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2 Stochastic Processes

Stochastic (random) processes arise as a result of the
following situations:

a) The system that generates the process may inherently pos-
sess random elements, e.g. the emission of particles in ra-
dioactive materials.

b) The system may be basically deterministic but of such a
complexity that it is impossible to model it without proba-
bilistic means.

c) Even if the simplicity of the system allows a complete de-
terministic description, the data obtained by observing the
system are contaminated by measurement errors.
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2.1 Fundamentals

2.1.1 Definition of Stochastic Processes

A stochastic process (X)),_; is a family of random varia-

bles, indexed by t, where t belongs to some given index
set 7.

If t takes a continuous domain of real values (finite or in-
finite), (X)),_ is said to be a continuous time stochastic
process.

If t takes a discrete set of values (typically t = ...-2,-1,0,
1,2,...) then (X)),_- is said to be a discrete time stochas-
tic process or stochastic sequence.
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2.1.2 Sample Function and Ensembles

An observed record of a stochastic process is merely one
record out of the whole collection of possible records.

The collection of all possible records is called ensemble
and each particular record is called sample function or
realization of the stochastic process.

Thus, we can interpret the sample space = to consist of
a set of elementary events &, where each corresponds
to a particular sample function such that we can denote
the various sample functions by X.(&,), X,(&,), ...

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 6



INSTITUTE OF
WATERACOUSTICS,
/s/ SONAR ENGINEERING AND
SIGNAL THEORY

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 7



INSTITUTE OF
WATERACOUSTICS,
/s/ SONAR ENGINEERING AND
SIGNAL THEORY

ochschule
x City Universit yoprplledS eeeeeee

2.1.3 Probabilistic Description of Stochastic
Processes

Generally, we may wish to investigate the behaviour of a
stochastic process over all time points, e.g. if we want to
determine the probability that a stochastic process re-
mains within certain limits, namely

P(a< X, <b,VteT).
Thus, to describe the properties of the complete process,

it seems to be necessary to consider an infinite dimen-
sional probability distribution.

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 8
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Fortunately, it turns out that under fairly general condi-
tions the probabilistic properties of the complete process
can be specified by its behaviour at finite numbers of
time points.

Theorem:

For any positive integer n, let t.,...,t be any admissible
set of values of t. Then under general conditions the pro-
babilistic structure of the stochastic process is complete-
ly defined if we are given the joint probability distribution
of X, ,..., X, forall values of n and for all choices of {;,...,

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 9



We do not attempt to state the general conditions under
which the above result holds.

However, for all practical purposes it seems to be intu-
itively reasonable that the joint distribution of X oo X
for an arbitrarily large but finite number n of time pomts
suffice to describe the stochastic process.

The joint probability distribution of X, ,..., X, is denoted by
P (Xpeo o Xpibe s £) = P(X <X, X, <X,)

by

and the corresponding density function by

6/’7
fX(X“'”’X”;t“""t”):ax1---8x F (X0 Xt 0t ).

n
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2.1.4 Complex Stochastic Processes

So far only real valued stochastic processes have been
considered.

Nevertheless, in many applications it is more convenient
to regard them as complex valued stochastic processes,
e.g. if a quadrature demodulation or Hilbert transform is
iInvolved.

Let (X)), and (Y,),_ be real valued stochastic process-
es. Then the process (Z,),_, formed by

Z =X +]JY,
IS called complex stochastic process.

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 11
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The probabilistic structure of (Z,),_, is specified by the
joint distribution of the sets of random variables

X XYY

whose joint probability distribution and density function
can be expressed by

FXY(X1’°--aXn’y1"”’yn;t'l""’t”):
P(X, <Xp,... X, <X,.Y, <y,...Y, <y,)

resp.
foy (Xosee s Xoo Ygyee s Y oi syt ) =
82n
Foy(Xgseo iy X0 Voo Y oilye o0t ).
@X1"'6Xn6y1"'6yn XY( 1 y1 y 1 )

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 12
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2.1.5 Moment Functions
For real valued stochastic processes we define:

a) Mean Function

() =E(X,) = [ X (x:t)x

b) Second Order Moment Function

rXX(t1,t2):E(Xt1Xt2): _[ jx1 X, f (X, X, t,, b, ) dx, dx,

—00 —00

with 1y, (£,1,) = ry (85, 8).

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 13
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c) Covariance Function

Cyx (t1, 1) = COV(Xq ’ th ) = E((Xt1_ﬂx(t1))(th_ﬂx(tz)))

N j I(X1 _'UX(t1))(X2 _/ux(tz))fx(x1aX2;t1,t2)dX1dX2

—00 —00

with ¢, (£,1,) = Cyy (£, 1)).

Employing the mean and second order moment func-
tion the covariance function can be expressed by

Cxx () ty) = E(Xt1Xt2 ) — fyx () 1y (t5)
= Iy () — 1 () 1y (1)

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 14



d) Variance Function
0% (1) = Var(X,) = Cu (t,1) =E((X, — s (1))

= [ (x= uy (1)) F(x;t)dlx.

In terms of the mean and the second order moment
function the variance function can be determined by

ox(t) =E(X7) = 1k (t) = N (1) — i (t).

e) Correlation Function
CXX (t1 ! t2 )
Jok(t)ox(t,)

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 15
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The above definition follows the definition in the statis-
tical literature, which is a straight forward generaliza-
tion of the definition of the correlation coefficient of
random variables.

However, in the engineering literature unfortunately the
the second order moment function is often called cor-
relation function.

f) Cross Second Order Moment Function

erltut) =E(X,Y, ) = [ [ X9y (x,¥itt;)dxdly

—00 —00

with 1y, (£,1,) = (£, 1)

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 16
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g) Cross Covariance Function
Cxy (t1, ;)= Cov (Xq ’ytz ) = E((Xt1 -ty (L, ))(yt2 — 1y (1, )))

o0 00

:j j(X_’ux(t1))(y_:uy(tz))fxy(X,y;t1,t2)dXdy

—00 —00

with ¢, (t;,1,) = Cyy (L5, 1).

By utilising the mean functions and the cross second
order moment function we can derive

Cxy () f5) = E(qut2 ) — My (b)) 11, (L)
= Iy (s 85) — 10 (£ 11, (£5).

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 17



For complex valued stochastic processes we define:

a) Mean Function
1, (1) =E(Z,) =E(X,) + JE(Y,)

o0 o0

= [ xf(6t)dx+ j [y £ (yit)dy = () + i, (8).

b) Second Order Moment Function
ry(toty) =E (2,2, ) =E((X, + Y, (X, - jY,))

= (b)) + 1y (6, 8,) + j{rvx(t1’t2)_rXY(t1’t2)}
with r,,(t,t,)=r,,(t,t).

