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3 Parameter Estimation

The observations (x,,...,x,)" = x are realizations of the
random variables (X, .. .,Xn)T: X with density f,(x), which
is element of a known set {f,(x |8): 8 € Q} and whose pa-
rameter vector 8 =(6,,...,6,)" is unknown.

Problem:
For glven observations x we are looking for an estlmate
0 —(6?1, 6’ ) of @ that depends on x, i.e. 8 = 8(x).

In parameter estimation problems one distinguishes wheth-
er the parameter vector is a perfectly unknown quantity or
whether the prior density of the parameter vector is sup-
posed to be known.
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In the latter case one interprets the parameter vector as
random vector, whose posterior density is used for the
subsequent statistical inference. This approach leads to
Bayes estimators.

3.1 Estimating Function and Estimator
For determining &, we denote the mapping

(X s X V> O(Xoyo X)), i=1...,p

a estimating function for 8, and its function value for a giv-
en set of observations an estimate. Since x,,...,x, can be
considered as random values the estimates are also ran-
dom and therefore only approximate the true values 4.
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We examine the accuracy properties of the estimates on
the basis of the corresponding random variables.

Therefore, we define the random variable

O =0(X,...X ), i=1...p,
and denote it as estimator of 6.
To characterize the properties of the estimator

0=(6,...0,) =6(X,,...,X,)

completely, the density function fé(é | 9) that generally de-
pends on 0 has to be determined, e.g. using the methods
described in Chapter 1.7.
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For simplicity let p =1. Exemplarily, the densities of two
alternative estimators @ and @ for @ are depicted below.
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Chapter 3 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 6



The determination of the density function can be rather
complicated. Therefore, one must be often satisfied with
the determination of the moments of an estimator.
Bias:
The bias or systematic error is define by
~ ~ ~ T a N T
b(®) = (b(@),...,b(@ )) — (E(@1)—91,...,E(@p)—6’ )

p p

= (E(6)....E(8,)) ~(6,...6,) =E(©)-8,

p

~ o0 ~

E(O)=[ [ 00Xy x (XpounX, |0)dX; - dX,.

If b((:)) =0 the estimator O is said to be unbiased.
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Covariance:
The covariance matrix is define by

Cov(®)=| Cov(6,9)) ]

i,j=1...p

-[E((6-E@))(6-56))]

ij=1...p
_ E((@) ~E(©))(6- E(@)))T),
where the diagonal elements represent the variances
Var(®,)=Cov(®,0,)
-E(0, -EO, =E(0*)-(EO,)
fori=1,...,p.
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Mean Square Error:
The matrix-valued mean square error is define by

MSE(®) = [E((6,-0X6,-6)]

Ij=1...p

~E((©-06)0-0))
— Cov(©)+b(®)b(OY,

where the diagonal elements represent the mean square
errors of the individual components &. given by

MSE(@,)=E((6,-6,)°) = Var(6,)+b(6),

fori=1,...,p.
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Minimum Variance Unbiased (MVU) Estimator:

An unbiased estimator © is MVU if for any unbiased esti-
mator O the following inequality holds.

a’Cov(@)a<a’Cov(@)a VacR’, VBecQ

MVU exists no MVVU exists
‘Var B lVar B
..--'/_\/(9 ..-/\ é
L — 4
0 0
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Note:

To emphasize that the variance is smallest for all @ € QQ an MVU es-
timator is sometimes called uniformly minimum variance unbiased
UMVU estimator.

Minimum MeaAn Square Error (MMSE) Estimator: i
An estimator © provides an MMSE if for any estimator ©
the following inequality holds.

a’ MSE(@)a<a’MSE(@)a VacR’, vBecQ

Linear Estimator:
An estimator © is called linear if it can be expressed as
a linear function of the observations, i.e.

é:AX with X:(X1; X)andA (’/)11 WP j=1,..,0
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Exercise 3.71-1:
MVU and MMSE variance estimator
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Consistency:

Often one is interested in the behavior of an estimator if
the number of observations grows.

An estimator is said to be

— strongly consistent if G converges with probability 1
towards @, i.e.

O =0(X,...,X)—2 50

n—oo

— mean square consistent if G)n converges in mean square
sense towards 0, i.e.

0 =0(X,..,X)—2> 0

n—oo

— consistent if G) converges in probability towards 0, i.e.

O =8(X,.. X)—P >0

n—oo
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Asymptotic Normality:

In certain cases one can show that an estimator is
asymptotically normally distributed such that

im+/n(®©, —8) ~ N, (0,X).

n—oo

Consequently, for large n the density function of én can
be approximated by

f. (010)= n"” N@-0yz"06-0
5 (818)= -expy—-—(0-06) 27(0-90);.

(27 )2 /det(X) 2
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3.2 Sufficient Statistic, Exponential Families

A function T = t(X) that is only depending on the observa-
tion model X is called a statistic.

