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3 Parameter Estimation
The observations (x1,…,xn)

T = x are realizations of the 
random variables (X1,…,Xn)

T = X with density fX(x), which 
is element of a known set                             and whose pa-
rameter vector     is unknown.
Problem:
For given observations x we are looking for an estimate 

of     that depends on x, i.e.              .
In parameter estimation problems one distinguishes wheth-
er the parameter vector is a perfectly unknown quantity or 
whether the prior density of the parameter vector is sup-
posed to be known. 

1, , )Tpθ θθ = (
{ }( | ):f ∈ΩX x θ θ

θ ˆ ˆ( )=θ θ x1
ˆ ˆ ˆ( , , )Tpθ θ=θ 
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In the latter case one interprets the parameter vector as 
random vector, whose posterior density is used for the 
subsequent statistical inference. This approach leads to 
Bayes estimators. 

3.1 Estimating Function and Estimator
For determining θi, we denote the mapping

a estimating function for θi and its function value for a giv-
en set of observations an estimate. Since x1,…,xn can be 
considered as random values the estimates are also ran-
dom and therefore only approximate the true values θi.

1 1
ˆ( , , ) ( , , ), 1, ,n i nx x x x i pθ =   
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We examine the accuracy properties of the estimates on 
the basis of the corresponding random variables. 
Therefore, we define the random variable

and denote it as estimator of θi. 
To characterize the properties of the estimator

completely, the density function              that generally de-
pends on    has to be determined, e.g. using the methods
described in Chapter 1.7. 

1
ˆˆ ( , , ), 1, , ,i i nX X i pΘ θ= = 

1 1
ˆ ˆˆ ˆ( , , ) ( , , )T

p nX XΘ Θ= =Θ θ 

θ
ˆ

ˆ( | )fΘ θ θ
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For simplicity let p =1. Exemplarily, the densities of two 
alternative estimators     and     for θ are depicted below.
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The determination of the density function can be rather 
complicated. Therefore, one must be often satisfied with 
the determination of the moments of an estimator. 
Bias:
The bias or systematic error is define by

where

If                the estimator is said to be unbiased.

11 , , 1 1
ˆˆE( ) ( , , ) ( , , | ) .

ni i n X X n nx x f x x dx dxΘ θ
∞ ∞

−∞ −∞
= ∫ ∫ 

   θ

( ) ( )
( ) ( )

1 1 1

1 1

ˆ ˆ ˆ ˆ ˆ( ) ( ), , ( ) E( ) , ,E( )

ˆ ˆ ˆE( ), ,E( ) , , E( ) ,

T T

p p p

T T

p p

b bΘ Θ Θ θ Θ θ

Θ Θ θ θ

= = − −

= − = −

b  

 

Θ

Θ θ
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Covariance:
The covariance matrix is define by

where the diagonal elements represent the variances

for i = 1,…,p.

2 2 2

ˆ ˆ ˆVar( ) Cov( , )
ˆ ˆ ˆ ˆE( E ) E( ) (E )

i i i

i i i i

Θ Θ Θ

Θ Θ Θ Θ

=

= − = −

( )( )( )
( )( )( )

, 1, ,

, 1, ,

ˆ ˆ ˆCov( ) Cov( , )

ˆ ˆ ˆ ˆE E( ) E( )

ˆ ˆ ˆ ˆE E( ) E( ) ,

i j i j p

i i j j
i j p

T

Θ Θ

Θ Θ Θ Θ

=

=

 =  

 = − − 

= − −





Θ

Θ Θ Θ Θ
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Mean Square Error:
The matrix-valued mean square error is define by

where the diagonal elements represent the mean square 
errors of the individual components      given by 

for i = 1,…,p.

( )
( )

, 1, ,
ˆ ˆ ˆMSE( ) E ( )( )

ˆ ˆE ( )( )

ˆ ˆ ˆCov( ) ( ) ( ) ,

i i j j i j p

T

T

Θ θ Θ θ
=

 = − − 

= − −

= +

Θ

Θ θ Θ θ

Θ b Θ b Θ



( )2 2ˆ ˆ ˆ ˆMSE( ) E ( ) Var( ) ( )i i i i ibΘ Θ θ Θ Θ= − = +
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Minimum Variance Unbiased (MVU) Estimator:
An unbiased estimator     is MVU if for any unbiased esti-
mator the following inequality holds.