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 18



c) Covariance Function

C,,(t,1,) = Cy(t,,1,)+ Cyy (U, 1, )"‘/{ yx(twtz)_cxy(twtz)}
with ¢, (t,,t,)=c,,(t,,1,).

d) Variance Function
O'g(t):sz(t’t):Cxx(t’t)+cyv(tat):(7>2<(t)+(7$(t)
as C,(f,1,)=Cy (t,,1)) = cy(t,t)=c,, (L 1).

e) Correlation Function

Pz (L t;) = ZZACNY with p,,(8,t,) = p,(E,.t,)".
Jo2(t)o(t,)

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 19
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f) Cross Second Order Moment Function
Fow(tuty) =E(ZW, ) =E((X, + )Y, (U, = jV,))
= M (b b) + Ry (G 1) + {1y (B, 8) =y (£, 8,))
with r,,, (t,t,)="r,,(t,.t).

g) Cross Covariance Function

Coy (L:65) = Cyy (L, 85) +Cyy (£, L, )"‘/{ vu(twtz)_cxv(twtz)}
with ¢, (.t,) =c,,(t,.t,)".

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 20
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2.2 Some Particular Processes
2.2.1 Poisson Process

A Poisson process is useful for modelling the random time
points of the occurrence of events.

Let N(t,,t,) be the model for counting the number of events
occurring in the time interval (t,,t,]. Then one can show
that N(t,,t,) exhibits the following properties.

N(t,,t,) is a Poisson distributed random variable with
parameter A(f,—t,)>0, i.e.
k

P(N(t,t,)=k)=e"=™ (wi! L)) .

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 21
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= N(t,,t,) and N(t,,t,) are independent if the intervals
(t,,t,] and (t,,t,] are disjoint.

The random process
X, = N(0,t)

that counts the number of events in the interval (0,f] is
called Poisson process.

Since any two increments of the form
X,— X, =N(t;,t) and X, — X, = N(t;,1,)

are independent if t, < t,< t, < t,, a Poisson process is
said to possess independent increments.

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 22
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realization of random time points
1
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realization of a Poisson process
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t

Mean, variance and covariance of a Poisson process are
given by
1, () =E(X,) = At,

ol (t)=Var(X,)= At and c,(t,t,)=A-min(t,t,).

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 23
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2.2.2 Random Walk

Let U, for n=1,2,... be random variables describing a
sequence of independent and identically distributed trails

(Bernoulli) with
p u="1

P(U =u)= n=12....
§ 1-p  u=-1

Furthermore, we define the random process
X,=>" sU, with m=|t/A],

where s and A denote the step height and step width re-
spectively. In the case of p = 0.5 the random process X,
IS termed a random walk.

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 24
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realization of a random walk
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Mean and variance of a random walk are given by
ux(t) =5 EU,)=sm-(20-1)=0,

or(t)=s*>"" Var(U,)=s>m.
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Relying on the central limit theorem one can assert that
X, ~ N(0,s°m) approximately holds for large m = Lt/AJ.

2.2.4 Wiener Process (Brownian motion)

We now examine the limiting form of a random walk X,
as A — 0. The variance function of X, is known to be

ox(t)=s’m with m=|t/A].

To obtain a meaningful result as A — 0 the step height s
should be proportional to \/X l.e.

s’ =aA.

The limit of X, as A — 0 (almost surely) is then the con-

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 26
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tinuous process
W, =lim X, .

A—0

This random process is called Wiener process. It is often
used as a model for Brownian motion.

realization of a Wiener process

A
/A/W

0.4 0.5 0.6 0.7 0.8 0.9 1
t
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Mean, variance and covariance of a Wiener process are
given by

IUW(t) — E(Vvt) — O’

oo (t)y=Var(W,)=at and c,,,(t,t,)=a -min(t,t,).

Furthermore, exploiting a suitable central limit theorem
one can prove that W, ~ N(0,aft).

Thus, a Wiener process is a correlated random process

whose mean is zero, variance increases linearly with time
and probability density function is Gaussian.

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 28
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2.2.4 Markov Process
A stochastic process X; is called Markov process if

P(X, <X, | X, =X, X, =X,4)=P(X, <X, | X, =X,4)

holdsfort, <t,<... <t , <t.Thatis, the pastt,t,...,t ,
has no influence on the statistical properties of the future
t if the present t_ _, is specified.

Example:

A stochastic process with independent increments and
X,-o = 0 represents a Markov process.

Thus, the Poisson process and the Wiener process are
examples for a Markov process.
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2.2.5 Gauss Process

A stochastic process is called Gauss process if, for any
admissible £,,...,{, the X, ,...,X, possess a multivariate
Gaussian probability density function, i.e.

X= (X X, )" ~ N, (Mx,Cx)

with
(EX)) (e, ()
B E(th) | ()
I“X _ . _ .
\E(th )) K:ux(tn ))
and

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 30
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CXX(t1’tn )\
CXX(tZ’tn)

CXX(tn’tn ))

where ¢y, (t,.t,)=E((X, = ue(t,))(X,, — x(t,))):

Hence, a Gauss process is completely described by its
mean function g, (t) and covariance function c,, (t..,).

Example:

The Wiener process is a Gauss process.
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2.3 Stationary Processes

2.3.1 Real Valued Stationary Processes

A real valued stochastic process (X)),_- is called strict-
sense stationary if, for any admissible t.,...,t, and any r,
the joint probability distribution of

Kiseon Xy
IS identical with the joint probability distribution of
Xt1+z'""’th+z' )

Consequently, the distribution does not depend on 7, i.e.
F (X X3t 0t ) = R (X Xt 47,00t +7)

° n, *) n!

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 32



and, if the density function exists
f(Xpeo s X5ty ) =R (X X5 + 7,00, + 7).

Implications:
1) The univariate density function is independent of t.
f.(xt)=Ff.(xt+7)="Ff(x) = u,(t)=u, =const.

2) The bivariate density function depends only on the
time difference ¢, - &..

e (Xp, X5, 1, ) = (X, X558 —15,0) = (X, X 2,1 t,)
=1, (X1=X2’Ot ) x(Xw 23 2 )
— Cxx(t1’t2):Cxx(t1_ ) (t t1)

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 33
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A real valued stochastic process (X));_; is said to be sta-
tionary up to order m if, for any admissible t,,...,f and
any 7, the joint moments up to order m of

Xiseos Xy
exist and equal the corresponding joint moments of
Xisoreoos Xy e

Thus,
E(X’”1 e X ): E(X'"1 e X )

t1 tn t1+z' tn+’c

for any z, and all positive integers m.,...,m_ satisfying
m,+...+m_ <m.

