X Xμ Σ

Xμ
XΣ

1 2 2( , ) ( , ).TX X= X XX μ Σ
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Marginal density functions
The marginal density functions of X and Y are given by

and

Hence, the marginal probability distributions of X and Y 
are                                           , respectively.

2
1 1( ) ( , ) exp

22
X

X XY
XX

xf x f x y dy µ
σπσ

∞

−∞

  − ′ ′= = −  
   

∫

2
1 1( ) ( , ) exp .

22
y

Y XY
YY

y
f y f x y dx

µ
σπσ

∞

−∞

 −  ′ ′= = −  
   

∫

2 2( , ) and ( , )X X Y Yµ σ µ σ 
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Conditional density functions
The conditional density function of X under the condition
{Y = y} is given by

and we can write in abbreviated form

2 2

2

2 2

( , ) 1( | )
( ) 2 (1 )

1exp ( )
2 (1 )

XY
X

Y X

X
X Y

X Y

f x yf x Y y
f y

x y

πσ ρ

σµ ρ µ
σ ρ σ

= = = ×
−

    − − + −   −     

2 2| ( ), (1 ) .X
X Y X

Y

X Y y yσµ ρ µ σ ρ
σ

 
= + − − 
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Analogous, the conditional density function of Y under
the condition {X = x} is given by

Thus, we can write

( )

2 2

2

2 2

( , ) 1( | )
( ) 2 (1 )

1exp .
2 (1 )

XY
Y

X Y

Y
Y X

Y X

f x yf y X x
f x

y x

πσ ρ

σµ ρ µ
σ ρ σ

= = = ×
−

    − − + −   −     

2 2| ( ), (1 ) .Y
Y X Y

X

Y X x xσµ ρ µ σ ρ
σ

 
= + − − 
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1.8 Transformations of Random Variables
1.8.1 Function of One Random Variable
Let g :  →  be a measurable function, i.e. ∀y ∈  is

Then, we can define a random variable Y : Ξ →  by 

possessing a distribution function determined by 
( )

( ){ }( ) ( )( )( )1 1

( ) ( ) ( )

: ( ) ( , ] .
YF y P Y y P g X y

P g X y P X g yξ ξ − −

= ≤ = ≤

= ≤ = −∞

( )( ) ( )Y g Xξ ξ ξ=

( )1 ( , ] { : ( ) } .g y x g x y− −∞ = ≤ ∈
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Strictly Monotonic Function
a) Suppose that g(x) is a strictly monotonic increasing

function. The distribution function can be written as

Moreover, if fX (x) is continuous and g(x) continuously
differentiable at x = g−1(y) we can derive the density
function fY (y) by applying the chain role of calculus.

( )
( ) ( )
−

− −

−∞

= ≤ = ≤

= ≤ =

= ∫
1

1 1

( )

( ) ( ) ( )

( ) ( )

( ) .

Y

X

g y

X

F y P Y y P g X y

P X g y F g y

f x dx
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Hence, we obtain

with

( )

( )
1

1
1

1

( )

( )( ) for  
( )

0 elsewhere

( )
for  

( )

0 elsewhere

X
Y

X

x g y

dg yf g y a y b
f y dy

f g y
a y b

dg x dx −

−
−

−

=


< <= 




 < <

= 



( ) and ( ).a g b g= −∞ = ∞
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b) Let g(x) be a strictly monotonic decreasing function.
Consequently, we have

Again, if fX (x) is continuous and g(x) continuously dif-
ferentiable at x = g−1(y) the density function fY (y) can
be determined by employing the chain role of calculus.

( ) ( )
( ) ( )
−

−

−

− −

∞

−∞

= ≤ = ≤ = ≥

= − < = − −

= − =∫ ∫
1

1

1

1 1

( )

( )

( ) ( ) ( ) ( )

1 ( ) 1 ( ) 0

1 ( ) ( ) .

Y

X

g y

X Xg y

F y P Y y P g X y P X g y

P X g y F g y

f x dx f x dx



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 79

Thus, we obtain

with

( )

( )
1

1
1

1

( )

( )( ) for  
( )

0 elsewhere

( )
for  

( )

0 elsewhere

X
Y

X

x g y

dg yf g y a y b
f y dy

f g y
a y b

dg x dx −

−
−

−

=


− < <= 




− < <

= 



( ) and ( ).a g b g= ∞ = −∞
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Exploiting the property

the results of case a) and b) can be summarised.
Let fX (x) be continuous at x = g−1(y) and g(x) any strictly
monotonic function that is continuously differentiable at
x = g−1(y). Then fY (y) can be calculated by

with 

( ) 0    for ( ) strictly monotonic increasing
0    for ( ) strictly monotonic decreasing

dg x dx g x
g x

>
<

( ) ( )
1

11
1

( )

( )( )( ) ( ) for  
( )

X
Y X

x g y

f g ydg yf y f g y a y b
dy dg x dx −

−−
−

=

= = < <

{ } { }min ( ), ( ) and max ( ), ( ) .a g g b g g= −∞ ∞ = −∞ ∞
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Exercise 1.8-1: 
Linear function
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Non-Monotonic Function
Theorem:
Let fX (x) denote the continuous density function of the
random variable X and let g(x) be a continuously differ-
entiable function. Furthermore, suppose that equation
y = g(x) may possess n solutions for a particular y, i.e.