Let X = (X,,.. .,Xn)T be a model of a binary sequence with
probability p and 1—p of observing a one and a zero res-
pectively. Furthermore, we suppose that the X,..., X are
Independent.

Thus, our model can be described by the probabilities

P(X =x| p) prk -p)

n

=p k="K (1- p)n—ZHXk _ pt(X) (1- p)n—t(X)
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Now the following question arises. Do we collect all infor-
mation in terms of inference about p by recording only

t(X) = Z:1 Xk

The statistical understanding about the collection of all
information is quantified in the following definition.

Definition:

A statistic T = t(X) is called sufficient for the parameter 0
iIf the conditional distribution of X given T = t(x) is inde-
pendent of O for all t, i.e.

(x| T=t(x);0)=F (x| T =t(x)).

Hence, T contains "all information” about 0 included in x.
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Exercise 3.2-1:
Sufficiency of t(x) =

n

k=1 X
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Because the conditional distribution has to be determined
a direct evaluation of sufficiency is usually difficult.

Fortunately, the following theorem exist whose conditions
can be verified easily.

Theorem: (factorization theorem for densities)

A necessary and sufficient condition for a statistic T = t(X)
to be sufficient is that there exist non-negative functions
g(t| @) and h(x) such that f,(x|0) satisfies

f(x10)=g(t(x)|8)-h(x).
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Exercise 3.2-2:
Proof of the Theorem

Exercise 3.2-3:
Sufficient statistic for mean and variance
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Minimal Sufficient Statistic

A sufficient statistic T is said to be minimal if of all suffi-
cient statistics it provides the greatest possible reduction
of data, i.e. if for any sufficient statistic T' there exists a
function s such that T = s(T').

Complete Sufficient Statistic
A sufficient statistic T is said to be complete (or unique)
if the condition

E,(f(T))=0 VoeQ
implies f(T) = 0 with probability 1 for all ©.

Note: Completeness ensures minimality
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Exercise 3.2-4.:
Minimal and complete sufficient statistics
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Uniqueness of unbiased estimating function

Completeness implies that there is just one estimating
function of the sufficient statistic that provides an unbi-
ased estimator of 0.

Let T be a complete sufficient statistic and f, and f, be
two functions such that

E, (F(T))=E, (F,(T))=8 vBeQ.

Then
E, (f1(T)— f2(T)) =E, (f(T)) =0 VvVOeQ

and due to the completeness of T
f(T)=0=f(T)=1f,(T) with probability 1 v0 e Q
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Theorem: (Rao-Blackwell)

Let ©® be an unbiased estimator of 8 and T = t(X) be a
sufficient statistic for 0. Then the estimator defined by

©=EO|T)
IS unbiased and improves on O as follows.
a’Cov(@)a<a'Cov(@)a VacR’

Theorem: (Lehmann-Scheffe)

If in addition to the assumptions employed for the Rao-
Blackwell theorem the sufficient statistic is complete, then
O = (O | T) is unique MVU estimator of 0.
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Exercise 3.2-5:
Proof of the Theorems
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Exponential Families

A family {F,(x | 0)} of distributions is forming a k-dimen-
sional exponential family if the distributions F, (x | ) have
densities of the form

f(x]8) = h(x)-exp(zé,(e)t,-(x)—s(e)].

Frequently, it is more convenient to use the £ as the pa-
rameters and write the density in the canonical form

fy (x| 8) = h(x)- exp(z & b(X)~ A(§)j-

Chapter 3 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 25



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Applying the factorization theorem for densities one can
easily observe that

T

T=(To s Ty) = (6,X),. t(X))

constitutes a sufficient statistic for the exponential family.

T

Note:

The parameter space = c R of the natural parameter
vector § =(&,,...,&.) is convex.

If the exponential family is of full rank, i.e. the parameter
space = contains a k-dimensional rectangle, then T = (T,
..,T,)" is complete.
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For exponential families one can claim, that the integral
k
.[Rn fe(x | §)dx = jRn h(x)- exp(; &t (x)— A(§)) dx =1

has derivatives of all orders with respect to the & which
can be obtained by differentiating under the integral sign.

Exploiting the properties of the integral we can find
0

E(T;) =E(t(X)) 25—§A(§)
and
Cov(T..T;) = Cov (t,(X).t,(X)) = 8;85 A(§)
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Exercise 3.2-6.
Rayleigh distribution, mean and variance of the natural
Sufficient statistic
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3.3 Linear Least Squares Estimation
Consider the linear model

X=H8+Z with X=h0O+..+h 6. +Z, i=1...n,

ip”p

where X and Z are nx1 vectors modeling the measure-
ments and the measurement noise, respectively. Further-
more, H denotes a known nxp matrix and 0 the px1 pa-
rameter vector that has to be estimated.

The measurement noise is supposed to be statistically
characterized by E(Z)=0 and Cov(Z)=E(ZZ')=c:1.