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 34
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A real valued stochastic process (X)), that is stationary
up to order m = 2 is called wide-sense stationary.

Let (X,),., be a real valued wide-sense stationary sto-
chastic process then we have

1) E(X,)= u,, a constant independent of ¢, i.e. the same
mean value at all time points,

2) Var(X,)=E(X?)-u; = o2, a constant independent of
t, 1.e. the same variance at all time points,

3) Ccy, (t,t,)=cCy (t,—t,)=C,,(t,—1,), i.e. the covariance
depends only on the interval between the time points.

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 35
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Exercise 2.3-1:
Single tone stochastic process

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 36



INSTITUTE OF
WATERACOUSTICS,
/s/ SONAR ENGINEERING AND
SIGNAL THEORY

ochschule
x City Universit yoprplledS eeeeeee

2.3.2 Complex Valued Stationary Processes

A complex valued stochastic process (Z,= X, +jY,),_+Is
called strict-sense stationary if, for any admissible ¢,,...,
t and any z, the joint probability distributions of

Xt1""’th’\/t1’ y and Xl‘+r’ Xt +r’\/t+r’ \/tn+r
are identical.
Thus, the distribution function does not depend on 7, i.e.

FXY(X Xn’.y1’ ,yna 19° )—
FXY(X X Y- ,yn;t1+2',...,tn+z')_

Furthermore, if the density function exists, we can write

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 37



foy (Xpse o s X Vs Yoi byt ) =
fxv(x X Y- ,yn;t1+2',...,tn+z')_

Implications:
1) The univariate density functions are independent of .

f (X t)=f(x;t+7)=F(X)
fY(y’t): fY(y’t_l_T):fY(y)

2) The bivariate density functions depend only on the
time difference ¢, - &..

fx(Xsz;twtz) = fx(X1’X2;t1 _tz) = fx(Xsz;tz _t1)} N
F (Y Yorlnl)) =R (Vo Yo i —6) =K (Y, Yot - L)

}:wz(f )= ;= iy + f1r,=CONSt.

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 38



— Cxx(twtz ): Cxx(t1 - tz) — Cxx(tz - t1)
va(twtz): va(t1 _tz) — va(tz _t1)
and

fXY(X’y;t1’t2)

fey (X Y3t —1,)
fc (Vs X1, — 1) =1, (¥, X 1,,L)
— ny(twtz) — ny(t1 _tz) — ny(tz _t1) — ny(tz’t1)-

Consequently,
Czr(t1,1,) = Coxe (t, —£,) +Cyy (£ —1,) +

"‘/{ Cyx (t, —1,)—Cyy (t, = 1, )} =C,(t, - 1,)
with ¢, (t,,t,) = C,,(t, —1,) = C,,(f, -1, ) = Cy(ty) 1, ).

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 39
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2.3.3 Moment Functions for Stationary Processes

For real valued (wide-sense) stationary stochastic pro-
cesses we can derive:

a) Mean Function
y =E(X,)=const.

b) Second Order Moment Function
leo(T)=E(X,, . X;) with ry(z) = ry, (-7).

t+7

c) Covariance Function
CXX(T):E((XHT o (X, — /Ux)) E(Xt+TX )

= rxx(T) — ,Ux with CXX(T) = Cxx(_f)'

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 40
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d) Variance Function
=Var(X,)=c,,(0)=r,,(0)- 1 = const.

e) Correlation Function
Cxx (7) _ Oxx (7)
oy X Cyx (0)

f) Cross Second Order Moment Function
re () =E(X,,.Y;) with r,, (7)=r,(-7).

g) Cross Covariance Function
Cyy(7)= E((Xt — px Y, — Ly )) E(me) HyHy
=y (7) =t 18, With €y (7) = Cyy (7).

Px(T) = With 0y, (7) = Py (—7)-
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Properties of the Moment Functions

1) ‘rxx(f)‘ < I (0), ‘CXX(T)‘ < Cyx(0), ‘Pxx(f)‘ <

(2) Fxc (), Coxex (T), Pxx (7)
are so-called positive semi-definite functions.

3) |y (7)€ 1 (0) - 1, (0) < = ( (0)+1,,(0)),

Cyy (7)] < {Cxx (0) Cyy (0) < = (€ (0) + €,y (0)).

1
2
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Exercise 2.3-2:
Proof of the properties 1) — 3)
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Remarks:

Two stationary real valued stochastic processes (X)),_,
and (Y,);_r are said to be

» uncorrelated, if for all = holds
Cxy (7) = E((Xm — 1 )Yy — iy )) = E(met)_ Hy bty =0
or equivalently
My (7) = E(met) = E(XtH)E(Yt) = HxHy,

= orthogonal, if for all z holds
o (7)= E(X Yt) =0.

t+7
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For complex valued (wide-sense) stationary stochastic
processes we can deduce:

a) Mean Function
Hy =E(Z,)=E(X,)+ JE(Y,) = px + ju, = const.

b) Second Order Moment Function
rZZ(T) = E(ZtﬂZ:) — E((Xt+r + j\/t+r )(Xt o j\/t ))

= Iy (T)+ 1y (7) + j{ryx(f)_rxy(f)}

with r,,(7)=r,,(-7)".
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c) Covariance Function
C,,(7)=Cyx(7)+Cyy () + ) {CYX(T) - va(f)}

k

with ¢,,(7)=c,,(-7)".
d) Variance Function
o;=Var(Z,)=c,,(0)=c,,(0)+c,,(0)=c;+0; = const.

as Cyy(0)=Cyy (0).

e) Correlation Function

Pz2(7) = Cor (1) = C22(2) with p,,(7) = p,(-7)".

2
Oz c,,(0
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f) Cross Second Order Moment Function
rw () =E(Z, W, ) =E((X,,, + /Y. U, = jV,))

= rxu(7)+ryv(7)+j{ryu(f)_rxv(f)}

with r,,(z)=r,,(-7)".

g) Cross Covariance Function
Coy(t)=Cyy(r)+0Cy(7)+ ] {CYU (7)—Cxy (T)}

with ¢,,(7)=¢,,(-7)".
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Properties of the Moment Functions

(1) ‘rzz(f)‘ < rzz(0), ‘CZZ(T)‘ < €, (0),

IOZZ(T)‘ <1

(2) ryz(7),C5z(7), p1z(7)
are so-called positive semi-definite functions.