Then, fY (y), the continuous density function of the ran-
dom variable Y = g(X) can be determined by

−= =

= ∑
11 ( )

( )( ) .
( )

i i

n
X i

Y
i i x g y

f xf y
dg x dx

1( ) ( ).ny g x g x= = =
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Exercise 1.8-2: 
Quadratic function
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1.8.2 One Function of Two Random Variables
Suppose (X,Y) are random variables with bivariate den-
sity function fXY (x,y). Let g(x,y) be a function such that

represents a random variable, i.e. for all z ∈  is

Then the distribution function of Z is given by

( , )Z g X Y=

{ }( , ) : ( , ) .zD x y g x y z= ≤ ∈

( )
( )

= ≤ = ≤

= ∈ = ∫∫
( ) ( ) ( , )

( , ) ( , ) .
z

Z

z XYD

F z P Z z P g X Y z

P X Y D f x y dxdy
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Exercise 1.8-3: 
Sum of two random variables

Exercise 1.8-4: 
Magnitude of the difference of two independent random 
variables
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1.8.3 Two Functions of Two Random Variables
Let (X,Y) be random variables with bivariate density func-
tion fXY (x,y). Suppose g1(x,y) and g2(x,y) are functions
such that

are random variables, i.e. for all u,v ∈  are

and consequently

1 2( , ) and ( , )U g X Y V g X Y= =

{ }1 2( , ) : ( , ) , ( , ) .uv u vD D D x y g x y u g x y v= ∩ = ≤ ≤ ∈

{ }
{ }

1

2

( , ) : ( , )

( , ) : ( , )
u

v

D x y g x y u ,

D x y g x y v

= ≤ ∈

= ≤ ∈
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The bivariate distribution function of (U,V) is given by

Assume that the equation system

has the unique solution 

( )1 1
1 2( , ) ( , ), ( , ) .x y g u v g u v− −=

( )
( )

= ≤ ≤

= ≤ ≤

= ∈ = ∫∫
1 2

( , ) ( , )
( , ) , ( , )

( , ) ( , ) .
uv

UV

uv XYD

F u v P U u V v
P g X Y u g X Y v

P X Y D f x y dxdy

( )1 2( , ) ( , ), ( , )u v g x y g x y=
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Furthermore, suppose g1(x,y), g2(x,y) have continuous
partial derivatives and the determinant of the Jacobian

does not vanish, i.e.                

Then the bivariate density function of (U,V) is given by

1 11 2

2 2

( , )( , )
( , )

g x g yg gx y
x y g x g y

∂ ∂ ∂ ∂ ∂
= =  ∂ ∂ ∂ ∂ ∂ 

J

( )det ( , ) 0.x y ≠J

( )
( )( )

1 1
1 2

1 1
1 2

( , ), ( , )
( , ) .

det ( , ), ( , )
XY

UV

f g u v g u v
f u v

g u v g u v

− −

− −
=

J
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Alternatively, using the Jacobian 

and exploiting the well known results

and

we can write

( ) 11 1
1 2( , ) ( , ), ( , )u v g u v g u v

−− −=J J

− −− −

− −

 ∂ ∂ ∂ ∂∂
= =   ∂ ∂ ∂ ∂ ∂ 

1 11 1
1 11 2

1 1
2 2

( , )( , )
( , )

g u g vg gu v
u v g u g v

J

( ) ( )1 1
1 2( , ) ( , ), ( , ) det ( , ) .UV XYf u v f g u v g u v u v− −= J

( ) ( )( )1 1
1 2det ( , ) 1 det ( , ), ( , )u v g u v g u v− −=J J
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Exercise 1.8-5: 
Linear transformation

Exercise 1.8-6: 
Product of two random variables

Exercise 1.8-7: 
Quotient of two random variables

Exercise 1.8-8:
Rayleigh distribution
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1.9 Expectation Operator
1.9.1 Expectation for Univariate Distributions
Expected Value of a Random Variable
The expected value of a random variable X, also called
mean value, is defined by

provided that the sum respectively integral converges
absolutely.
The two cases can be summarized by introducing the

µ
∞

−∞


= = 



∑

∫
X

( ) when  is discrete
E( )

( ) when  is continuous

i X i
i

X

x p x X
X

x f x dx X
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so-called Stieltjes-Integral

Remark:
Let                                         be points that provide a par-
tition of [a,b] into n subintervals                                  
and
Then the Stieltjes-Integral is defined by

X E( ) ( ).XX x dF xµ
∞

−∞
= = ∫

( )
1

1

1
0max( ) 0

( ) ( ) lim ( ) ( ) ( ) .
k kk

nb

k k ka n kx x

g x dF x g x F x F x
+

−

+→∞
=− →

= −∑∫ 

1( , ] ( 0, , 1)k kx x k n+ = −

0 1 na x x x b< < <= =
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Exercise 1.9-1: 
Expected value for Poisson distribution

Exercise 1.9-2: 
Expected value for exponential distribution

Exercise 1.9-3: 
Expected value for normal distribution

Exercise 1.9-4: 
Expected value for Cauchy distribution
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Expected Value of a Function of a Random Variable
For a measurable function, g(X), of the random variable
X, we define the expected value of g(X) by

provided that the sum respectively integral converges
absolutely.
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Let FY (y) denote the distribution function of the random
variable Y = g(X), then by using the definition of integra-
tion it is easy to establish that

Consequently, the expected value of a function of a ran-
dom variable g(X) can be computed directly without de-
termining first the distribution function of the random var-
iable Y = g(X).
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Moments
If g(X) = Xk with k > 0, the expected value of g(X), i.e. 

is called k-th moment of X provided that the integral con-
verges absolutely. For k = 1, we obtain the mean value
µX = m1 = E(X).
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Centralised Moments
Suppose g(X) = (X − µX)k with k > 0, then the expected
value of g(X), i.e.

is called k-th centralised moment of X.
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For k = 2, the centralised moment given by 

is called variance. 
The positive root of the variance is denoted by σX and is
called standard deviation.

Absolute Moments
The k-th absolute moment of X is defined by
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Because of the inequality

we can state that the existence of the k-th absolute mo-
ment insures the existence of the (k−1)-th moment.

Chebyschev Inequality
Let X be a random variable. For k ≥ 1 and any ε > 0 the
inequality

holds.

