
I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 1

Stochastic Signals and Systems
Contents
1 Probability Theory
2 Stochastic Processes
3 Parameter Estimation
4 Signal Detection
5 Spectrum Analysis 
6 Optimal Filtering 



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 2

2 Stochastic Processes 4

2.1 Fundamentals 5
2.1.1 Definition of Stochastic Processes 5
2.1.2 Sample Function and Ensembles 6
2.1.3 Probabilistic Description of Stochastic Processes 8
2.1.4 Complex Stochastic Processes 11
2.1.5 Moment Functions 13

2.2 Some Particular Processes 21
2.2.1 Poisson Process 21
2.2.2 Random Walk 24
2.2.3 Wiener Process (Brownian motion) 26
2.2.4 Markov Process 29
2.2.5 Gauss Process 30

2.3 Stationary Processes 32
2.3.1 Real Valued Stationary Processes 32
2.3.2 Complex Valued Stationary Processes 37
2.3.3 Moment Functions for Stationary Processes 40



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 3

2.4 Stochastic Limiting Operations 50
2.4.1 Stochastic Continuity 50
2.4.2 Stochastic Differentiation 53
2.4.3 Stochastic Integration 59

2.5 Spectral Analysis of Stationary Processes 62
2.5.1 Spectral Density Function 62
2.5.2 Spectral Representation of Stationary Processes 79

2.6 Systems with Stochastic Inputs 83
2.6.1 Transformation of Stochastic Processes 84
2.6.2 Memoryless Systems 85
2.6.3 Linear Systems 89

2.7 Special Discrete-time Parameter Models 102
2.7.1 Purely Random Processes, White Noise 102
2.7.2 Auto-Regressive (AR)-Processes 104
2.7.3 Moving-Average (MA)-Processes 110
2.7.4 Auto-Regressive-Moving-Average (ARMA)-Processes 114

References to Chapter 2 120



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 4

2 Stochastic Processes
Stochastic (random) processes arise as a result of the
following situations:
a) The system that generates the process may inherently pos-

sess random elements, e.g. the emission of particles in ra-
dioactive materials.

b) The system may be basically deterministic but of such a
complexity that it is impossible to model it without proba-
bilistic means.

c) Even if the simplicity of the system allows a complete de-
terministic description, the data obtained by observing the
system are contaminated by measurement errors.
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2.1 Fundamentals
2.1.1 Definition of Stochastic Processes
A stochastic process (Xt)t∈ is a family of random varia-
bles, indexed by t, where t belongs to some given index
set .

If t takes a continuous domain of real values (finite or in-
finite), (Xt)t∈ is said to be a continuous time stochastic
process.
If t takes a discrete set of values (typically t = …−2,−1,0,
1,2,…) then (Xt)t∈ is said to be a discrete time stochas-
tic process or stochastic sequence.



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 6

2.1.2 Sample Function and Ensembles
An observed record of a stochastic process is merely one
record out of the whole collection of possible records.
The collection of all possible records is called ensemble
and each particular record is called sample function or
realization of the stochastic process.
Thus, we can interpret the sample space Ξ to consist of
a set of elementary events ξ, where each corresponds
to a particular sample function such that we can denote
the various sample functions by Xt(ξ1),Xt(ξ2),…
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2.1.3 Probabilistic Description of Stochastic 
Processes

Generally, we may wish to investigate the behaviour of a
stochastic process over all time points, e.g. if we want to
determine the probability that a stochastic process re-
mains within certain limits, namely

Thus, to describe the properties of the complete process,
it seems to be necessary to consider an infinite dimen-
sional probability distribution.

≤ ≤ ∀ ∈( , ).tP a X b t 
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Fortunately, it turns out that under fairly general condi-
tions the probabilistic properties of the complete process
can be specified by its behaviour at finite numbers of
time points.

Theorem:
For any positive integer n, let t1,…, tn be any admissible
set of values of t. Then under general conditions the pro-
babilistic structure of the stochastic process is complete-
ly defined if we are given the joint probability distribution
of Xt1

,…,Xtn
for all values of n and for all choices of t1,…, tn.
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We do not attempt to state the general conditions under
which the above result holds.
However, for all practical purposes it seems to be intu-
itively reasonable that the joint distribution of Xt1

,…,Xtn
for an arbitrarily large but finite number n of time points
suffice to describe the stochastic process.
The joint probability distribution of Xt1

,…,Xtn
is denoted by

and the corresponding density function by

= ≤ ≤  

11 1 1( , , ; , , ) ( , , )
nn n t t nF x x t t P X x X xX
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2.1.4 Complex Stochastic Processes
So far only real valued stochastic processes have been
considered.
Nevertheless, in many applications it is more convenient
to regard them as complex valued stochastic processes,
e.g. if a quadrature demodulation or Hilbert transform is
involved.
Let (Xt)t∈ and (Yt)t∈ be real valued stochastic process-
es. Then the process (Zt)t∈ formed by

is called complex stochastic process.