(3) |raw (7)) S \J1z2(0) -y (0) <

Czw (7)‘ < \/sz(o) Cpy (0

IN
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Remarks:

Two stationary complex valued stochastic processes (Z,),_
and (W)),_; are said to be

» uncorrelated, if for all 7 holds
Cow(7)= ((Zt+r —z (W, ,UW)) E(ZmW) —Hz iy =0
or equivalently
o (7) = E(ZmW) E(Zm)E(VVt*):ﬂzﬂ;/’

= orthogonal, if for all 7 holds
rw(t) =E(Z, W) =0.

t+7
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2.4 Stochastic Limiting Operations

2.4.1 Stochastic Continuity

A stochastic process (X)),  is said to be mean square
continuous if

lim E(\xm - xt\z) =0

70

holds for all t €7 and we write l.im. X, =X

7—0 t*
Theorem:
A stochastic process (X)), Is mean square continuous
If its second order moment function r,, (t,,f,) is continu-
ous (in the ordinary sense) on the diagonal t, =, 7.
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Exercise 2.4-1:
Proof of the Theorem
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Remarks:

If r,(£,,t,) is continuous on the diagonal t,=t, €7 one
can show that r,, (¢,,t,) is continuous everywhere.

= [f a stochastic process (X)),_ is mean square contin-
uous then its mean function g, () is continuous.

= A stationary stochastic process (X,),_- is mean square
continuous if its second order moment function r,, (7)
Is continuous at 7= 0.

= If ry,(7) is continuous at = 0 one can show that r,, (7)
IS continuous everywhere.
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*
¥, HSB
2.4.2 Stochastic Differentiation

A stochastic process (X)),_; Is said to be mean square dif-
ferentiable if

2

— Xt

T

-X,| |=0

lim E |Xf+f

7—0

holds for all te T and we write Li.m. (X,..— X,)/ 7 = X,.

Theorem:
A stochastic process (X)),_, is mean square differentiable

if its second order moment function r,, (f,,t,) is twice con-
tinuously differentiable within 7x7 (sufficient condition).

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 53



INSTITUTE OF
WATERACOUSTICS,
SONAR ENGINEERING AND
SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Exercise 2.4-2:
Proof of the Theorem
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Corollary:
(1) The mean function of (X,),_, can be determined by

ﬂx(t):E(Xt)=E(|.i.m Xim X, j_“m E(Xm X)

7—0 T 7—0 T

i EXec) 2E(X,) _ d E(X,)="2
-0 T dt dt

(ﬂx(t))

For a stationary stochastic process (X;),_ holds

1 ()= (X, ) = S E(X,) = () =0.
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(2) The second order moment function of (X ),., and the
cross second order moment function of (X)), - and
(X ),., are given by

_ " _@zrxx(twtz)
o\ o (t,L)
rxx(tvtz):E(XthZ): Xxét; 2,
or (t,t)

Foc(tot,) =E(X, X, ) = ant:
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Exemplarily, the first expression can be derived by

E{ .i.m. (X = %) Li.m. X =%, )] i

0 T 5—0 o

70
o—-0

_ lim E{ (Xt1+f B Xq) . (Xt2+§ - th )]
T o

E(X,..X,.5)—E(X,.. X, )-E(X,X,.; ) +E( X, X, )

t1 +7

=|im
70 2-5

0—0
— lim ol + 78y +8) =N (B, E, +8) =N (G + 7,8) + N (8,8

7—0
o—0 r 5

= 82rxx(twtz )/81‘181‘2.
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For a stationary stochastic process (X),_ we obtain
Oy (4 — 1) _ dry (7)

rxX(T) = rxX(t1 —t,)=

ot, dr
or,, (t,—t,) dr,.,(7)
Mo (T) =1 (t—t,) = XX@fL TEe—
O’ (t,—t,)  d’ry(z)
o) = ot ) = g
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2.4.3 Stochastic Integration

A stochastic process (X)),_, is said to be mean square in-
tegrable if the limit in mean square

Lim. S Xt ~t)= [ X, dt
exists forall 7,,7, 7.

Theorem:
A stochastic process (X)),_, is mean square integrable if

j jﬂ o (t,1,)dt.dt,

exists as a Riemann double integral.
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Exercise 2.4-3:
Proof of the Theorem
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Remarks:

» To show the existence of the Riemann double integral
7-2 7-2
| [ rc(tt,)dt dt,
T

it is sufficient to show that r,, (t,,t,) is continuous over
the closed set [T, T,]x[T,,T,].

* |n applications one may also be concerned with inte-
grals extending over infinite ranges. However, with ob-
vious modifications, the above result can be extended
to cover these more general cases.
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2.5 Spectral Analysis of Stationary Processes
2.5.1 Spectral Density Function

A typical realization of a general continuous time zero
mean stationary process will be neither periodic nor of
bounded energy. Hence, it cannot be represented as a
Fourier series or as a Fourier integral.

However, to overcome this difficulty, we define the new
process X, by

T X, —T/ZstsT/z.
t 0 otherwise

Assuming X/ to be continuous, it can be expressed as
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Fourier integral, i.e.

X/ :zi ) X' (w)e’”'dw with XT(a)):Jm X/ e “dt,
T 9 —® —00

where ‘XT(a))‘2 has the following physical interpretation.

2 de part of the total energy of X
‘XT(a)) —— =4 contributed by components with
27 |frequencies between w,w+dw

Even though ‘X T(a))‘z may tend towards infinity as T — o,

2 N\ deo part of the total power of X
(Iim ‘XT(a))‘ /T)— = < contributed by components with
Mo 27 |frequencies between w,w+dw
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may converge to a finite limit, where
im X7 ()" /T

T —o

would have an interpretation as a power density function.

Since the analysis above refers only to a single realiza-
tion the value of the limit, if it exists, will change from one
realization to another.

To construct a quantity which characterises the spectral
properties of the whole stochastic process averaging of

X7 (o) /T
over the different realizations seems to be natural.
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Therefore, one defines
_ PR\
C.. ()= m{ (\x () /T)}

When the limit exists, the function C,, (o) is called power
spectral density function of the zero mean stationary pro-
cess X..

The calculation of C,, (@) from the definition above would
be an ambitious task. Fortunately the following basic re-
sult, known as Wiener-Khintchine Formula, provides an
alternative way for calculating C,, (o).
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Theorem:

Let (X)),. be a zero mean continuous time stationary
stochastic process with power spectral density function
C,, (w) and covariance function c,, (7). Then C,, (o) is
the Fourier transform of ¢, (7), i.e.