1 1 for 1,2, ,k kX X k−
≤ + = 

( ) ( )E k
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Exercise 1.9-5:
Second order moments for Poisson distribution

Exercise 1.9-6: 
Second order moments for exponential distribution

Exercise 1.9-7:
Second order moments for normal distribution

Exercise 1.9-8:
Application and proof of the Chebyschev inequality
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Characteristic Function
The characteristic function of the random variable X is de-
fined by taking the expected value of g(X) = e jsX, i.e.

where s ∈ . 
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Characteristic functions have the properties: 
 ΦX (s) is continuous in s.

(absolute and uniform convergence of the sum resp. integral)

 |ΦX (s)| ≤ 1 for all s ∈ .

 ΦX (0) = E(e0) = E(1) = 1.
(characteristic function takes its maximum at s = 0) 
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Moreover, one can easily observe that ΦX (−ω) equals
the Fourier transform of fX (x).
Hence, the properties of a characteristic function are es-
sentially equivalent to the properties of a Fourier trans-
form (one-to-one mapping).
Consequently, the probability distribution of a random var-
iable is uniquely defined by the inverse Fourier transform
of the characteristic function ΦX (s), i.e.
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Let X be a random variable with characteristic function
ΦX (s) and Y = aX + b. Thus, the characteristic function
of Y can be easily determined by

Its probability density function can be derived by apply-
ing the inverse Fourier Transform as follows
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Moment Theorem
Suppose that E(Xk) exists for any k ≥ 1, i.e. E(|X|k) < ∞,
and therefore

holds, i.e. the order of differentiation and integration can
be interchanged, we can deduce the so-called moment
theorem
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Exercise 1.9-9:
Characteristic function of univariate normal distributions

Exercise 1.9-10:
Higher order moments of univariate normal distributions

Exercise 1.9-11:
Non-negative definiteness of the characteristic function
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1.9.2 Expectation for Bivariate Distributions
Expected Value of a Function of two Random Variables
For a measurable function g(X,Y) of the random variables
X and Y, the expected value of g(X,Y) is defined by

provided that the sum respectively integral converges ab-
solutely.
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FZ (z) may denote the distribution function of the random
variable Z = g(X,Y). Then analogue to the univariate case,
we can show that

That is, the expected value of a function of two random
variables g(X,Y) can be computed directly without deter-
mining first the distribution function of the random vari-
able Z = g(X,Y).
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Expected Value of a Linear Combination
The expected value of a linear combination leads to

Thus, the expected value of a linear combination equals
the linear combination of the expected values.
We note in particular that
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Bivariate Moments
The (k,l)-th moment and centralised moment of discrete
distributed random variables are defined by

and

respectively.
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In case of continuously distributed random variables, the
(k,l)-th moment and centralised moment are defined by

and

respectively.
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On setting k = 0 or l = 0, the moments reduce to the cor-
responding moments of the marginal distributions of X
and Y.
However, if k ≥ 1 and l ≥ 1, the moments become func-
tions of the complete bivariate distribution.
In particular, setting k = l = 1, the centralised moment,
called the covariance between X and Y, is given by

and
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for the discrete and continuous case, respectively. 
The covariance can be expressed by first and second or-
der moments as follows

Furthermore, we have  
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The covariance measures the degree of linear associa-
tion between X,Y; i.e. the larger resp. smaller the mag-
nitude of the covariance the larger resp. smaller is the
linear association.
To achieve an unified understanding about what is large
and small, we introduce the normalized quantity

which is called the correlation coefficient between X,Y. 
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Exercise 1.9-12:
Covariance and correlation coefficient of bivariate normal
distributions
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Theorem:
For all bivariate distributions with finite second order mo-
ments the Cauchy Schwarz inequality

holds and the correlation coefficient satisfies the inequality

where the equality sign is taken, if, with probability 1, a
linear relationship between X and Y exists.

( )2 2 2E( ) E( ) E( )XY X Y≤
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Exercise 1.9-13:
Proof of the inequalities
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Uncorrelatedness, Orthogonality and Independence 
Let X,Y be random variables. Then X,Y are called 

(1) uncorrelated, if 

(2) orthogonal, if

(3) independent, if for all x,y ∈ 

ρ = ⇒ =
⇒ =

( ) 0 Cov( ) 0
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Implications:
1) If X and Y are independent random variables and

g1(x) and g2(y) are measurable functions then U =
g1(X) and V = g2(Y) are independent and uncorre-
lated random variables.

2) If X and Y are orthogonal random variables then
E(X + Y)2 = E(X 2) + E(Y 2) holds.

3) If X and Y are orthogonal random variables and
E(X) = 0 or/and E(Y) = 0 then X and Y are uncor-
related random variables.
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Remarks:
 If X and Y are uncorrelated random variables then

U = g1(X) and V = g2(Y) are not necessarily uncorre-
lated random variables.

 If X and Y are uncorrelated random variables then
X and Y are not necessarily independent random var-
iables.

 If X and Y are uncorrelated and normally distributed
random variables then X and Y are also independent
random variables.
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Exercise 1.9-14:
Verification of the remarks
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Conditional Expected Value
Suppose that X and Y are bivariate distributed continu-
ous random variables. The conditional expected value
of X, given Y = y, written as EX (X |Y = y) is defined by

provided that the integral converges absolutely. 
The corresponding expression for the discrete case is
obtained with obvious modifications.
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In general, the value of EX (X |Y = y) will vary as we vary
the value of y.
Thus, EX (X |Y = y) will be a function of y and we can write 

where ψX (y) is called the regression function of X on Y.

Analogously, the conditional expected value of Y, given
X = x, is defined by

where ψY (x) denotes the regression function of Y on X.
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More generally, if we consider a measurable function of
X, g(X), whose expected value exists, then the conditional
expected value of g(X), given Y = y, is given by

Similarly, the conditional expected value of g(Y), given
X = x, is defined by
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Conditional Expectation
Let us now consider the random variable ψg(X)(Y), which
we obtain by replacing y by Y in the function ψg(X)(⋅ ).