Hence, the measurement model X possess the mean vec-
tor E(X) =H@ and covariance matrix Cov(X) = 2.
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Exercise 3.3-1:

Model examples,

« polynomial curve fitting,

« amplitude and phase estimation of sinusoids
* FIR filter identification
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Now, the least squares criterion can be expressed by
q(0) = i;(x, ~(RO,+...+h,0,))
=(x—HO) (x-HO)=x"x-20"H x + 8"H"H6.
Differentiating with respect to 8 by using the identities
V,0'Aa=Aa, V,00A0=(A+A")0

results after equating to zero in the following so-called
normal equation system

H'HO =H'x.
A solution of the normal equation system is given by

~n

8 = (H'H) H x,
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where (H'H)" denotes a generalized inverse.

1) If the rank(H) = p, the number of unknown parameters,
then (H'H)” = (H'H)™" is the ordinary inverse.

2) Let rank(H) = M < p, i.e. either n < p or the columns of
H are linearly dependent, then
M

(H'H) = (H'H)' = Zium u

m=1 'm

T
m

is the Moore-Penrose inverse, where 4,,...,4,,and u,,
...,u,, denote the non-zero eigenvalues and corre-
sponding eigenvectors of H'H, respectively.
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Supplement:
A generalized inverse of A is defined by the property
AA A=A

It is not unique. The Moore-Penrose inverse of A is de-
fined by the properties

AA'A=A, A'AA" =A",

(AAT) = AA" (A*A) = A*A.
It is unique and provides the minimum length solution of
the linear equation system Ax =b.

The Moore-Penrose inverse A" can be determined by
employing the singular value decomposition of A.

Chapter 3 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 33



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Exercise 3.3-2:
Normal equation system and generalized inverse
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Properties of the least squares estimator
The mean vector is given by

E(®)=(H'H) H'E(X) = (H"H) H'H®
- 0 rank(H)=p
- {VMT 8=(1-V,V])0 rank(H)=M<p’

where the matrices V, and V, can be derived from the
singular value decomposition

H'H=V diag(4,...,4,,0,...,0) V'
with
V=(V,,V,), Vi=(v,...,vy,) V,=(Vp,p..V,).
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The covariance matrix of the least squares estimator

C.. =Cov(0)= E((é—E(é))(é—E(é))rj

00
results after exploiting
®© =(H'HyH'X and E(®@)=(H'H) HH®
In the expression
C.s =E((HH)H' (X —HO)(X —H8)"H(HH) )
(H'H) H" E((X —HB)(X —H8)" )H(H"H)"
(HH) H (62 1)HHH) = o5(H'H)".
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Exercise 3.3-3:
LSE for p = 1 and sample mean
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Theorem: (Gaul3-Markov)
Given the model
X=He+Z with X=h0+..+h 0 +Z, i=1...,n,

where
E(X)=HB, Cov(X)=Cov(Z)= a§ |

and
rank(H) = p.

Then the best linear unbiased estimator (BLUE) is the
least squares estimator

© = (H'H) '"H"X.
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Exercise 3.3-4:
Proof of the Gaul3-Markov Theorem
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Consequently, the minimum of the sum of squares is
q(8) = (x ~H(HH) "H'x)  (x —H(H'H)"H"x)
=(x -Px) (x -Px)=x"(1-P)" (I-P)x
=x"P'"P*x = x"P*x,
where
P=HHH)'H and P'=1-P=I-HHH)'H

are projection matrices, which project a vector a € R" by
Pa and P1a into R(H) and N(H'), respectively.

R(H): range of H, i.e. the space spanned by the columns of H

N(HT): nullspace of H', i.e. the space that is orthogonal to R(H)
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Thus, H'P-=0, P'"H=0 and PP"=P"P=0. The projection
matrices are also symmetric and idempotent, i.e.

P=P', P=PP and P =P', P'=P'P".
Moreover, by employing the trace of a square matrix

Zau with A= ( i )/ Jj=1,...n

together with its property
tr(ABC)=1tr(BCA) =tr(CAB),

where A, B and C are nxk, kx/ and Ixn matrices the min-
imum of the sum of squares can be expressed by

q(8) = x"P*x = tr(P*xx").
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Now we want to consider how the variance of the noise
model o2 can be estimated. The expected value of the
minimum of the sum of squares provides

E(q(®))=E(tr(P*XX")) = tr(P*E((H8 + Z)(H8 + 2" ))
tr(P*(HBOTH'+ E(Z)8"H'+ HBE(Z") + E(2Z)))
tr(P*(HO8"H'+ o2 1)) = o2 tr(P*) = (n - p) o2,

where
tr(P*) =tr(1, —~HHH)'H" )
=n-— tr((HTH)‘1HTH) =n—tr(l,)=n-p

has been exploited.
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This result motivates

S =q(©)/(n~p)
as an unbiased estimator for o>.