Cyx (@)= _“_O:O Cyx(T)e7dr.

Remark:

The power spectral density function C,, (@) exists for all
o if the covariance function c,, (7) possesses a Fourier
transform. Hence, a sufficient condition is given by

J:‘CXX(T)‘ dr < .
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Exercise 2.5-1:
Proof of the Theorem

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 67



INSTITUTE OF
WATERACOUSTICS,
/s/ SONAR ENGINEERING AND
SIGNAL THEORY

Properties of the Power Spectral Density Function

(1) Cyx(@) 20 forall o since [X"(w) 20.
(2) Cy () is real since ¢y, (7) = Cy (—7)".

(3) For real valued processes

Cyy (@) = Cy(—w) since ¢, (7) = Cyy (—7).
(4) Yt =4a Xt’ ny(f) = aZCxx(T)a ny(a)) = aZCxx(a))-

dszx(T)

5) Y.=X., c =
(9) ¢ t YY(T) dr>

, Cyy (@) = 0°Cyy(w).
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Remarks:

* For a continuous time stationary stochastic process
with periodic components the Fourier transform

Cyx (@)= j_i Cyx(r)e " dr

has to exist in consideration of generalized functions.

* The power spectral density function of a continuous
time stationary stochastic process with expected value
Uy 1S given by
Ryx (@)= j_i roc(r)e7 dr = _‘-OO (CXX(T) + ﬂf()e_jm dr

= Cyo (@) + 27 113, 6 (w).
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If ¢, (7) is absolutely integrable and if ¢, (7) is contin-
uous at =0 then c,, (7r) can be expressed as the in-
verse Fourier transform of C,, (o), i.e.

1 ( Ioks
Cyx (7) = o J- Cx(@)e’” dw.
T —00
Now, setting =0, we obtain
1 o0
Oy = Cyx(0) = o j Cyx(w)daw
72-—00

which represents the total power of the process, i.e. the
power contributed by all frequency components.

Hence, the variance of a zero mean stationary stochas-
tic process is a measure of its total power.
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Let (X)), and (Y}),.; be zero mean continuous time sta-
tionary stochastic processes. The Fourier transform of
the cross covariance function

o0

Cyy (@)= I CXY(T)e_jde

—00

Is called cross power spectral density function.

If ¢, (7) is absolutely integrable and if ¢, (7) is continu-
ous then ¢, (7) can be expressed as the inverse Fourier

transform of C,, (), i.e.
1 [ (0T
Cyy (7) = o j Cyy (@)’ do.
7T

—00
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Properties of the Cross Power Spectral Density Function
For real valued processes (X,),_-and (Y)),_, holds

(1) ny(_a)) = ny(a))*a
(2) Cyy(w)=C (o).

Remarks:

= For continuous time stationary stochastic processes
with periodic components the Fourier transform

Cyy (@)= j Cyy ()€ dr

has to exist in consideration of generalized functions.
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= The cross power spectral density function of the con-
tinuous time stationary stochastic processes (X)),_,
and (Y,),_- with the expected values ., and u, respec-
tively is given by

R, ()= j ry,(z)e ' dr

o0

= _[ (CXY(T) + ﬂxﬂv)e_jm dr

=Cyy (@) + 27y 1, ().
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Analogue to the continuous time case, the relationship
among the covariance function c,, (7) and the power spec-
tral density function C,, (Q2) of a discrete time zero mean
stationary stochastic process (X)),_, can be defined by

= Z Cux (7)€

T=—00

and

(I Qs
CXX(T)ZZJCXX(Q)GJQ dQ.
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Remarks:
* For a discrete time stationary stochastic process with

periodic components the Fourier transform

EE:‘:ny e -jQr

T=—00

has to exist in consideration of generalized functions.

= The power spectral density function of a discrete time
stationary stochastic process with expected value
IS given by

o0 o0

R (Q)= . ro(@)e™ = 3 (o) + i Je '™

= Cyx (Q) + 27 115 m(Q)
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with 7(Q) = > 5(Q - 27k).

k=—0

Correspondingly, the cross covariance function ¢, (7)
and the cross power spectral density function C,, (€2) of
the zero mean discrete time stationary stochastic pro-
cesses (X,);,.rand (Y,),_-are linked up as follows.

Cyy (©2) = i ny(f)e_jm

T=—00

and
Cxy (7) = 1 _[ Cyy (Q) e dQ.
27T
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Moreover, let X denote a discrete time process that is ob-
tained by sampling the continuous time zero mean sta-
tionary stochastic process X° equidistantly in time with
sampling period A, i.e.

X =X for t=...-10,1... and At eR.

The covariance function and the power spectral density
function of the discrete and continuous time stationary
stochastic processes are then related by

Cux(7)=Cov(X,,,, X,)=Cov(X;,,.), X5 )=

t+77

for t,r=...—-10,1,...

AT)

XCXC(

and
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Z ej(a)—Q/A)Arda)

27z gyl

(@)

-{ c 25(0) (Q—27k)/A)dw

XCXC
k——oo

=—Zj C....(0)5(0—(Q-27k)/A)dw

Z C.oye ((Q 27zk)/A)
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2.5.2 Spectral Representation of Stationary Processes
Continuous time stationary processes

X, :2i j ef”tdZX(a)) with E(dZX(a))) =27 1, o(w)dw
T —o0
and
Cov(dZX(a)),dZX(/l)) =27C, (w)o(w—-A)dwdA,

so that the mean value of X, can be also derived by

E(X,)= E(— - ej“’tdZX(a))j _ e E(dZ, ()

27 74— 27 7

i“‘i e 2ru, S(w)dw = 1,
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Furthermore, the relationship between the covariance
and spectral density function can be approved

Cyy (7)=Cov(X,, ,X,)

t+77

= Cov (i

27

[ ez, () [ e"“dZXu))

27

(2 - j j e/ e Cov (dZ, (w),dZ, (1))
/A
N 217z _O; _Ooejmej CIC (@) 0(w— A)dwd

= éi C,. ()6’ dw.
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Discrete time stationary processes

X, _ 1 [ &"dZ, () with E(dZ,(Q)) =27 11, 7(Q)dO

27

and
Cov(dZ,(Q),dZ,(A)) =27C, (Q)n(Q—-A)dQdA

so that the mean value of X, can be also derived by

1 = jot 1 = jot
E(Xt):E(Z Lze dZX(Q)j:Z j_ﬂe E(dZ,(Q))

1 (=
= ZJ‘_” e 27, n(Q)dQ = .
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Furthermore, the relationship between the covariance
and spectral density function can be approved.