The random variable ψg(X)(Y) is called the conditional ex-
pectation of g(X), given Y, and we write

For the random variable ψg(Y)(X), we analogous write

( )( )( ) E ( ) | .g X XY g X Yψ =

( )( )( ) E ( ) | .g Y YX g Y Xψ =
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Properties of conditional expectations:
(1)

or more generally                                                        

(2) Moreover, if h(Y) is a function such that E(g(X)h(Y))
exists, then

(conditional on Y=y, h(Y) can be treated as constant) 
and hence we have
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Exercise 1.9-15:
Verification of the properties

Exercise 1.9-16:
Determination of E(XY) for bivariate normal distributed 
random variables
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Bivariate Characteristic Function
The bivariate characteristic function of the random varia-
bles X and Y is defined by

and we can write 

and 

for the discrete and continuous case respectively.

( )( )∞ ∞

−∞ −∞
Φ = +∫ ∫1 2 1 2( ) exp ( , )XY XYs ,s j s x s y f x y dxdy

( )( )1 2 1 2( ) exp ( , )XY n m XY n m
n m

s ,s j s x s y p x yΦ = +∑∑

( )( )( )Φ = + ∈2
1 2 1 2 1 2( ) E exp with ( , ) ,T

XY s ,s j s X s Y s s
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Properties of bivariate characteristic functions: 
 ΦXY (s1,s2) is continuous in s1 and s2.

 |ΦXY (s1,s2)| ≤ 1 for all (s1,s2)
T∈ 2.

 ΦXY (s1,0) = ΦX (s1)  and  ΦXY (0,s2) = ΦY (s2).
 ΦXY (0,0) = E(e0) = E(1) = 1.
 ΦXY (−ω1,−ω2) is the 2d-Fourier transform of fXY (x,y)

 The random variables X and Y are independent, iff
ΦXY (s1,s2) = ΦX (s1) · ΦY (s2).

( )

π
∞ ∞ − +

−∞ −∞
⇒ = Φ∫ ∫ 1 2

1 2 1 22
1( , ) ( , ) .

(2 )
j s x s y

XY XYf x y e s s ds ds
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Exercise 1.9-17:
Determine the density of Z = X + Y, if X and Y are inde-
pendent random variables
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Moment Theorem
Supposing the moments mkl = E(X kY l) exist and therefore

holds, i.e. the order of differentiation and integration can
be interchanged, we can deduce the moment theorem

( )

( )

+++

++

∂∂ Φ
=

∂ ∂ ∂ ∂

=

1 2

1 2

( )
1 2

1 2 1 2

( )

E( , )

E ,

j s X s Yk lk l
XY
k l k l

j s X s Yk l k l

es s
s s s s

j X Y e

( )
+

+
= =

∂ Φ
= =

∂ ∂
1 2

1 2

1 2 0, 0

( , )1E .
k l

k l XY
kl k l k l

s s

s sm X Y
j s s
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1.9.3 Mean Square Error Estimation
Non-linear Mean Square Error Estimation
We wish to estimate the random variable Y by a function
of the random variable X. Our aim is to find any function
g(X) such that the mean square error

is minimum. 
Over the class of all functions g for which the expected
value exists, q(g) is minimized by choosing

( )( ) ( )
∞ ∞

−∞ −∞
= − = −∫ ∫

2 2( ) E ( ) ( ) ( , )XYq g Y g X y g x f x y dxdy

ˆ( ) ( ) E ( | ) .Y Yg x x Y X xψ= = =
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Exercise 1.9-18:
Proof of the non-linear mean square error estimation re-
sult
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Linear Mean Square Error Estimation
Now we wish to estimate the random variable Y by a lin-
ear function of X, i.e. g(X) = a1X + a0. The objective is to
minimise the mean square error

by varying the parameters a1 and a0.

That is, we want to solve the minimisation problem

The mean square error is minimum if the equation system

( )( )2
1 0 1 0( , ) E ( )q a a Y a X a= − +

( ) ( )
1 0

1 0 1 0
,

ˆ ˆ ˆ, argmin ( , ) .T

a a
a a q a a= =a
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is satisfied. Solving the equation system provides

and

( )
11 10 01

1 2 22
20 10

E( ) E( )E( ) Cov( , )ˆ
Var( )E( ) E( )
( , ) Y X

m m mXY X Y X Ya
m m XX X

X Yρ σ σ

−−
= = =

−−

=

( )( )
( )1 1

0 0

1 01 0 1

ˆ1 0 0 1 0ˆ

ˆ ˆE( , )
2

( , ) ˆ ˆEa a
a a

Y a X a Xq a a a
q a a a Y a X a=

=

 − −∂ ∂   = − =   ∂ ∂ − −   
0

−
= − = − =

−
20 01 10 11

0 1 01 1 10 2
20 10

ˆ ˆ ˆE( ) E( ) .m m m ma Y a X m a m
m m
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Substitution of a1 and a0 by â1 and â0 in q(a1,a0) gives the
minimum mean square error

Moreover, the minimum mean square errors of the linear
and non-linear approach obviously satisfy the relationship

( )( )
( )( )( )

( )σ ρ

= − +

= − − −

= − +

= −

2
1 0 1 0

2
1

2
1 1

2 2

ˆ ˆ ˆ ˆ( , ) E ( )

ˆE E( ) E( )

ˆ ˆVar( ) 2 Cov( , ) Var( )

1 ( , ) .Y

q a a Y a X a

Y Y a X X

Y a X Y a X

X Y

≥1 0ˆ ˆ ˆ( , ) ( ).q a a q g
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Exercise 1.9-19:
Mean square error estimation for bivariate normal distri-
buted random variables



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 138

1.10 Vector-valued Random Variables
1.10.1 Multivariate Distributions
Multivariate Distributions and Density Functions
The basic ideas of bivariate distributions are easily ex-
tended to the general case, where instead of two, n ran-
dom variables X1,X2,…,Xn are considered.
Thus, the distribution function of the random vector X =
(X1,X2,…,Xn)

T is defined by

and the density function is given by
1 1 1 1( ) ( , , ) ( , , )

nX X n n nF F x x P X x X x= = ≤ ≤X x


 



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 139

Marginal Distributions and Density Functions
For a given multivariate distribution function of X1,X2,…,
Xn, the marginal distribution and density function of X1,X2,
…,Xk can be expressed by

and

respectively.