Theorem:

If in addition to the Gaul}-Markov theorem Z obeys a nor-
mal distribution, i.e. Z ~ Nn(0,0'; ), the following holds.

a) ©@=(HH)'H'X~N,(6,0;(HH)")

b) ® and S? are stochastically independent
c) (n-p)fo;-S*~xi,
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Exercise 3.3-5:
Proof of the Theorem

Exercise 3.3-6:
Amplitude and phase estimation of sinusoids

Exercise 3.3-7:
System identification (FIR filter)

Chapter 3 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 44



In the following we generalize the linear model to
X=H6+U with X.=h06+...+h 6 +U., i=1...n,

ip~p
where the measurement noise possesses still the mean
E(U)=0 but now the covariance matrix Cov(U)=c;C,,.

Prewhitening
If C,, is decomposed, e.g. by the Cholesky decomposi-
tion C,, =CC’, and
Y=C'X, K=C'H W=C'U
be introduced, the linear model can be reformulated to

Y=C'X=C'HO+C'U=KO+W
with
E(Y)=K8=C'H8 and Cov(Y)=Cov(W)=0ol.

Chapter 3 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 45



Hence, the weighted least squares criterion for the gen-
eralized linear model can be derived as follows.

q(8)=(y —K8)'(y —Ke)
1 T ([~

=(C'(x—H®)) (C'(x—He))

=(x-H8) (C") C'(x—HB) = (x —HB8) C,(x —H®).
The normal equation system

K'KO =K'y resp. H'C; HB8=H'C_| x
and its solution
0=(K'K)K'y=(HC, H H C,| x

are obtained analogous to the white noise case.
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Properties of the generalized least squares estimator
The mean vector is given by

E(@)=(H C, HYH' C, E(X)=(H"C, ,H)HC_ H®

0 rank(H)=p
} {VMT 0=(1-V,V)0 rank(H)=M < p’
where the matrices V, and V, can be derived from the
singular value decomposition
H'C,,H=V diag(4,,...,4,,0,...,0) V'

with

V=(V,,V,), V,=(Vy...vy) Vo =(VyeaV,).
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The covariance matrix of the generalized least squares
estimator

~n

C.. =Cov(0)= E((C:) ~E©))(6- E(C:)))T)
results after exploiting
@=(H'C, HyH'C_, X and E(@)=(H"C_,H) H C_,H®

In the expression

C.5=E((H'C,H) H'C,(X-HB)(X-H8)" C H(H'C, H) )
= (H'CyH) H'C E((X-HB)(X—-H8)" )C  H(HC H)
= (H'Cy,H) H'C (0 Cyy) CuyHH C HY
= (H C, H).
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Theorem: (Gaul3-Markov)
Given the model

X=HO+U with X =h@+..+h 6 +U, i=1...n,

where
E(X)=H®8, Cov(X)=Cov(U)=0:C,,

and
rank(H) = p.

Then the best linear unbiased estimator (BLUE) is the
least squares estimator

©=(H'C, H)'H' C.| X.
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Hence, the minimum of the weighted sum of squares is
q(8) = tr(P'yy") = tr((1-KK'K) 'K )yy" )

_ tr [(I . C—1H(HT (C—1)T C1H)_1 HT(C—1)T ) C_1 XXT(C_1)T )
—tr \c;,{, [I ~H(H'C,,H) H'C,;, )xxT)
— tr [CE’L [I — PC_1 )XXT) — tr(CGL Pé__1 xxT ),
where
P, =HH'C H'"H'Cy, and P, =1-P_,

represent again projection matrices.
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Again, we are interested in estimating the variance o>
of the noise. The expected value of the minimum of the
weighted sum of squares results in

E(q(0))=E(tr(CylPL, XXT))=tr (CLUPL, E((HO+U)HB+U)' )

tr(CyyP, (HBBTHT+E(U)8"H ™+ HBE(U)+E(UUT))

tr(CuyPy., (HBOTHT+57Cyy) | =03 tr(PL, )=(n-p) o,

U

where
tr(Py., ) =tr(I, —HH"Cy, H)'"H'C},)
=n- tr((HTC[,L H)‘1HTC[,LH) =n—tr(l,)=n—-p
has been utilized.
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This result motivates

S*=q(@)/(n-p)
as an unbiased estimator for .

Theorem:

If in addition to the Gaul}-Markov theorem U obeys a nor-
mal distribution, i.e. U~ N (0,0, C,,), the following holds.

a) ©=(H'CyH)'H'C,,X ~ N\, (8,07 (H'CyH) ")

b) © and S? are stochastically independent
c) (n-p)foy-S*~ 7,
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3.4 Confidence Intervals

Now, an unknown parameter 6 is considered, where the
density fy(x|8) of X and an estimator ® = 6(X) for 6 pos-
sessing the density f,(0 | 8) are given.