Cyy (7)=Cov(X,, ,X,)

t+77

= Cov(ij” efQ””)dZX(Q),iJ-E ej“dZX(A)j

2w " 2"

(2 - j j e/ e/ M Cov (dZ, (Q),dZ, (A))

—Zi [T e/ e/ (Q)n(Q - A)dQdA
72--—72' -

1

5.0

C,, (Q)e’* dO
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2.6 Systems with Stochastic Inputs

Let T denote an operator that assigns to each function x,
a function y,, i.e. y, = T[x;].

The operator T is called
= deterministic, if x,, = x,, Vt = T[x;,]=T[x;,] VL

= memoryless, if a function g exists such that
Y= T[Xt] = Q(Xt).
= time invariant, if y,, _=T[x, ].
» linear, if it is homogenous, additive and continuous, i.e.

Vi = T[Xt] = T|:Zaixt,i:| = ZaiT[Xt,i] = Zath,i'
i=1 i=1 i=1
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2.6.1 Transformation of Stochastic Processes

Let (X)), denote a stochastic process. An operator T
assigns to each realization x, of (X}),_ a time dependent
function y; which is a realization of a new stochastic pro-

cess (Y,),. Therefore,

Yi=TIX]

defines a so called transformed stochastic process.

Systems Theoretic Interpretation:

X

Input Process

>

T

Y,=T[X]
>

Output Process
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2.6.2 Memoryless Systems
Hard limiter g(x)=sgn(x): W, =sgn(X,)

W A

X, 1

Wt
>

-1

fy(W;t)=(1-F(0;t)) S(w — 1)+ F (O;t) S(w +1),
Hy (t) =1-2F,(0;1),

haw (o) = [ [ san(x,)SGN(X, )y (X, Xyt 1, ) dx, dx,
=P(X, X, >0)-P(X,X, <0).
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Half wave rectifier g(x) = %(XJ“‘XD: V, = %(Xt +‘Xt‘)

X Y Vv
L > V S

10 X
f, (v;t) v>0 )
f,(v;t)=<F,(0;t)o(v) v=0, yv(t):_[xfx(x;t)d ,
0 v <0 °

Foo (E ) = [ [ X0 Xofy o (X1 X538, 8, ) 0lX, X,
00
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Full wave rectifier g(x)=|x|: U, =|X,

= \I/ -
P> >

[0 X

f,

U

(it) = {fx(u;t)+ f, (~u;t) Z i g

1, (t) = T x| fy (x;t) dx = Tu(fx(u;t)+ f, (—u;t))du,

r,,(t,t,) = J j‘x1x2‘fx1xz(x1,x2;t1,t2)dx1dx2.
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X Y Y
4\ ﬂ

10 X
t)+f t) >0
f,(y;t) = Z\f( WO +hlyi0) -y ,
0 y <0
1
w(t)= | X t)dx == [\y (R Wyt +£(yit))dy.
—0 0
r,,(t,t,) T szxzf (X3, Xp5t, 1, ) dx, dX,.
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2.6.3 Linear Systems
Theorem:

1) The order of application of the expectation operator
E and the stable LTI system operator T can be inter-
changed.

2) Let (X)), be a stationary stochastic process and T
an operator of a stable LTI system then the stochas-
tic process Y, = T[X,] is stationary.

3) Let (X)), be a wide sense stationary stochastic pro-
cess and T an operator of a stable LTI system then
the stochastic process Y, = T[X.] is wide sense sta-
tionary.

LTI = Linear Time Invariant
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Continuous time LTI Systems

Let (X)), be a continuous time stationary stochastic in-
put process of a stable and continuous time LTI system
with impulse response h;. Thus, the continuous time sta-
tionary output process (Y,);_is given by

Y, =TIX]1=| h.X_.dt'=[ h_X,dt,

where the impulse response satisfies
[ | lat <o
and therefore the transfer function
= j_z h,e ' dt
exists.
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Using the spectral representation of a continuous time
stationary stochastic processes we obtain

Y,=| hX_.dt'=[ h, (i | ef“’(”')dZX(a))] at’
_ 1 g ( [ h,e-fwf'dt')dz ()
27 4 o ! X
= %.Zej”tH(a))dZX(a)) = % [ ez, (),
where
dZ, ()= H(@)dZ, ()
with

E(dZy(a))) = H(a))E(dZX(a))) =27 1, Hw)o(w)dw.
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Mean of the output process

E(Y,) = E( ["hX,. dt’)

- .[j:o h,E(X,_,)dt' = ﬂxﬁo h,dt" = 1, H(0)

Covariance function of the output process
YY( ) COV( t+77 )

= Cov(j h, X

® 00

o —00 o —00

® 00

o —00 o —O0

® 00

® 00

t+r-t'

dt', [ h. X, dt”)
h.h.Cov(X,. ., X, .)dt'dt"

hoh.Cy (r —t' +t")dt'dt"
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Power spectral density of the output process

Cyy (@)= :OO

—Q0

® 00

)l

ny(r)e_jmdr

(jjo J‘—Cx; ht'hf" CXX(T —t'+ t”)dt’dt”)e_fa)r dr

| hh, ( [ cp(r—t'+ t”)e‘jmdr)dt’dt”

| h,h.Co (@)t dt”

— _OO h.e”“"dt’- J‘_OO h.e”" dt"-C, (o)

= H(w)H(0) Cy (@) = |H(@)| Cp (@)
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or
Cov(dZ, (w),dZ, (1)) = H(w)H(A) Cov (dZ, (w),dZ, (1))

= 27 |H(o)| Cyy(@)5(0 — A)dewd A
=27C, (w)o(w—A)dwdA

Cxx (@)

Cross covariance function of input & output process

Cxy (7)=CoV(X,,,,Y;) = COV(XtH’_“: h, X, dt’)

= Cyy ()= ‘H(Cf))

‘2

= . Cov(X,, X, ,)dt' = [ h.Cy(z+t)dt

t+7?
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Cross spectral density function of input & output process

o0

Coo(@) = [ Clr)e 7 dr = j ( [ hcole+t)at )e o7 gz

- _OO h, (f Cy (T + 1 )e‘f“”dr)dt’

- _O:o ht’ejwt,dt' -Cyx(w)=H(o) Cyy (o)
or .
COV(dZX(a)),dZY(/I)) =H(A) Cov(dZX(a)),dZX(/I))
=27 H(®) Cyy (®)o(w—1)dwdA
=27C, (0)6(w—-A)dwdA
= Cyy(@)=H(o) Cyy ()
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Discrete time LTI Systems

Consider a discrete time stationary stochastic process
(X));. to be the input of a stable and discrete time LTI
system with impulse response h,. Hence, the discrete
time stationary output process (Y)),_;Is given by

Y, =TIX,]= Z::_ooht' Xy = Zoo h_p X,

t'=—o0

where the impulse response satisfies

Qv <0

and therefore the transfer function
HQ)=>" he’

f=—o0
exists.
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Exploiting the spectral representation of a discrete time
stationary stochastic processes we obtain

o o 1 . o
Yt = Z ht'Xt—t' — Z ht' (E-"ﬂem(t t)dZX(Q)j
t'=—0 t'=—o0

1 cn (& .