1 11 1( , , ) ( , , , , , )
k k nX X k X X X kF x x F x x= ∞ ∞

  

  

1 11 1
1

( ) ( , , ) ( , , ).
n n

n

X X n X X n
n

f f x x F x x
x x

∂
= =

∂ ∂X x
 

 



1 11 1 1 1( , , ) ( , , , , , )
k k nX X k X X X k k n k nf x x f x x x x dx dx

∞ ∞

+ +
−∞ −∞

=∫ ∫  
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Conditional Distributions and Density Functions
The conditional distribution and density function of X1,…,
Xk under the condition {Xk+1 = xk+1,…,Xn = xn} is given by

and

+ +

+ +

= = =

= ≤ ≤ = =


 

 

1 1 1 1

1 1 1 1

( , , | , , )
( , , | , , )

kX X k k k n n

k k k k n n

F x x X x X x

P X x X x X x X x

+

+ +
+

= = = 







 



1

1

1

1
1 1 1

1

( , , )
( , , | , , ) .

( , , )
n

k

k n

X X n
X X k k k n n

X X k n

f x x
f x x X x X x

f x x
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Notation:

Exercise 1.10-1:
Calculations with conditional densities

+

+ +

+

+ +

=

= = =

=

= = =









 

 

 

 

1

1

1

1

1 1

1 1 1

1 1

1 1 1

( , , | , , )
( , , | , , )

and
( , , | , , )

( , , | , , ).

k

k

k

k

X X k k n

X X k k k n n

X X k k n

X X k k k n n

F x x x x
F x x X x X x

f x x x x
f x x X x X x
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Independent Random Variables
The random variables X1, X2,…,Xn are said to be inde-
pendent, if the multivariate distribution or density func-
tion breaks down into the product of n marginal distribu-
tions or density functions.

Thus X1,X2,…,Xn are independent if the multivariate dis-
tribution can be written in the form

(valid for the discrete and continuous case)
=

= ∏1 1
1

( , , ) ( )
n i

n

X X n X i
i

F x x F x
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or if the density function can be written in the form

(applies for the continuous case).
The random variables X1,…,Xk are independent from the
random variables Xk+1,…,Xn if the multivariate distribu-
tion or the density function can be expressed by

or 
+ += ⋅

1 1 11 1 1( , , ) ( , , ) ( , , )
n k k nX X n X X k X X k nF x x F x x F x x

  

  

+ += ⋅
1 1 11 1 1( , , ) ( , , ) ( , , ).

n k k nX X n X X k X X k nf x x f x x f x x
  

  

=

= ∏1 1
1

( , , ) ( )
n i

n

X X n X i
i

f x x f x
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1.10.2 Transformation of Vector-valued Random 
Variables 

Suppose X1,X2,…,Xn are random variables and g1,…,gm
are functions with m ≤ n such that

are random variables. Then the multivariate distribution
of Y1,Y2,…,Ym is given by

1 1 1 1( , , ), , ( , , )n m m nY g X X Y g X X= =  

( )
=

= ≤ ≤




  

1 1

1 1 1 1

( , , )

( , , ) , , ( , , ) .
mY Y m

n m n m

F y y

P g X X y g X X y
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The multivariate density function of Y1,Y2,…,Ym can be
determined as follows. In case of m < n we define n − m
auxiliary variables (functions)

Assume that the equation system 

has the unique solution

1

1

( , , ) for 1, ,
( , , ) for 1, , .

i i n

i i i n

y g x x i m
y x g x x i m n

= =

= = = +

 

 

( )− −=   

1 1
1 1 1 1( , , ) ( , , ), , ( , , ) .

TT
n n n nx x g y y g y y

( )=   1 1 1 1( , , ) ( , , ), , ( , , ) TT
n n n ny y g x x g x x
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Furthermore, suppose g1(x1,x2,…,xn),…,gn(x1,x2,…,xn)
have continuous partial derivatives and the determinant
of the Jacobian

does not vanish, i.e. 

∂ ∂ 
 ∂ ∂ 

=  
 ∂ ∂
  ∂ ∂ 



  



1 1

1

1

1

( , , )
n

n

n n

n

g g
x x

x x
g g
x x

J

( ) ≠1det ( , , ) 0,nx xJ
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then the multivariate density function of Y1,Y2,…,Yn is
given by

Finally, integration over ym+1,…,yn provides the multivar-
iate density function of Y1,Y2,…,Ym.

1

11
1 1 1

1
1

1
1 ( , , )

1
( , , )

( , , )
( , , ) .

det ( , , )
n

n
n

n n n

X X n
Y Y n

x g y y
n

x g y y

f x x
f y y

x x −

−

=

=

=
J

















1 11 1 1( , , ) ( , , )
m nY Y m Y Y n m nf y y f y y dy dy

∞ ∞

+
−∞ −∞

= ∫ ∫ 
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Exercise 1.10-2:
Density of a linear combination of random variables
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1.10.3 Expectations for Vector-valued Random 
Variables 

Expected Value
For a measurable function g(X1, X2,…,Xn) the expected
value of g(X1,X2,…,Xn) is defined by

provided that the sum resp. integral converges absolutely. 