With the knowledge of £,(9|0) and a given ¢, e.g. a =
0.05, we can derive from

1-a=P(0-a,<O<0+a,)=F;(0+a,|0)-F;(6-a,|0)
the probability equation
1—a:P(6’—a1<@A£H+az):P(—a1<@A—6’§aQ)

~n

-P(-6-a,<-0<a,-0)=P(O-a,<0<0+a,)
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which states that random interval [@ —a,,0 +a,) covers
the parameter 6 with probability 1-«.

For given observations x the set
C(x) = { 0. 6’A(x)—a2 <0< é(x)+a1}

Is called

— confidence interval for 8 with the confidence
coefficient 1—«

or alternatively
— interval estimate to the confidence level 1-a.
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In case of an unknown parameter vector 0 an interval es-
timate can be constructed if a function g(x | ) exists such
that the corresponding random variable

Y =g(x]|0)

obeys a known distribution which is independent of 0.

Frequently one can find such a function, which depends
on x only over the estimate 0(x), i.e.

g(x|8)=h(8|8).

Examples are given in the subsequent exercises.
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Exercise 3.4-1:

Signal + white noise, confidence interval for the

« signal amplitude estimate (known noise variance)

« signal amplitude estimate (unknown noise variance)
* noise variance estimate

Exercise 3.4-2:
Sinusoids + white noise, confidence interval for the
amplitude estimates (unknown noise variance)
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3.5 Cramer-Rao Lower Bound
In the following only unbiased estimators, i.e.

E(©)= j x)f, (x| 8)dx =8,
are considered, whose covariance matrix
C.. =Cov(0)= E((é—e)(é—e)T)

00

exist. The Cramer-Rao inequality provides now a lower
bound to the covariance matrix of any unbiased estima-
tor of 8. Due to the following regularity conditions certain
expected values can be determined, which are of impor-
tance for deriving the Cramer-Rao inequality.
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Regqularity conditions:
a) The parameter set Q) is an interval in R”.

b) The gradient V, In(f,(x | 0)) exists for any x and 6.

c) The gradient of L@n f,(x]0)dx with respect to 8 can
be obtained by taking the gradient under the integral
sign, i.e. V, jRn £ (x|8)dx =jRn v, £, (x|0)dx.

d) The gradient of E(é(X)) with respect to O can be ob-
tained by taking the gradient under the integral sign,

ie. V, jRn 8(x)f, (x| 8)dx :jRn 8(x)V, f, (x | 8)dx.
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Corollary:
If the former regularity conditions hold, then

1) E(V,eIn(f(X8)))=
2) E((Veln(fX(X|9)))((:)—9)T):I

Proof of 1):
E(V In(f (X|9) :j Veln(fx(x|9))fx(x|9)dx:

j V f x|9
f(x]0)
=V, [ fi(x|8)dx=V,1=0

f(x18)dx = |V, fi(x|8)ax
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Proof of 2):
E((ve In(£,(X18)))(6 - e)T) -

= [ VoIn(x(x]0))(8(x)-8) £(x|8)ax

r Vo x(x18)
:.Rn X( o) (8(x)- ) f,(x | 0)dx

= [, Vo (x]8)(8(x)-8) dx
=V j e)é(x)de—vejRnfx(xm)dx 0’

=V,0" —(V,1)0" =1
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Definition: (Fisher information matrix)
The pxp Fisher information matrix is defined by

Z(8)=E(V,In(£(X]8)) Vs In(f,(X|0))) =
= | VoIn(f(x18))Vq In(fi(X|8)) fi (x| 8)dx.

Hence, the entries of the Fisher information matrix are
for i,j=1,...,p given by

Z.0)- E[aln(fx(x 1)) aIn(£(X] e))J
00, 00,

¢ 0In(f(x18)) aIn(£(X|8))
=L 06, 00,

f.(x|8)dx
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Theorem: (Cramer-Rao inequality)

Suppose the former assumptions and regularity condi-
tions hold and the Fisher information matrix Z(0) is p03|-
tive definite. Then the variance of any estimator @ -a’'o

IS bounded downwards by
Var(@,)=a’C,.a>a’Z(8)'a VacR".

If particularly a = e, i.e. the i-th Cartesian unit vector, the
inequality provides the lower limit for the variance of the
I-th component of ©.

Var(® ) TC“e >e Z(0)'e =Z(0)'
I=1...,p
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Proof:
First, the random vector

Y=0-0-Z(8)'V,In(f,(X|8))

IS Introduced and its second order moment matrix
E(YYT)=E((©-0)©-8)
((e 0)V! In(f (X|e)))z(e)
() (Veln(x(Xle))(@)—G))
Z(8)'E(V,In(£(X|8)) Vg In(£,(X18)))Z(8)".

Is determined. After exploiting the former corollary the
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second order moment matrix can be simplified to
E(YYT) = E((é ~9)(® —e)T)— 7(8)™".