= +t t tZ X jY
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The probabilistic structure of (Zt)t∈ is specified by the
joint distribution of the sets of random variables

whose joint probability distribution and density function
can be expressed by

resp.

=
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2.1.5 Moment Functions 
For real valued stochastic processes we define: 
a) Mean Function

b) Second Order Moment Function

µ
∞

−∞

= = ∫( ) E( ) ( ; ) .X t Xt X x f x t dx

( )
∞ ∞
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= =
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c) Covariance Function

Employing the mean and second order moment func-
tion the covariance function can be expressed by
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d) Variance Function

In terms of the mean and the second order moment
function the variance function can be determined by

e) Correlation Function
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The above definition follows the definition in the statis-
tical literature, which is a straight forward generaliza-
tion of the definition of the correlation coefficient of
random variables.
However, in the engineering literature unfortunately the
the second order moment function is often called cor-
relation function.

f) Cross Second Order Moment Function
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g) Cross Covariance Function

By utilising the mean functions and the cross second 
order moment function we can derive
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For complex valued stochastic processes we define: 
a) Mean Function

b) Second Order Moment Function
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c) Covariance Function

d) Variance Function

e) Correlation Function

{ }
∗

= + + −

=
1 2 1 2 1 2 1 2 1 2

1 2 2 1

( , ) ( , ) ( , ) ( , ) ( , )

with ( , ) ( , ) .
ZZ XX YY YX XY

ZZ ZZ

c t t c t t c t t j c t t c t t

c t t c t t

σ σ σ= = + = +

= ⇒ =

2 2 2

1 2 2 1

( ) ( , ) ( , ) ( , ) ( ) ( )

as ( , ) ( , ) ( , ) ( , ).
Z ZZ XX YY X Y

YX XY YX XY

t c t t c t t c t t t t

c t t c t t c t t c t t

ρ ρ ρ
σ σ

∗= =1 2
1 2 1 2 2 12 2

1 2

( , )( , ) with ( , ) ( , ) .
( ) ( )

ZZ
ZZ ZZ ZZ

Z Z

c t tt t t t t t
t t



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 20

f) Cross Second Order Moment Function

g) Cross Covariance Function 
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2.2 Some Particular Processes
2.2.1 Poisson Process
A Poisson process is useful for modelling the random time
points of the occurrence of events.
Let N(t1,t2) be the model for counting the number of events
occurring in the time interval (t1,t2]. Then one can show
that N(t1, t2) exhibits the following properties.
 N(t1,t2) is a Poisson distributed random variable with

parameter λ(t2− t1)>0, i.e.

( ) ( )λ λ− − −
= = 2 1 2 1( )

1 2

( )
( , ) .

!

k
t t t t

P N t t k e
k
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 N(t1, t2) and N(t3,t4) are independent if the intervals
(t1, t2] and (t3, t4] are disjoint.

The random process 
Xt = N(0, t) 

that counts the number of events in the interval (0,t ] is
called Poisson process.
Since any two increments of the form

Xt2
− Xt1

= N(t1, t2)   and   Xt4
− Xt3

= N(t3, t4) 
are independent if t1 < t2 ≤ t3 < t4, a Poisson process is
said to possess independent increments.
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Mean, variance and covariance of a Poisson process are
given by

µ λ

σ λ λ

= =

= = = ⋅2
1 2 1 2

( ) E( ) ,
( ) Var( ) and ( , ) min( , ).

X t
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2.2.2 Random Walk
Let Un for n = 1,2,… be random variables describing a
sequence of independent and identically distributed trails
(Bernoulli) with

Furthermore, we define the random process  

where s and ∆ denote the step height and step width re-
spectively. In the case of p = 0.5 the random process Xt
is termed a random walk.

=
= = = − = −
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µ

σ

=

=

= = ⋅ − =

= =

∑

∑
1

2 2 2
1

( ) E( ) (2 1) 0,

( ) Var( ) .

m
X nn

m
X nn

t s U s m p

t s U s m

0 5 10 15 20 25 30

-1

0

1

u t

realization of Bernoulli trials

0 5 10 15 20 25 30-5

0

5

t

x t

realization of a random walk

s =1, ∆ =1



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 26

Relying on the central limit theorem one can assert that 
Xt   (0,s2m) approximately holds for large                 .

2.2.4 Wiener Process (Brownian motion)
We now examine the limiting form of a random walk Xt
as ∆ → 0. The variance function of Xt is known to be

To obtain a meaningful result as ∆ → 0 the step height s
should be proportional to , i.e.

The limit of Xt as ∆ → 0 (almost surely) is then the con-

σ = = ∆  
2 2( ) with .X t s m m t

α= ∆2 .s
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tinuous process

This random process is called Wiener process. It is often
used as a model for Brownian motion.