=—| e h.e”®" |dZ, ()

[ e[ e oz,

_1 T jot _1 T jot

=——| e HQ)dZ,(Q) = [ e""dZ,(0),
where

dZ,(Q) = H(Q)dZ, (Q)

with

E(dZ,(Q)) = H(Q)E(dZ,(Q)) = 27 11, H(Q)1(Q) dQ.
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Mean of the output process

_ E[ S h xj S hEX) = S h

t'=—o0 t'=—o0 t'=—0
= 1 H(0)

Covariance function of the output process

CYY(T) — COV(»/H ’y) COV( Z ht’ Xt—l—z'—t" Z ht" Xtt”j

t'——OO t”:—OO

(0 0]

Z i h.h.Cov(X, .. X, )

= Z i h.h.Cy (z—t"+1t")

t'=—0 t'=—

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 98



INSTITUTE OF
WATERACOUSTICS,
/s/ SONAR ENGINEERING AND
SIGNAL THEORY

7=—00 \ t'=—00 t"=—00
=S Y hh| S e lr—t+t")e fﬁfj
t'=—c0 t"=—0 T=—00

3 e S o) - MO €l

t'I—OO t"I—OO
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or

Cov(dZ,(Q2),dZ,(A))=H(Q)H(A) Cov(dZ,(Q),dZ,(A))
= 27 |H(Q) Coe (Q)(Q— A)dQdA
=27C,,(Q)n(Q - A)dQdA

= Cyy (Q)=|H(Q)] Cy ()

Cross covariance function of input & output process

c,,(r)=Cov(X,,,Y,) Cov(X Z h, X, tj

t'=—0

= B CoV(X, X, )= Y hCe(z+1)

t+77
t’:—oo t':—oo
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Cross spectral density function of input & output process

- i Cyy(T)E7" = i ( i ht'Cxx(TJFt')jejQT

_Zh(ZCXXHt efmj Zhefm (Q)
:H( ) XX(Q)

or

COV(dZX(Q),dZY(A)) = H(l)*COV(dZX(Q),dZX(A))
=27H(Q) C,, (Q)n(QQ—A)dQdA
=27C,, (Q)n(QQ—A)dQdA

= Cyy(Q)= H(Q)*CXX(Q)
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2.7 Special Discrete-time Parameter Models
2.7.1 Purely Random Processes, White Noise

The process (X)), t=...,-2,-1,0,1,2,... is called purely
random process if it consists of a sequence of uncorre-
lated random variables.

For such a process to be wide-sense stationary we re-
quire only that

E(X,)=x and Var(X,)=E(X,-u)’ =0c° Vt.
The covariance function given by
CXX(T) — COV(XHrXt) — E((Xt+r o lu)(Xt - /u)) — 0252'

IS then automatically a function of 7 only.
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In the sequel, we denote a stationary purely random pro-
cess with =0 by (Z;) and call it white noise.

The term white noise is to be understood in a figurative
sense for white light, in which different optical frequency
components are superimposed to form a white color im-
pression. However, light that is subjectively perceived as
white by humans does not have a constant power den-
sity spectrum.

Although the white noise model appears to be highly ar-
tificial (memoryless processes hardly occur in practice)
it is nevertheless important since it provides us a basic
building block for the construction of more complicated
models.
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2.7.2 Auto-Regressive (AR)-Processes

We say that (X)) is an auto-regressive process of order p
(denoted by AR(p)) if it satisfies the difference equation

p
X, +a X, +...+a,X_, =X, +ZanXt_n =Z,

where a,,a,,...,a, are constants and (£,) is white noise.

Using the backward shift operator B the difference equa-
tion can be written more concisely in the form

p
(1 + ZanB”th —a(B)X,=Z,.
n=1

The formal solution of the equation can be expressed by
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X, =AL +AL+...+A L+ a'(B)Z, |

solution of the homogeneous particular solution
equation a(B)X;=0 of a(B)X;=Z,

where A4, 4,,..., 4, are the roots (assuming distinct roots)
of the polynomlal a(z)=a(z")z"=z"+) " a,z""

n=1 0N

Hence, asymptotic stationarity is obtained if |1 |<1 for n=
1,...,p, i.e. the roots of a(z) must lie inside the unit circle.

Let (X,) be stationary, then we may ignore the solution
of a(B)X,=0 (which will decay to zero), and the steady
state solution can be written as

_a'(B)Z, (Zh B”th -3h2,.,
n=0
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Now, multiplying both sides of the difference equation
p
X, + ZanXt_n =Z, (E(Zt) =0=E(X,)= O)
n=1

by X,_,, from the right and taking expectations we obtain
p

E (Xt + Zanth]Xtm — E(ZtXt—m)
n=1

p
X m ) + Zan E(Xt—nXt—m) — E(ZtXt—m)
n=1

p
Cyx (M) + Zan Cyx(M—n)=c,(M)= U§5m

n=1

oz m=0
0 m>0

This set of equations is known as Yule-Walker equations.
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Form=1,2,...,p the Yule-Walker equations can be ex-
pressed by

( CXX(O) Cxx(1) Cxx(p_1)\/a1\ /Cxx(1)\
Cxx(1) Cxx(O) Cxx(p_2) a, _ Cxx(z)
Cxx(P=1) C(P—=2) -+ ©C(0) )\ @&, \Cxx(P))

If all roots of «(z) are lying within the unit circle one can
show that the coefficient matrix of the equation system,
which is a symmetric Toeplitz matrix, is positive definite.

Thus, assuming ¢, (0),..., ¢y, (p) to be known the equa-
tion system can be uniquely solved for a,, a,,...,a,, e.g.
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by means of the Levinson-Durbin algorithm, and the vari-
ance of the white noise can be subsequently determined
by the Yule-Walker equations for m =0, i.e.

p
07 = Cy (0) + Zan Cxx(N).
n=1

Furthermore, for m > 0 the Yule-Walker equations show
that the covariance function c,, (m) satisfies exactly the
same difference equation as a(B)X = 0.