Since
a’'E(YY")a=E(@'YY'a)=E((@@’Y}’)20 VvaeR’

the second order moment matrix is positive semidefinite.
Thus, we can write

T T T T ~1
aE(YY' )a=a'C,,a-a Z(8) a>0 VaeR’
and the assertion
T T ~1
aC,,a>a Z(8) a vaeR’
of the theorem follows.
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Under the following regularity condition an alternative and
often more convenient expression for calculating the in-
formation matrix can be presented.

Regqularity condition:
e) The Hessian matrix of

_[Rn f (x[0)dx

with respect to 8 can be obtained by taking all the re-
quired second partial derivatives under the integral
sign, I.e.

YAV j (x| 8)dx = j V, V£ (x|0)dx
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Corollary:
If the former regularity condition holds, the Fisher infor-
mation matrix can be alternatively determined by

Z(8)=E(V,In(£,(X10)) v In(f, (X |8)))

— —E(V,V] In(f(X|8)).

Consequently, the elements of the Fisher information ma-
trix can be expressed by

oIn(f(X18)) oIn(K(X[8))) (2" In(K(X|8))
06, 00, B 06,00,

ij=1...p.

Iij(e)—E[
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Proof:

E(VoV3In(£,(X8))) = E[Ve Vlfx(X|e)] _

=E

=E

. (X|0)
(VoVa fx<X|e>-fx<X|e)—vefx<X|e>-vzfx<X|0>)
\ f2(X|8)

(VoVe fx<X|0>j_E[vefx<X|e>-v£ fx<X|e>j
L f(X]8) fe (X10)

= [, VVi(x18)dx —E(V,In(£(X|8)) V3 In(£(X|6)))

=V, V! jRn f,(x|0)dx — Z(8)=V,Vi1-T(8)=—Z(0)
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Theorem:

Let £, (x| &) belong to the exponential family in canonical
form and T denote the corresponding sufficient statistic.

1) The regularity conditions a) — e) are satisfied and the
information matrix is positive definite

Z(§) =E(V,In(£(X|8))V{ In(£(X§)))
=—E(V,V; In(f,(X¥)))
= V.V A(§)=Cov(T)=Cy,.

Thus, for unbiased estimators the Cramer-Rao in-
equality holds.
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2)

Let the vector valued function
£=9g(0), EcR", BcR” with p<k
be one-to-one and differentiable with

oq (0
G<e>=veg<e>T=( A )j |

Then the regularity conditions a) - e) are satisfied
with respect to 8 and the information matrix can be
expressed by

Z(8)=—E(V,VqIn(f(X|8))) = G(8) Z(§),_, ,G(8)
=G(8)(V,V; A%)),_ GO).
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Now, one asks oneself immediately, does there exist an
unbiased estimator for which the information inequality
takes the equality sign, i.e. whose covariance matrix is
equal to the inverse Fisher information matrix.

An estimator for which the information inequality takes
the equality sign, i.e. whose covariance matrix coincides
with the inverse Fisher information matrix (Cramer-Rao
lower bound), is called efficient.

Efficient estimators can be achieved only in special ca-
ses, since the random vector Y, introduced for proving
the information inequality, must be the zero-vector with
probability 1.
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Exercise 3.5-1:
Non/efficiency of linear least squares estimators when
the noise is I.i.d. and normally distributed
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The previous exercise showed, that the deviation of the
covariance matrix from the inverse Fisher information ma-
trix can be neglected for large sample sizes.

This motivates the definition of the limit

re)=lim--Z (8),

n—oo n

where n indicates the growing sample size. If the matrix
I'(8) exists and is not singular, then unbiased and con-
sistent estimators ©_ are of interest that satisfy the limit
: —1
lim nCénén =1(0) .

n—oo

Simultaneously, such estimators are then even consis-
tent in the mean square sense.

Chapter 3 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 72



Estimators used in practice are often neither unbiased
nor mean square consistent. In these cases the limiting
distributions of such estimators are considered. If the lim-
iting distribution satisfies the property

im+/n(©, -8)~ A\, (0,D(8)) and D(8)=r(8)",

n—o

the estimator is said to be asymptotically efficient.

Furthermore, under certain regularity conditions (similar
to the former) one can show that in the class of asympto-
tically normally distributed estimators the following lower
bound can be proved.

a’'D(@)a>a'l@)'a acR’
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Exercise 3.5-2:
Asymptotic efficiency of linear least squares estimators
when the noise is i.i.d. and normally distributed
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3.6 Maximum Likelihood Estimation

The maximum Likelihood method is one of the most im-
portant procedures for the construction of estimators.

For given observations x the procedure selects that 8 as
maximum likelihood estimate 0(x), for which the density
function £, (x | 8) takes its maximum.

Thus, the maximum likelihood estimate can be interpre-
ted heuristically as that parameter vector that makes the
occurrence of the data observed most likely.