∆→
=

0
lim .t tW X
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W
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realization of a Wiener process
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Mean, variance and covariance of a Wiener process are
given by

Furthermore, exploiting a suitable central limit theorem
one can prove that Wt   (0,α t).

Thus, a Wiener process is a correlated random process
whose mean is zero, variance increases linearly with time
and probability density function is Gaussian.

µ

σ α α

= =

= = = ⋅2
1 2 1 2

( ) E( ) 0,
( ) Var( ) and ( , ) min( , ).

W t

W t WW

t W
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2.2.4 Markov Process
A stochastic process Xt is called Markov process if

holds for t1 < t2 < … < tn−1 < tn. That is, the past t1,t2,…,tn−2
has no influence on the statistical properties of the future
tn if the present tn−1 is specified.

Example:
A stochastic process with independent increments and
Xt=0 = 0 represents a Markov process.
Thus, the Poisson process and the Wiener process are
examples for a Markov process.

− −− −≤ = = = ≤ =

1 1 11 1 1( | , , ) ( | )
n n n nt n t t n t n t nP X x X x X x P X x X x



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 30

2.2.5 Gauss Process
A stochastic process is called Gauss process if, for any
admissible t1,…, tn the Xt1

,…,Xtn
possess a multivariate

Gaussian probability density function, i.e.

with

and

µ
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Hence, a Gauss process is completely described by its
mean function µX (t) and covariance function cXX (t1,t2).

Example:
The Wiener process is a Gauss process.
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2.3 Stationary Processes
2.3.1 Real Valued Stationary Processes
A real valued stochastic process (Xt)t∈ is called strict-
sense stationary if, for any admissible t1,…,tn and any τ,
the joint probability distribution of

is identical with the joint probability distribution of 

Consequently, the distribution does not depend on τ, i.e.



1
, ,

nt tX X

τ τ+ +

1
, , .

nt tX X

τ τ= + +1 1 1 1( , , ; , , ) ( , , ; , , )n n n nF x x t t F x x t tX X   
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and, if the density function exists

Implications:
1) The univariate density function is independent of t. 

2) The bivariate density function depends only on the 
time difference t1 − t2.

τ τ= + +   1 1 1 1( , , ; , , ) ( , , ; , , ).n n n nf x x t t f x x t tX X

τ µ µ= + = ⇒ = =( ; ) ( ; ) ( ) ( ) const. X X X X Xf x t f x t f x t

= − = −
= − = −

⇒ = − = −
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A real valued stochastic process (Xt)t∈ is said to be sta-
tionary up to order m if, for any admissible t1,…, tn and
any τ, the joint moments up to order m of

exist and equal the corresponding joint moments of 

Thus,

for any τ, and all positive integers m1,…,mn satisfying
m1 + … + mn ≤ m.

τ τ+ +

1
, , .

nt tX X



1
, ,

nt tX X
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A real valued stochastic process (Xt)t∈ that is stationary
up to order m = 2 is called wide-sense stationary.
Let (Xt)t∈ be a real valued wide-sense stationary sto-
chastic process then we have
1) a constant independent of t, i.e. the same

mean value at all time points,
2) a constant independent of

t, i.e. the same variance at all time points,
3) i.e. the covariance

depends only on the interval between the time points.

2 2 2Var( ) E( ) ,t t X XX X µ σ= − =

1 2 1 2 2 1( , ) ( ) ( ),XX XX XXc t t c t t c t t= − = −



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 36

Exercise 2.3-1:
Single tone stochastic process
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2.3.2 Complex Valued Stationary Processes
A complex valued stochastic process (Zt = Xt + jYt)t∈ is
called strict-sense stationary if, for any admissible t1,…,
tn and any τ, the joint probability distributions of

are identical. 
Thus, the distribution function does not depend on τ, i.e.

Furthermore, if the density function exists, we can write
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Implications:
1) The univariate density functions are independent of t.

2) The bivariate density functions depend only on the
time difference t1 − t2.

τ
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and

Consequently, 
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2.3.3 Moment Functions for Stationary Processes
For real valued (wide-sense) stationary stochastic pro-
cesses we can derive:
a) Mean Function

b) Second Order Moment Function

c) Covariance Function

E( ) .X tX constµ = =

( )ττ τ τ+= = −( ) E with ( ) ( ).XX t t XX XXr X X r r

( ) ( )τ ττ µ µ µ

τ µ τ τ
+ += − − = −

= − = −

2

2

( ) E ( )( ) E

( ) with ( ) ( ).
XX t X t X t t X
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c X X X X
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d) Variance Function

e) Correlation Function

f) Cross Second Order Moment Function

g) Cross Covariance Function

( )ττ τ τ+= = −( ) E with ( ) ( ).XY t t XY YXr X Y r r

( ) ( )τ ττ µ µ µ µ

τ µ µ τ τ
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c X Y X Y
r c c
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Properties of the Moment Functions

(1)

(2)
are so-called positive semi-definite functions.