Consequently, the general solution is of the form
Co (z)=C A +C A +...+C A

p-"p’
where C;,C,,...,C, are constants determined by the ini-
tial conditions, i.e. ¢, (0), Cy, (1),..., Cxy (P—1).
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Supplement: (parametric spectrum estimation)
2 . 2
Cox(Q) = |H(Q)" C,,(Q) = O-g/ 1+ Zn a,e”"
a | ~al|l. n=1..,p
A Mexx(7) VGl
Suppose C,, ()~ Cyy (7) = < .,
O, = O,
\ CXX(T) ay ap
CXX(Q) = CXX(Q) - CZZ(Q) = (%;/ p—1 n e

Exercise 2.7-1:
Properties of an AR(1)-Process

Exercise 2.7-2:
Properties of an AR(2)-Process
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2.7.3 Moving-Average (MA)-Processes

(X)) is said to be a moving-average process of order q
(denoted by MA(Qq)) if it can be expressed in the form

X,=Z,+bZ +..+b,Z =D b,Z,  with by=1

where b,,...,b, are constants and (Z,) is white noise.

Using again the backward shift operator B we can write

q q
Xt:[anB”]Zt:b(B)Zt and X,=) h,Z, , with h =b,.

Since (X)) is a linear combination of uncorrelated random
variables its mean and variance are readily obtained using
the results of Chapter 1.10.3, i.e.
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'uzzno , and GX_GZZno n:

Furthermore, (X)) is always stationary (irrespective of the
values of b,,...,b,) and has the covariance function

q q
CXX(T) = E(XtXt—r) = E(an Zt—n Z bm Ztrmj
n=0 m=0

q

b,b,E(Z, 2, . )= Zbe Co,(m+7—-n)

Zq:
n=0 m=0 n=0 m=0
i

2 9
bb (725 _ O-ZZm Obm+|r|bm |T|£q,

m+7—n

n=0 m=0 0 |f|>q

where E(Z,)=0 = E(X,)=0 has been exploited.
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q- ITI

Supplement Oy Z n=0 Zm Obnbm5m+r n =0z Z m=0 m+ITI m
bobz bobs bobq
b1b3

bqb0 bqb1 bqb2
ont=2, =1 =0 7=-1,...

For given covariances c,,(0),...,Cy,(q) the parameters
by, b,,...,b, and o> can be determined by solving the sys-

tem of (g+1) non-linear equations

q-Ir] q-Ir]
Cxx(7) =07 Zm o P11 Pm Zm:O Y mlel V'm
with y, =o,b,, 7=0,...,q.
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Generally, such a non-linear equation system possesses
27 solution vectors (y,,...,7,)"-

However, one can show that by imposing physically and
system theoretically motivated constraints on the non-
linear equation system the solution space can be reduce
such that a unigue solution can be derived.

Exercise 2.7-3:
Covariance function of an MA(q)-Process with equal
weights
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2.7.4 Auto-Regressive-Moving-Average (ARMA)-
Processes

A process (X,) that satisfies an equation of the form
X+ra X +..+a, X _ =2 +bZ_+..+b 2L _,

X +>" a, Z ' b,Z,_, with b,=1,

IS called auto—regresswe—movmg—average process of or-
der (p,q) (denoted by ARMA(p,q)).

Using the same operator notation introduced in the pre-
vious sections the ARMA(p,q) can be rewritten as

a(B)X, = (1+Za B”j tz(zq:an”)Zt:b(B)Zt.
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The solution of the equation can be represented by
X, = Al +AL+...+A A +a (Bb(B)Z,,

solution of the homogeneous particular solution of
equation a(B)X,=0 a(B)X;=b(B)Z,

where 4;,4,,...,4, are the roots (assummg distinct roots)
of the polynomlal a(z)=a(z ")z’ =z"+Y " a,z""

n=1 1N

Thus, asymptotic stationarity is provided if |1,|<1 for n=
1,...,p, i.e. the roots of a(z) must lie inside the unit circle.

Let (X,) be stationary, then we may ignore the solution of
a(B)X, = 0 (which decays to zero), and the steady state
solution can be written as

X, =a(B)b(B)Z (Z _oh,,B”) = 2o
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Now, multiplying both sides of the equation
ZM i Zno i (E(Zt):O:E(Xt):O)

by X,_,, from the right and taking expectations we obtain
p q
E££Xt + Zanxtnjxtm] = E((an Ztantmj
n=1 n=0
p q
EX, X, )+ Y 8, EX, X, )= b, E(Z, . X, )
n=1 n=0

p
Cyx(M)+ > a,cy(m-n)=0 m>aq.

n=1
This set of equations is sometimes called modified Yule-
Walker equations.
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For m=qg+1,9+2,...,g+p the modified Yule-Walker equa-
tions can be expressed by

Cxx(q) Cxx(q_1) Cxx(q_p+1) a, Cxx(q+1)
Cyxx (q+1) Cxx(q) o Cy(@—p+2) || &, _ Cyxx (q+2)
Cxx(q+p_1) Cxx(q+p_2) Cxx(q) ap Cxx(q+p)

The coefficient matrix of the equation system is obviously
again a Toeplitz matrix but it is not anymore symmetric.

However, one can show that if all roots of «(z) are lying
within the unit circle the coefficient matrix is regular.

Hence, assuming ¢,,(0),...,¢,,(g+p) to be known the

equation system can be uniquely solved for a,,a,,...,a,.
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Subsequently, the parameters a,,a,,...,a, and the covari-
ances c,,(0),...,¢,, (q+p) allow the calculation of the co-
variance function c,. (7) of the MA(qg)-process

p
Y, =b(B)Z, =a(B)X, => a,X,, with a, =1
n=0

as follows.

p p
CYY(T) = E(Ytyt—r) = E[Zanxtn Z athrmj
n=0 m=0
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Finally, after determining the covariances ¢, (0),...,¢y(q)
the parameters b,,b,, ...,b, and o. can be determined by
solving the equation system

q—lr|

Z bm+|r| m

q-z|
= 27m+lr|7m with v, =o,b, n=0,...,q.
m=0

which usually possesses 27 solution vectors (y,,..., yq)T.

As already mentioned in conjunction with MA(q)-Process-
es one can impose constraints on the non-linear equation
system such that a unique solution can be derived.
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