( )
∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

=



=




∫ ∫
∑ ∑

∫ ∫







   

 

   

1

1 1
1

1

1 1 1

1, ,

1 1 1

E ( , , ) ( , , ) ( , , )

( , , )

( , , ) ( , , )

n

n n
n

n

n
n n X X n

i n i i i
i i

n X X n n

g X X g x x d F x x

g x x p

g x x f x x dx dx
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Conditional Expected Value
Let X1, X2,…,Xn are multivariate distributed continuous
random variables.
The conditional expected value of X1, given X2 = x2,…,
Xn = xn is defined by

( )

ψ

∞

−∞

∞

−∞

= = =

=

=

∫

∫ 



 







1

1

2

1

1 2 2 1 1 2 1

1
1 1

2

2

E | , , ( | , , )

( , , )
( , , )

( , , ).

n

n

n n X n

x x n

x x n

X n

X X x X x x f x x x dx

f x x
x dx

f x x

x x
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Conditional Expectation
Now, replacing x2,…,xn by X2,…,Xn in ψX1

(x2,…,xn) we
obtain the random variable

which is called the conditional expectation of X1, given
X2,…,Xn.
Properties of conditional expectations:

( )
1 2 1 2( , , ) E | , ,X n nX X X X Xψ = 

( )( )
( ) ( )( )

( )( )

=

=

=

1 2 1

1 2 3 1 2 2 3 3

2 1 2 3 3

E E | , , E( ),

E | E E | , |

E E | , | .

nX X X X

X X X X X X X X

X X X X X
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Uncorrelated and Orthogonal Random Variables
The random variables X1,…,Xn are called uncorrelated
resp. called orthogonal if for all i ≠ j

holds. 
Consequently, if X1,…,Xn are uncorrelated resp. are or-
thogonal and

we can write  

E( ) E( )E( ) resp. E( ) 0i j i j i jX X X X X X= =

1
,

n

i
i

U X
=

= ∑

( )2 2 2 2

1 1
resp. E( ) E .

i

n n

U X i
i i

U Xσ σ
= =

= =∑ ∑
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Moments
Let X1,…,Xn be multivariate distributed continuous ran-
dom variables. Then common moments of X1,…,Xn can
be determined by

and where the order of the moments is defined by  

( )
∞

−∞

=

= ∫







  

1

1

1

1

1

1 1 1
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( , , )

n

n

n

n

k k
k k n
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n X X n n

m X X

x x f x x dx dx

1 .nr k k= + +
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Characteristic Functions
The characteristic function of the multivariate distributed
random variables X1,…,Xn is given by

Hence, if the random variables X1,…,Xn are independent,
we obtain

( )( )
1 1

1

( ) ( , , )

E exp E exp .

nX X n

n
T

i i
i

s s

j s X j
=

Φ = Φ

  
= =  

  
∑

X s

s X
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= = =

 
Φ = = = Φ 
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1 1 1
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Let X1,…,Xn be now independent random variables and

then the characteristic function of U is given by

If in addition, the X1,…,Xn possess the density functions
fX1

,…, fXn
, the density function of U can be determined by

1
,

n

i
i

U X
=

= ∑

( )( )
1 1

( ) E exp E exp ( ).
i

nn

U i X
i i

s j sU j s X s
= =

  
Φ = = = Φ  

  
∑ ∏
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1 2

( ) ( ).
nU X X Xf u f f f u
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Exercise 1.10-3:
Sample mean and sample variance of independent nor-
mally distributed random variables
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Moment Theorem
Suppose that the moments exist
and therefore

holds, we can deduce the moment theorem
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Exercise 1.10-4:
Application of the Moment Theorem
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1.10.4 Mean Square Error Estimation
Non-linear Mean Square Error Estimation
To estimate the random variable X0 by means of the ran-
dom variables X1,…,Xn, we want to find any function
g(X1,…,Xn) that minimizes the mean square error

Over the class of all functions g for which the expected
value exists, q(g) is minimised by choosing

( )( )
( )

∞ ∞

−∞ −∞

= −

= −∫ ∫ 
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0 1
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Linear Mean Square Error Estimation
Now we wish to estimate the random variable X0 by a lin-
ear function of X1,…,Xn, i.e.

such that the mean square error

is minimized by varying the parameter vector a.

1 1 1
1
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n

T
n n n i i
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g X X a X a X a X
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= + + = =∑ a X 
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Thus, we have to solve the minimisation problem

The mean square error is minimum if 

is satisfied for i = 1,…,n. After some manipulations we
obtain the equation system

where

( )
1

1 1
, ,

ˆ ˆ ˆ( , , ) argmin ( , , ) .
n

T
n n

a a
a a q a a= =a



 

( )( )
=

∂
= − − =

∂ 0
ˆ

( ) ˆ2E 0T
i

i

q X X
a a a

a a X

= = 0E( ) and E( ).T XR XX r X



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 162

With the estimate the minimum mean square er-
ror is given by
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Orthogonality Principle
The coefficient vector that minimizes the mean square
error satisfies the equation

Thus, the residual

is orthogonal to the observations X1,…,Xn. This is known
as the orthogonality principle.

â

( )( )− = = 0 ˆE 0, 1, , .T
iX X i na X

0 0 0
ˆˆTX X X= − = −a XR
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A geometric interpretation of this result is shown in the
figure below, where X0, R and X1,…,Xn are thought of as
vectors.

0 0
ˆX X= −R

0X

3X
2X

1X

0
ˆ ˆTX = a X
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Consequently, 
1) is the orthogonal projection of X0 onto the sub-

space U spanned by the observations X1,…,Xn.

2) R is orthogonal to the subspace U and therefore or-
thogonal to the observations X1,…,Xn.

3) if and only
if X0 lies within the subspace U, i.e. X0 is linearly de-
pendent on X1,…,Xn, thus .

4) if and only if X0 is or-
thogonal to the subspace U.

0X̂

=0 ˆTX a X

( ) ( )= − = − =2
0 0 0 0 0

ˆ ˆˆ( ) E ( ) E ( ) 0q X X X X Xa

( ) ( )2
0 0 0 0

ˆˆ( ) E ( ) Eq X X X X= − =a
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1.10.5 Multivariate Normal Distribution
Characteristic Function of a Normally Distributed Vector-
valued Random Variable
Let U1,…,Um be m independent standardized normally
distributed random variables, i.e. Uk   (0,1).