(3)

( ), ( ), ( )XX XX XXr cτ τ ρ τ
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Exercise 2.3-2:
Proof of the properties 1) – 3)
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Remarks:
Two stationary real valued stochastic processes (Xt)t∈
and (Yt)t∈ are said to be

 uncorrelated, if for all τ holds

or equivalently

 orthogonal, if for all τ holds

( ) ( )( ) E ( )( ) E 0XY t X t Y t t X Yc X Y X Yτ ττ µ µ µ µ+ += − − = − =

( ) ( ) ( )τ ττ µ µ+ += = =( ) E E E ,XY t t t t X Yr X Y X Y

( )ττ += =( ) E 0.XY t tr X Y
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For complex valued (wide-sense) stationary stochastic
processes we can deduce:
a) Mean Function

b) Second Order Moment Function

E( ) E( ) E( ) .Z t t t X YZ X j Y j constµ µ µ= = + = + =
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τ τ ττ

τ τ τ τ
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c) Covariance Function

d) Variance Function

e) Correlation Function
τ τρ τ ρ τ ρ τ

σ
∗= = = −2
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f) Cross Second Order Moment Function

g) Cross Covariance Function
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Properties of the Moment Functions

(1)

(2)
are so-called positive semi-definite functions.

(3)
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Remarks:
Two stationary complex valued stochastic processes (Zt)t∈
and (Wt)t∈ are said to be

 uncorrelated, if for all τ holds

or equivalently

 orthogonal, if for all τ holds

( ) ( )( ) E ( )( ) E 0ZW t Z t W t t Z Wc Z W Z Wτ ττ µ µ µ µ∗ ∗ ∗
+ += − − = − =

( ) ( ) ( )τ ττ µ µ∗ ∗ ∗
+ += = =( ) E E E ,ZW t t t t Z Wr Z W Z W

( )ττ ∗
+= =( ) E 0.ZW t tr Z W
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2.4 Stochastic Limiting Operations 
2.4.1 Stochastic Continuity
A stochastic process (Xt)t∈ is said to be mean square
continuous if

holds for all t∈ and we write  

Theorem:
A stochastic process (Xt)t∈ is mean square continuous
if its second order moment function rXX (t1,t2) is continu-
ous (in the ordinary sense) on the diagonal t1 = t2∈ .

( )2

0
lim E 0t tX Xττ +→

− =

0
l.i.m. .t tX Xττ +→

=
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Exercise 2.4-1:
Proof of the Theorem
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Remarks:
 If rXX (t1,t2) is continuous on the diagonal t1 = t2∈ one

can show that rXX (t1,t2) is continuous everywhere.

 If a stochastic process (Xt)t∈ is mean square contin-
uous then its mean function µX (t) is continuous.

 A stationary stochastic process (Xt)t∈ is mean square
continuous if its second order moment function rXX (τ )
is continuous at τ = 0.

 If rXX (τ ) is continuous at τ = 0 one can show that rXX (τ )
is continuous everywhere.
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2.4.2 Stochastic Differentiation  
A stochastic process (Xt)t∈ is said to be mean square dif-
ferentiable if

holds for all t∈ and we write

Theorem:
A stochastic process (Xt)t∈ is mean square differentiable
if its second order moment function rXX (t1,t2) is twice con-
tinuously differentiable within × (sufficient condition).

2

0
lim E 0t t

t
X X Xτ

τ τ
+

→

 −
− =  

 



0
l.i.m. ( ) / .t t tX X Xττ

τ+→
− = 
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Exercise 2.4-2:
Proof of the Theorem
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Corollary:
(1) The mean function of             can be determined by

For a stationary stochastic process (Xt)t∈ holds 

( ) ( )
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ττ
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(2) The second order moment function of and the
cross second order moment function of (Xt)t∈ and

are given by

∈( )t tX 
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Exemplarily, the first expression can be derived by 
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For a stationary stochastic process (Xt)t∈ we obtain
ττ

τ
ττ

τ

ττ
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2.4.3 Stochastic Integration
A stochastic process (Xt)t∈ is said to be mean square in-
tegrable if the limit in mean square

exists for all T1,T2∈ .

Theorem:
A stochastic process (Xt)t∈ is mean square integrable if

exists as a Riemann double integral.  

2

11
1max( ) 0 1

l.i.m. ( )
i

i i

n T

t i i tTt t i
X t t X dt
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−− →

=
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2 2

1 1
1 2 1 2( , )

T T

XXT T
r t t dt dt∫ ∫
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Exercise 2.4-3:
Proof of the Theorem
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Remarks:
 To show the existence of the Riemann double integral 

it is sufficient to show that rXX (t1,t2) is continuous over
the closed set [T1,T2]× [T1,T2].

 In applications one may also be concerned with inte-
grals extending over infinite ranges. However, with ob-
vious modifications, the above result can be extended
to cover these more general cases.