Instead of determining the maximum of £, (x| 0), one can
due to the monotonicity of the logarithmic function alter-
natively maximize In(f,(x|0)).
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Definition:

Suppose X possesses the density f, (X | 0) with 8 € Q and
the vector of observations x = (x,,...,x,)" is given. Then
f,(x|8) and In(f (x| 8)) are called likelihood function and
log-likelihood function respectively, and

~n

0 =argmaxf,(x |0)=argmaxIn(f(x|8))

0cQ 0cQ
Is called the maximum likelihood estimate (MLE) of 6.

If the gradient of £, (x|0) with respect to 8 exists and if
f, (x| @) is positive for the given x, one can try to find the
MLE by solving the likelihood equation system

Vo In(f (x| e))\ezé(x) = 0.
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Remarks:

Generally the likelihood equation system is nonlinear.

The likelihood equation system can possess several
solutions.

The solutions of the likelihood equation system do not
necessarily correspond to relative maxima.

If the absolute maximum of the likelihood function lies
on the boundary of Q2 it can not be described by a so-
lution of the likelihood equation system.

Consequently, one has generally to employ sophisti-
cated numerical optimization techniques for determin-
iIng maximum likelihood estimates.
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Properties of Maximum Likelihood Estimation:

1)

2)

3)

Let g: R > R", p<qg be a continuous mapping of

the parameter vector n and n the MLE of n. Then

the MLE of 8 =g(n) is given by 8 =g(n).

Suppose t(x) is a sufficient transformation for 0, i.e.
fy(x18)=g(t(x)|8)-h(x).

Then the maximum likelihood estimate 6 only de-

pends over t(x) on x.

If f,(x| &) belongs to the exponential family in cano-
nical form the related likelihood equation system

Ve In(fx(x | §)) =t(x) -V A(§)=0
possesses a unique solution.
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Exercise 3.6-1:
Maximum likelihood estimation for linear models when
the noise is i.i.d. and normally distributed

Exercise 3.6-2:

Sinusoids + white noise, maximum likelihood estimation
of amplitude, phase and frequency when the noise is
I.1.d. and normally distributed

Exercise 3.6-3:
Example for inconsistent maximum likelihood estimation
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3.7 Bayesian Estimation

In the Bayesian theory of parameter estimation the un-
known parameter vector 0 is treated itself as a realiza-
tion of a random experiment that obeys its own so called
prior distribution f,(0).

The objective is to use f,(0) together with the measure-
ments x drawn from the distribution £, (x| 0) to turn the
prior distribution f,(0) into a posterior distribution

fo(%,0) _ £,(x]0)f;(8) f(x18)%(8)
£ (X) jfxexe)de jf(x|e)f (8)d0

fo (0] Xx)=

that is used for the statistical inference.
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Loss function

The quality of the estimate 9(x) IS measured by a real-
valued loss function L(, ( )), €.g. by the Euclidean dis-
tance between 0 and 9( ), i.e.

~n

L(8,8(x)) = (8 -8(x)) (8 -8(x)).

Risk or loss average

The risk is the loss L(G,é(x)) averaged over the distribu-
tion of the measurements for any fixed parameter vector
0<cQ, ie.

R.(818)=Eyq (L(8,6(X)))= [, L(8,6(x))f,(x|8)dx
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Bayes risk

The Bayes risk is the risk RL(é | ©) averaged over the pri-
or distribution £,(0), i.e.

~n

R.(8)=Eq (R.(810)) = Eq (Exe (L(©,6(X))))
= ] ], L(8.8(x))f(x | 8)f, (8) cixdle

= [, L(8,8(x))o (x,8)dx0B = E,q (L(©,6(X)))
The Bayes risk measures the average risk one incurs if
the estimator ©@=0(X) is used for the random experiment
at hand. Hence, R, (0) is depending only on the estimat-
ing function 0(x).
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Bayes estimator

Minimization of the Bayes risk RL(é) over the class of all
estimating functions 8(x) for which R, (0) exists, provides
the Bayes estimating function

éL(x) =argmin RL(é) =argminky (L(G),é(X)))

8(x) 8(x)
and therefore the Bayes estimator ©, =8, (X).
In the following Bayes estimators are considered in more

detail for the square error, the absolute error and uniform
error loss functions.
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3.7.1 Minimum Mean Square Error Estimation
Non-Linear Minimum Mean Square Error Estimation

To estimate the random parameter vector © by means
of the realization of the random vector X in the minimum
mean square error sense we have to find an estimating
function 8(x) such that

Ruse(8) =E( (0-800)) (0-6(x))|

= [, (8-8(x)) (8-8(x))f,0(x,8)dxa®

is minimum. Over the class of all functions é(x) for which
the expected value exists, R,,.-(0) is minimized by
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0 mse(X) = E(O | X = X),

cf. Exercise 1.9-18.