The characteristic function of Uk is given by

cf. Exercise 1.9-9. 
Consequently, the characteristic function of the random
vector U = (U1,…,Um)T is

2

( ) exp ,
2k

k
U k

rr
 

Φ = − 
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Transformation of the random vector U by a (n × m) ma-
trix A provides the random vector

that possesses the characteristic function
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where 

represents the covariance matrix of V.
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Translation of the random vector V by a constant vector
leads to the random vector 

The characteristic function of W can be expressed by

ΦW(s) represents the characteristic function of the nor-
mally distributed random vector, where and denote
the vector-valued expected value and the symmetric and

1( , , ) .T
nW W= = + = +W V μ AU μ
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Φ = = +

 = = − 
 

( ) E exp( ) E exp( ( ))

1exp( )E exp( ) exp .
2

T T

T T T T

j j

j j j
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non-negative definite covariance matrix, respectively, i.e.

and

Theorem:
Let and Y = AX + b, where the entries of
the (n×m) matrix A and the (n×1) vector b are constants.
Then with

and

( ) ( )− − = = =
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T n

W μ W μ VV Σ Σ

s Σs s
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E( )= = +Y Xμ Y Aμ b
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Exercise 1.10-5:
Proof of the Theorem



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 172

Density Function of a Normally Distributed Vector-valued 
Random Variable
Let U1,…,Um be m independent standardized normally
distributed random variables, i.e. Uk  (0,1).

Thus, the density function of the random vector U = (U1,
…,Um)T can be written as
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Now, we transform the random vector U by 

where A denotes a regular (m ×m) matrix, i.e. det(A) ≠0.
With the inverse transform

the determinant of the Jacobian

the well known identities
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and the result derived for determining the density of a
transformed random vector
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we obtain
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Exercise 1.10-6:
Transformation to standardized normal distribution
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Composed Vector-valued Random Variables
Theorem:
Let X be a random vector composed of the random vec-
tors X1, X2 and obeying the distribution

Then X1 and X2 possessing the marginal distributions 

and the conditional distribution  

1 1 11 12

2 2 21 22

, .k

      
= = =             

X μ Σ Σ
X μ Σ

X μ Σ Σ


( ) ( )
1 21 1 11 2 2 22, , ,k kX μ Σ X μ Σ  
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1

1 1
1 2 2 1 12 22 2 2 11 12 22 21| ( ), .k

− −= + − −X X x μ Σ Σ x μ Σ Σ Σ Σ
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Exercise 1.10-7:
Proof of the Theorem

Exercise 1.10-8:
Mean square error estimation
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1.11 Sequences of Random Variables
1.11.1 Convergence  Concepts
Let (Xn) = X1, X2,… be a sequence of random variables. 
For any specific ξ, (Xn(ξ)) is a sequence that might or
might not converge and where the notion of convergence
can be given several interpretations.

Recall, that a deterministic sequence (xn) tends to a limit
x, if for any given ε > 0, we can find a number Nε such that

εε− ∀< > .nx x n N



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 180

Convergence (everywhere)
If the sequence (Xn(ξ)) tends to a number X(ξ) for every
ξ ∈ Ξ, then we say that the random sequence (Xn) con-
verges everywhere to the random variable X and we
write this as

Convergence almost surely (a.s.)
If the probability of the set of all events ξ that satisfy
limn→∞ Xn(ξ) = X (ξ), equals 1, i.e.

→∞→∞
= →lim or .n n nn

X X X X

{ }( ) ( ): lim ( ) ( ) lim 1n nn n
P X X P X Xξ ξ ξ

→∞ →∞
= = = =
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or equivalently 

then we say that the random sequence (Xn) converges
almost surely (with probability 1) to the random variable
X and we write this as

Convergence in Mean Square (m.s.)
Let (Xn) be a sequence of random variables. We say that
the sequence converges in mean square to a random
variable X if

→∞→∞
= →. .lim or .a s

n n nn
X X X X

ε ε
→∞ ≥

 − ≥ = ∀ > 
 

lim sup 0 0nm n m
P X X
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holds and we write this as

where l.i.m. denotes the limit in mean.

Convergence in Probability (p)
A sequence of random variables (Xn) is said to converge
in probability to a random variable X if for every ε > 0,
we have

and we write this as  

→∞→∞
= →. .l.i.m. or ,m s

n n nn
X X X X

( )( )2lim E 0nn
X X

→∞
− =

( )lim 0nn
P X X ε

→∞
− ≥ =
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where p lim denotes the limit in probability.

Convergence in Distribution (d)
Let be the sequence of distribution functions of the
sequence of random variables (Xn). Then (Xn) is said to
converge in distribution (or in Law) to a random variable
X with the distribution function FX if

at all continuity points of FX. Such a convergence is ex-
pressed by

→∞→∞
= →lim or ,p

n n nn
p X X X X

nX XnF F→∞→

→∞ →∞→ →or .d L
n nn nX X X X

( )
nXF
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Relationships among the various types of convergence
1) Convergence with probability 1 implies convergence in

probability.
2) Convergence with probability 1 implies convergence in

mean square, provided second order moments exist.
3) Convergence in mean square implies convergence in

probability.
4) Convergence in probability implies convergence in dis-

tribution.
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Exercise 1.11-1:
Proof of statement 1) and 3)
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1.11.2 Laws of Large Numbers
Chebyschev’s Theorem (Weak Law of Large Numbers) 
Let (Xk) be a sequence of pairwise uncorrelated random
variables with

Then we have

where 

µ σ σ
→∞

=

= = =∑2 2
2

1

1E( ) , Var( ) and lim 0.
n

k k k k kn k
X X

n

µ µ
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= =

= =∑ ∑
1 1

1 1and lim .
n n

n k knk k
X X

n n

µ→∞→. . ,m s
n nX
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Exercise 1.11-2:
Proof of Chebyschev’s Theorem
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Kolmogorov’s Theorem (Strong Law of Large Numbers)
Let (Xk) be a sequence of independent and identically
distributed (i.i.d.) random variables. Furthermore, the mo-
ments E(Xk) exist and are equal to µ. Then we have

where 

. . ,a s
n nX µ→∞→

1

1 .
n

n k
k

X X
n =
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1.11.3 Central Limit Theorems 
Lindeberg-Levy’s Theorem
Let (Xk) be a sequence of independent and identically
distributed random variables, such that E(Xk) = µ and
Var(Xk)= σ 2 ≠0. Then the distribution function of the ran-
dom variable

tends to that of a standardized normal distribution as n
approaches infinity, i.e.