2 2

1 1

1 2 1 2( , )
T T

XX
T T

r t t dt dt∫ ∫
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2.5 Spectral Analysis of Stationary Processes
2.5.1 Spectral Density Function 
A typical realization of a general continuous time zero
mean stationary process will be neither periodic nor of
bounded energy. Hence, it cannot be represented as a
Fourier series or as a Fourier integral.
However, to overcome this difficulty, we define the new
process by

Assuming       to be continuous, it can be expressed as 

− ≤ ≤
= 


2 2
.

0 otherwise
tT

t

X T t T
X

T
tX

T
tX
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Fourier integral, i.e.

where               has the following physical interpretation.

Even though               may tend towards infinity as T →∞,

ω ωω ω ω
π

∞ ∞ −

−∞ −∞
= =∫ ∫

1 ( ) with ( ) ,
2

T T j t T T j t
t tX X e d X X e dt

ω
2

( )TX

ωω
π ω ω ω

= 
+

2 part of the total energy of 
( ) contributed by components with

2 frequencies between ,

T
tT

XdX
d

( ) ωω
π ω ω ω→∞

= 
+

2 part of the total power of 
lim ( ) contributed by components with

2 frequencies between ,

T
tT

T

XdX T
d

ω
2

( )TX
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may converge to a finite limit, where

would have an interpretation as a power density function.
Since the analysis above refers only to a single realiza-
tion the value of the limit, if it exists, will change from one
realization to another.
To construct a quantity which characterises the spectral
properties of the whole stochastic process averaging of

over the different realizations seems to be natural. 

ω
→∞

2
lim ( )T

T
X T

ω
2

( )TX T
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Therefore, one defines 

When the limit exists, the function CXX (ω) is called power
spectral density function of the zero mean stationary pro-
cess Xt.
The calculation of CXX (ω) from the definition above would
be an ambitious task. Fortunately the following basic re-
sult, known as Wiener-Khintchine Formula, provides an
alternative way for calculating CXX (ω).

( ){ }2
( ) lim E ( ) .T

XX T
C X Tω ω

→∞
=
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Theorem:
Let (Xt)t∈ be a zero mean continuous time stationary
stochastic process with power spectral density function
CXX (ω) and covariance function cXX (τ ). Then CXX (ω) is
the Fourier transform of cXX (τ ), i.e.

Remark:
The power spectral density function CXX (ω) exists for all
ω if the covariance function cXX (τ ) possesses a Fourier
transform. Hence, a sufficient condition is given by

ωτω τ τ
∞ −

−∞
= ∫( ) ( ) .j

XX XXC c e d

τ τ
∞

−∞
< ∞∫ ( ) .XXc d
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Exercise 2.5-1:
Proof of the Theorem
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Properties of the Power Spectral Density Function

(1) CXX (ω) ≥ 0  for all ω since

(2) CXX (ω) is real since cXX (τ) = cXX (−τ)∗.

(3) For real valued processes
CXX (ω) = CXX (−ω)  since  cXX (τ) = cXX (−τ). 

(4)

(5)

τ τ ω ω= = =2 2, ( ) ( ), ( ) ( ).t t YY XX YY XXY a X c a c C a C

ω ≥
2

( ) 0.TX

ττ ω ω ω
τ

= = − =
2

2
2
( ), ( ) , ( ) ( ).XX

t t YY YY XX
d cY X c C C

d
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Remarks:
 For a continuous time stationary stochastic process

with periodic components the Fourier transform

has to exist in consideration of generalized functions.
 The power spectral density function of a continuous

time stationary stochastic process with expected value
µX is given by

( )ωτ ωτω τ τ τ µ τ

ω π µ δ ω

∞ ∞− −

−∞ −∞
= = +

= +

∫ ∫ 2

2

( ) ( ) ( )

( ) 2 ( ).

j j
XX XX XX X

XX X

R r e d c e d

C

( ) ( ) j
XX XXC c e dωτω τ τ

∞ −

−∞
= ∫
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If cXX (τ ) is absolutely integrable and if cXX (τ ) is contin-
uous at τ = 0 then cXX (τ ) can be expressed as the in-
verse Fourier transform of CXX (ω), i.e.

Now, setting τ = 0, we obtain

which represents the total power of the process, i.e. the
power contributed by all frequency components.
Hence, the variance of a zero mean stationary stochas-
tic process is a measure of its total power.

ωττ ω ω
π

∞

−∞

= ∫
1( ) ( ) .

2
j

XX XXc C e d

σ ω ω
π

∞

−∞

= = ∫2 1(0) ( )
2X XX XXc C d
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Let (Xt)t∈ and (Yt)t∈ be zero mean continuous time sta-
tionary stochastic processes. The Fourier transform of
the cross covariance function

is called cross power spectral density function.
If cXY (τ ) is absolutely integrable and if cXY (τ ) is continu-
ous then cXY (τ ) can be expressed as the inverse Fourier
transform of CXY (ω), i.e.