Linear Minimum Mean Square Error Estimation

Now, we wish to estimate the random parameter vector
O by the linear estimating function

~n

B(x)=Ax+b
such that the mean square error

Ruuse(Ab)=E((©—(AX+b)) (O (AX+b)))

= [ (8—(Ax+b))'(8—(Ax+b))fo(x,8)dxd8

Rn+p
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IS minimized by varying the parameter matrix A and vec-
tor b. Thus, we have to solve the minimization problem

(Ab) = ar%rbnin(RLMSE(A,b)).

The mean square error is minimum if
0

—ARLMSE(A,b):—ZE((G) (AX+b))xT)=
V.R, - (Ab)= —2E(e—(AX+6)) -0

are satisfied. Applying the expectation operator we obtain
Rox — AR bpx 0 and pg- Apx—b 0,

where
Ry, = E(XXT), Rox = E(G)XT), M, =E(X) and pg=E(O).
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Resolving for A and b leads after some manipulations to

~n

1
A :(Rex_“eu;)(Rxx_“xp)T( )
A —1
b = Mo —(Rox—HoMy ) (Rxx—HxHx ) M
and therefore to the estimating function
A A A -1
eLMMSE(x):AX"‘b:”e"'(Rex_“e“)T()(Rxx_“x“;) (x_“x)-

After exploiting the relationships between the covariance
and the first and second order moments

Cxx =Rxx _“x“)T( and Cgy =Rgx - ”e“)T(
the estimating function can also be expressed by
0, mse (X)=Hg + Cexc)_(;( (X - “x)'
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Theorem:

Let Y be a random vector composed of the random vec-
tors X and © and obeying the distribution

O Ho ) \Zox Zoo

Then X and O possessing the marginal distributions
X~ N, (M Zxx ) ©~ N, (Ho:Zoo)
and the conditional distribution
O X=X~ N, (Mo +ZoxZxx(X —Hx ). Zoo ~ ZoxZxxZxo )

cf. exercise 1.10-7.
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Theorem:
Given the linear model
X=HO+Z,

where H is a known matrix, © and Z are statistically in-
dependent random vectors with @ ~ N (Mg, Zee) and

Z~ N (0,5,,). Then
v_(X)_ v [[HHo) (HEH +E; HEq,
e n+p “9 ’ ZQQHT Z@@

and the MMSE estimate can be expressed by

~n

1
0 sz (X) = Hp + 2o H' (Hzee H + Zzz) (X —Hpg ).
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Exercise 3.7-1:
Proof of the Theorem
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3.7.2 Minimum Mean Absolute Error Estimation

The mean absolute error estimation is considered for the
single parameter case only. To estimate the random para-
meter ® by means of the realization of the random vec-
tor X in the minimum mean absolute error sense

Rune(0)=E(l@=0(X)1) = [ 10— 6(x)| fyo (x,0)dxd®

has to be minimized. As shown in the subsequent exer-
cise the minimization of R,,,-(€) leads to

[t @1x)do=["  f@1x)de

QMMAE ( )

Hence, the 6,,,,-(x) is the median of the posterior den-
sity function £, (@ | x).
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Exercise 3.7-2:
Proof of median
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3.7.3 Maximum A Posteriori Estimation

Another estimation technique that fits within the Bayesian
framework is the maximum a posteriori estimation (MAP).

Single parameter case
To motivate the approach the uniform loss function

. 0 |0-6(x)|<5
16,60 =1, 1070

1 10-0(xX)|>0
IS intfroduced. The Bayes risk is then given by

R.(0)=E(L(®. é<X>>) Jor s L(OO(X) o (x,0) dxl0
_j(j )f«ﬂxnm)(xnm.

where 6 >0
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Since fy(x) and the integral in the brackets are always po-
sitive it is sufficient to minimize
[” L(0.6x))f,(01x)d6= j”‘ @1x)do+{"  £,(0]x)d8

O(X)+6
or equivalently to maximize

1—061” L(01%)do+ [

for every X.

- 01x)d6 | = [" . (6]x)d6
. To(010)00 | =[5 (61)

For 6 arbitrary small 6(x) determines the mode of f,(0]x)
and is termed maximum a posteriori (MAP) estimate, i.e.

0,,,(X) = argmax £, (0] x) = argmax f, (x| 6)f,(6)
=argmax (In(f (x| )) + In(f@(é’)))
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Multiple parameter case
Employing the marginal posterior density functions

£,01%) =, &(8]%)d6,...d6_,db,,...do

R I+1o-c p

the MAP estimates are given by
0, unp(X) = argmaxft, (6, | x) i=1...,p.
0.

/

1

However, due to the required integration we might pro-
pose the alternative vector valued MAP estimate

0,,.-(X)=argmaxfy (0| x)=argmaxf,(x|0)7,(0).
0 0

Remark:
Generally, both MAP estimates are not equivalent.
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Exercise 3.7-3:

MMSE, MMAE and MAP estimation of the parameter of
an exponential distribution, where the parameter obeys
also an exponential distribution

Exercise 3.7-4:
Signal + noise, MMSE signal amplitude estimation
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