µ
σ

 −
=  

 
n

n
XY n

( ) ( ).
nY nF y y→∞→ Φ
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Exercise 1.11-3:
Proof of Lindeberg-Levy’s Theorem
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Liaponov’s Theorem
Let (Xk) be a sequence of independent distributed ran-
dom variables, such that and

. Furthermore, let

Then the distribution function of the random variable

tends to that of a standardized normal distribution as n
approaches infinity, i.e.

( ) ( )β σ
= = →∞

= = =∑ ∑
1 3 1 2

2
1 1

, and lim 0.n n n
n k n kk k n

n

BB C
C

( )1

1 n
n k kk

n

Y X
C

µ
=

= −∑

( ) ( ).
nY nF y y→∞→ Φ

2E( ) , ar( ) 0k k k kX V Xµ σ= = ≠
3E k k kX µ β− =



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 192

References to Chapter 1
[1] J.F. Böhme, Stochastische Signale, Teubner, 1998
[2] M. Fisz, Probability Theory and Mathematical Statistics, 

Krieger Publishing Company, 1980
[3] G. Hänsler, Statistische Signale, Springer, 2001 
[4] S. Kay, Intuitive Probability and Random Processes using 

MATLAB, Springer, 2006
[5] A. Papoulis, Probability, Random Variables and Stochastic 

Processes, McGraw-Hill, 1991
[6] C.R. Rao, Linear Statistical Inference and Its Application,  

John Wiley, 1973
[7] G. Wunsch, H. Schreiber, Stochastische Systeme,            

VEB-Verlag Technik, 1982


	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Foliennummer 47
	Foliennummer 48
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52
	Foliennummer 53
	Foliennummer 54
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Foliennummer 58
	Foliennummer 59
	Foliennummer 60
	Foliennummer 61
	Foliennummer 62
	Foliennummer 63
	Foliennummer 64
	Foliennummer 65
	Foliennummer 66
	Foliennummer 67
	Foliennummer 68
	Foliennummer 69
	Foliennummer 70
	Foliennummer 71
	Foliennummer 72
	Foliennummer 73
	Foliennummer 74
	Foliennummer 75
	Foliennummer 76
	Foliennummer 77
	Foliennummer 78
	Foliennummer 79
	Foliennummer 80
	Foliennummer 81
	Foliennummer 82
	Foliennummer 83
	Foliennummer 84
	Foliennummer 85
	Foliennummer 86
	Foliennummer 87
	Foliennummer 88
	Foliennummer 89
	Foliennummer 90
	Foliennummer 91
	Foliennummer 92
	Foliennummer 93
	Foliennummer 94
	Foliennummer 95
	Foliennummer 96
	Foliennummer 97
	Foliennummer 98
	Foliennummer 99
	Foliennummer 100
	Foliennummer 101
	Foliennummer 102
	Foliennummer 103
	Foliennummer 104
	Foliennummer 105
	Foliennummer 106
	Foliennummer 107
	Foliennummer 108
	Foliennummer 109
	Foliennummer 110
	Foliennummer 111
	Foliennummer 112
	Foliennummer 113
	Foliennummer 114
	Foliennummer 115
	Foliennummer 116
	Foliennummer 117
	Foliennummer 118
	Foliennummer 119
	Foliennummer 120
	Foliennummer 121
	Foliennummer 122
	Foliennummer 123
	Foliennummer 124
	Foliennummer 125
	Foliennummer 126
	Foliennummer 127
	Foliennummer 128
	Foliennummer 129
	Foliennummer 130
	Foliennummer 131
	Foliennummer 132
	Foliennummer 133
	Foliennummer 134
	Foliennummer 135
	Foliennummer 136
	Foliennummer 137
	Foliennummer 138
	Foliennummer 139
	Foliennummer 140
	Foliennummer 141
	Foliennummer 142
	Foliennummer 143
	Foliennummer 144
	Foliennummer 145
	Foliennummer 146
	Foliennummer 147
	Foliennummer 148
	Foliennummer 149
	Foliennummer 150
	Foliennummer 151
	Foliennummer 152
	Foliennummer 153
	Foliennummer 154
	Foliennummer 155
	Foliennummer 156
	Foliennummer 157
	Foliennummer 158
	Foliennummer 159
	Foliennummer 160
	Foliennummer 161
	Foliennummer 162
	Foliennummer 163
	Foliennummer 164
	Foliennummer 165
	Foliennummer 166
	Foliennummer 167
	Foliennummer 168
	Foliennummer 169
	Foliennummer 170
	Foliennummer 171
	Foliennummer 172
	Foliennummer 173
	Foliennummer 174
	Foliennummer 175
	Foliennummer 176
	Foliennummer 177
	Foliennummer 178
	Foliennummer 179
	Foliennummer 180
	Foliennummer 181
	Foliennummer 182
	Foliennummer 183
	Foliennummer 184
	Foliennummer 185
	Foliennummer 186
	Foliennummer 187
	Foliennummer 188
	Foliennummer 189
	Foliennummer 190
	Foliennummer 191
	Foliennummer 192