ωτω τ τ
∞

−

−∞

= ∫( ) ( ) j
XY XYC c e d

ωττ ω ω
π

∞

−∞

= ∫
1( ) ( ) .

2
j

XY XYc C e d
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Properties of the Cross Power Spectral Density Function
For real valued processes (Xt)t∈ and (Yt)t∈ holds

(1) CXY (−ω) = CXY (ω)∗,
(2) CXY (ω) = CYX (ω)∗.

Remarks:
 For continuous time stationary stochastic processes

with periodic components the Fourier transform

has to exist in consideration of generalized functions.

( ) ( ) j
XY XYC c e dωτω τ τ

∞
−

−∞

= ∫
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 The cross power spectral density function of the con-
tinuous time stationary stochastic processes (Xt)t∈
and (Yt)t∈ with the expected values µX and µY respec-
tively is given by

( )

ωτ

ωτ

ω τ τ

τ µ µ τ

ω π µ µ δ ω

∞
−

−∞

∞
−

−∞

=

= +

= +

∫

∫

( ) ( )

( )

( ) 2 ( ).

j
XY XY

j
XY X Y

XY X Y

R r e d

c e d

C
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Analogue to the continuous time case, the relationship
among the covariance function cXX (τ) and the power spec-
tral density function CXX (Ω) of a discrete time zero mean
stationary stochastic process (Xt)t∈ can be defined by

and

( ) ( ) j
XX XXC c e τ

τ

τ
∞

− Ω

=−∞

Ω = ∑

1( ) ( ) .
2

j
XX XXc C e d

π
τ

π

τ
π

Ω

−
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Remarks:
 For a discrete time stationary stochastic process with

periodic components the Fourier transform

has to exist in consideration of generalized functions.
 The power spectral density function of a discrete time

stationary stochastic process with expected value µX
is given by

( )τ τ

τ τ

τ τ µ

π µ η

∞ ∞
− Ω − Ω

=−∞ =−∞

Ω = = +
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j j
XX XX XX X
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C
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with

Correspondingly, the cross covariance function cXY (τ )
and the cross power spectral density function CXY (Ω) of
the zero mean discrete time stationary stochastic pro-
cesses (Xt)t∈ and (Yt)t∈ are linked up as follows.

and

( ) ( ) j
XY XYC c e τ

τ

τ
∞
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=−∞
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2

j
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( ) ( 2 ).
k

kη δ π
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Moreover, let X denote a discrete time process that is ob-
tained by sampling the continuous time zero mean sta-
tionary stochastic process X c equidistantly in time with
sampling period ∆, i.e.

The covariance function and the power spectral density
function of the discrete and continuous time stationary
stochastic processes are then related by

and

τ ττ τ

τ
+ ∆ + ∆= = = ∆

= − 

( )( ) Cov( , ) Cov( , ) ( )
for , 1,0,1,

c c
c c

XX t t t t X X
c X X X X c

t

∆= = − ∆ ∈  for 1,0,1, and .c
t tX X t t
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2.5.2 Spectral Representation of Stationary Processes
Continuous time stationary processes 

and

so that the mean value of Xt can be also derived by 
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Furthermore, the relationship between the covariance 
and spectral density function can be approved
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Discrete time stationary processes

and

so that the mean value of Xt can be also derived by 
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Furthermore, the relationship between the covariance
and spectral density function can be approved.
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2.6 Systems with Stochastic Inputs
Let T denote an operator that assigns to each function xt
a function yt, i.e. yt = T[xt ].
The operator T is called 
 deterministic, if xt,1 = xt,2 ∀t  ⇒ T[xt,1 ] = T[xt,2 ]  ∀t. 
 memoryless, if a function g exists such that 

yt = T[xt ] = g(xt).
 time invariant, if yt+τ = T[xt+τ ]. 
 linear, if it is homogenous, additive and continuous, i.e.

, , ,
1 1 1

T[ ] T T[ ] .t t i t i i t i i t i
i i i

y x a x a x a y
∞ ∞ ∞

= = =

 
= = = = 

 
∑ ∑ ∑
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2.6.1 Transformation of Stochastic Processes
Let (Xt)t∈ denote a stochastic process. An operator T
assigns to each realization xt of (Xt)t∈ a time dependent
function yt which is a realization of a new stochastic pro-
cess (Yt)t∈. Therefore,

Yt = T[Xt ]
defines a so called transformed stochastic process.

Systems Theoretic Interpretation:

T
Xt

Input Process

Yt = T[Xt ]

Output Process
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2.6.2 Memoryless Systems
Hard limiter ( ) sgn( ) : sgn( )t tg x x W X= =

( )
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δ δ
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Half wave rectifier ( ) ( )1 1( ) :
2 2t t tg x x x V X X= + = +
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Full wave rectifier ( ) : t tg x x U X= =

Xt Ut

x0

u

( )

1 2

0

1 2 1 2 1 2 1 2 1 2

( ; ) ( ; ) 0
( ; ) ,

0 0

( ) ( ; ) ( ; ) ( ; ) ,

( , ) ( , ; , ) .

X X
U

U X X X

UU X X

f u t f u t u
f u t

u

t x f x t dx u f u t f u t du

r t t x x f x x t t dx dx

µ
∞ ∞

−∞

∞ ∞

−∞ −∞

+ − ≥
= 

<

= = + −

=

∫ ∫

∫ ∫



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 88

Square-law detector 2 2( ) : t tg x x Y X= =

Xt Yt

x0

y
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2.6.3 Linear Systems
Theorem:
1) The order of application of the expectation operator

E and the stable LTI system operator T can be inter-
changed.

2) Let (Xt)t∈ be a stationary stochastic process and T
an operator of a stable LTI system then the stochas-
tic process Yt = T[Xt ] is stationary.

3) Let (Xt)t∈ be a wide sense stationary stochastic pro-
cess and T an operator of a stable LTI system then
the stochastic process Yt = T[Xt ] is wide sense sta-
tionary.

LTI = Linear Time Invariant
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Continuous time LTI Systems
Let (Xt)t∈ be a continuous time stationary stochastic in-
put process of a stable and continuous time LTI system
with impulse response ht. Thus, the continuous time sta-
tionary output process (Yt)t∈ is given by

where the impulse response satisfies

and therefore the transfer function

exists.

∞ ∞

′ ′ ′ ′− −−∞ −∞
′ ′= = =∫ ∫T[ ] ,t t t t t t t tY X h X dt h X dt
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ωω
∞ −

−∞
= ∫( ) j t

tH h e dt
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Using the spectral representation of a continuous time
stationary stochastic processes we obtain

where

with
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ω ω
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Mean of the output process

Covariance function of the output process
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Power spectral density of the output process
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or

Cross covariance function of input & output process

( )'( ) Cov(X , ) Cov ,

Cov( , ) ( )

XY t t t t t t

t t t t t XX

c Y X h X dt

h X X dt h c t dt

τ τ

τ

τ

τ

∞

′+ + −−∞

∞ ∞

′ ′ ′+ −−∞ −∞

′= =

′ ′ ′= = +

∫

∫ ∫

( ) ( )ω λ ω λ ω λ

π ω ω δ ω λ ω λ

π ω δ ω λ ω λ

ω ω ω

∗=

= −

= −

⇒ =

2

2

Cov ( ), ( ) ( ) ( ) Cov ( ), ( )

2 ( ) ( ) ( )
2 ( ) ( )

( ) ( ) ( )

Y Y X X

XX

YY

YY XX

dZ dZ H H dZ dZ

H C d d
C d d

C H C



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 2 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 95

Cross spectral density function of input & output process
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Discrete time LTI Systems
Consider a discrete time stationary stochastic process
(Xt)t∈ to be the input of a stable and discrete time LTI
system with impulse response ht. Hence, the discrete
time stationary output process (Yt)t∈ is given by

where the impulse response satisfies

and therefore the transfer function

exists.

∞ ∞
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Exploiting the spectral representation of a discrete time 
stationary stochastic processes we obtain
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Mean of the output process

Covariance function of the output process
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Power spectral density of the output process
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or

Cross covariance function of input & output process
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Cross spectral density function of input & output process
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2.7 Special Discrete-time Parameter Models
2.7.1 Purely Random Processes, White Noise
The process (Xt), t = ...,−2,−1, 0, 1, 2,... is called purely
random process if it consists of a sequence of uncorre-
lated random variables.
For such a process to be wide-sense stationary we re-
quire only that

The covariance function given by 

is then automatically a function of τ only.

2 2E( ) and Var( ) E( ) .t t tX X X tµ µ σ= = − = ∀

( ) 2( ) Cov( ) E ( )( )XX t t t tc X X X Xτ τ ττ µ µ σ δ+ += = − − =
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In the sequel, we denote a stationary purely random pro-
cess with µ = 0 by (Zt) and call it white noise.
The term white noise is to be understood in a figurative
sense for white light, in which different optical frequency
components are superimposed to form a white color im-
pression. However, light that is subjectively perceived as
white by humans does not have a constant power den-
sity spectrum.
Although the white noise model appears to be highly ar-
tificial (memoryless processes hardly occur in practice)
it is nevertheless important since it provides us a basic
building block for the construction of more complicated
models.
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2.7.2 Auto-Regressive (AR)-Processes
We say that (Xt) is an auto-regressive process of order p
(denoted by AR(p)) if it satisfies the difference equation

where a1,a2,...,ap are constants and (Zt) is white noise.
Using the backward shift operator B the difference equa-
tion can be written more concisely in the form

The formal solution of the equation can be expressed by

1 1
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where λ1,λ2,...,λp are the roots (assuming distinct roots)
of the polynomial

Hence, asymptotic stationarity is obtained if |λn|<1 for n=
1,...,p, i.e. the roots of α(z) must lie inside the unit circle.
Let (Xt) be stationary, then we may ignore the solution
of a(B)Xt = 0 (which will decay to zero), and the steady
state solution can be written as

1
1 1 2 2
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Now, multiplying both sides of the difference equation

by Xt−m from the right and taking expectations we obtain

This set of equations is known as Yule-Walker equations.
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For m = 1, 2,..., p the Yule-Walker equations can be ex-
pressed by

If all roots of α(z) are lying within the unit circle one can
show that the coefficient matrix of the equation system,
which is a symmetric Toeplitz matrix, is positive definite.
Thus, assuming cXX (0),..., cXX (p) to be known the equa-
tion system can be uniquely solved for a1, a2,...,ap, e.g.

1

2

(0) (1) ( 1) (1)
(1) (0) ( 2) (2)

.
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by means of the Levinson-Durbin algorithm, and the vari-
ance of the white noise can be subsequently determined
by the Yule-Walker equations for m = 0, i.e.

Furthermore, for m > 0 the Yule-Walker equations show
that the covariance function cXX (m) satisfies exactly the
same difference equation as a(B)Xm = 0.
Consequently, the general solution is of the form

where C1,C2,...,Cp are constants determined by the ini-
tial conditions, i.e. cXX (0),cXX (1),...,cXX (p−1).

2
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1 1 2 2( ) ,XX p pc C C Cτ τ ττ λ λ λ= + + +
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Exercise 2.7-1:
Properties of an AR(1)-Process

Exercise 2.7-2:
Properties of an AR(2)-Process
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Supplement: parametric spectrum estimation
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2.7.3 Moving-Average (MA)-Processes
(Xt) is said to be a moving-average process of order q
(denoted by MA(q)) if it can be expressed in the form

where b1,...,bq are constants and (Zt) is white noise.
Using again the backward shift operator B we can write

Since (Xt) is a linear combination of uncorrelated random
variables its mean and variance are readily obtained using
the results of Chapter 1.10.3, i.e.

1 1 00
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Furthermore, (Xt) is always stationary (irrespective of the
values of b1,...,bq) and has the covariance function

where E(Zt)=0 ⇒ E(Xt)=0 has been exploited.
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For given covariances cXX (0),...,cXX (q) the parameters
b1,b2,...,bq and can be determined by solving the sys-
tem of (q+1) non-linear equations

with                                  .
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Generally, such a non-linear equation system possesses
2q solution vectors (γ0,…,γq)

T.
However, one can show that by imposing physically and
system theoretically motivated constraints on the non-
linear equation system the solution space can be reduce
such that a unique solution can be derived.

Exercise 2.7-3:
Covariance function of an MA(q)-Process with equal 
weights
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2.7.4 Auto-Regressive-Moving-Average (ARMA)-
Processes

A process (Xt) that satisfies an equation of the form 

is called auto-regressive-moving-average process of or-
der (p,q) (denoted by ARMA(p,q)).
Using the same operator notation introduced in the pre-
vious sections the ARMA(p,q) can be rewritten as
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The solution of the equation can be represented by

where λ1,λ2,...,λp are the roots (assuming distinct roots)
of the polynomial

Thus, asymptotic stationarity is provided if |λn|<1 for n=
1,...,p, i.e. the roots of α(z) must lie inside the unit circle.
Let (Xt) be stationary, then we may ignore the solution of
a(B)Xt = 0 (which decays to zero), and the steady state
solution can be written as
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Now, multiplying both sides of the equation

by Xt−m from the right and taking expectations we obtain

This set of equations is sometimes called modified Yule-
Walker equations.
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For m = q+1,q+2,...,q+p the modified Yule-Walker equa-
tions can be expressed by

The coefficient matrix of the equation system is obviously
again a Toeplitz matrix but it is not anymore symmetric.
However, one can show that if all roots of α(z) are lying
within the unit circle the coefficient matrix is regular.
Hence, assuming cXX (0),...,cXX (q + p) to be known the
equation system can be uniquely solved for a1,a2,...,ap.
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Subsequently, the parameters a1,a2,...,ap and the covari-
ances cXX (0),...,cXX (q+p) allow the calculation of the co-
variance function cYY (τ ) of the MA(q)-process

as follows.
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Finally, after determining the covariances cYY (0),...,cYY (q)
the parameters b1,b2, ...,bq and can be determined by
solving the equation system

which usually possesses 2q solution vectors (γ0,…,γq)
T. 

As already mentioned in conjunction with MA(q)-Process-
es one can impose constraints on the non-linear equation
system such that a unique solution can be derived.
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