MVU exists no MVU exists
Var Var

θ
θ

θ̂

θ

θ

θ̂
θ θ

ˆCov( ) Cov( ) ,T T p≤ ∀ ∈ ∀ ∈Ωa Θ a a Θ a a θ



Θ̂
Θ
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Note:
To emphasize that the variance is smallest for all            an MVU es-
timator is sometimes called uniformly minimum variance unbiased 
UMVU estimator. 

Minimum Mean Square Error (MMSE) Estimator:
An estimator     provides an MMSE if for any estimator
the following inequality holds.

Linear Estimator:
An estimator     is called linear if it can be expressed as 
a linear function of the observations, i.e.

Θ̂ Θ

∈Ωθ

Θ̂

ˆMSE( ) MSE( ) ,T T p≤ ∀ ∈ ∀ ∈Ωa Θ a a Θ a a θ



( )1 , 1, , ; 1, ,
ˆ with ( , , ) andn i j i p j n

X X a
= =

= = =Θ A X X A
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Exercise 3.1-1: 
MVU and MMSE variance estimator
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Consistency:
Often one is interested in the behavior of an estimator if 
the number of observations grows. 
An estimator is said to be  

– strongly consistent if        converges with probability 1 
towards    , i.e.

– mean square consistent if        converges in mean square 
sense towards , i.e. 

– consistent if        converges in probability towards , i.e.

. .
1

ˆ ˆ( , , ) a s
n n nX X →∞= →Θ θ θ

. .
1

ˆ ˆ( , , ) m s
n n nX X →∞= →Θ θ θ

1
ˆ ˆ( , , ) P

n n nX X →∞= →Θ θ θ

θ

θ

θ

ˆ
nΘ

ˆ
nΘ

ˆ
nΘ
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Asymptotic Normality:
In certain cases one can show that an estimator is 
asymptotically normally distributed such that

Consequently, for large n the density function of       can 
be approximated by

ˆlim ( ) ( , ).n pn
n

→∞
−Θ θ 0 Σ 

2
1

ˆ 2
ˆ ˆ ˆ( | ) exp ( ) ( ) .

2(2 ) det( )n

p
T

p

n nf
π

− = ⋅ − − − 
 Θ θ θ θ θ Σ θ θ

Σ

ˆ
nΘ
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3.2 Sufficient Statistic, Exponential Families
A function T = t(X) that is only depending on the observa-
tion model X is called a statistic. 
Let X = (X1,…,Xn)

T be a model of a binary sequence with 
probability p and 1−p of observing a one and a zero res-
pectively. Furthermore, we suppose that the X1,…,Xn are 
independent. 
Thus, our model can be described by the probabilities

1 1

1

1

( ) ( )

( | ) (1 )

(1 ) (1 )

k k

n n
k kk k

n
x x

k

x n x t n t

P p p p

p p p p= =

−

=

− −

= = −

∑ ∑= − = −

∏
x x

X x
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Now the following question arises. Do we collect all infor-
mation in terms of inference about p by recording only 

The statistical understanding about the collection of all 
information is quantified in the following definition.

Definition:
A statistic T = t(X) is called sufficient for the parameter   
if the conditional distribution of X given T = t(x) is inde-
pendent of for all t, i.e. 

Hence, T contains "all information" about included in x.

1
( ) n

kk
t x

=
= ∑x

( ) ( )| ( ); | ( ) .F F= = =X Xx T t x θ x T t x
θ

θ

θ
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Exercise 3.2-1: 
Sufficiency of                       1

( ) n
kk

t x
=

= ∑x
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Because the conditional distribution has to be determined 
a direct evaluation of sufficiency is usually difficult. 
Fortunately, the following theorem exist whose conditions 
can be verified easily.

Theorem: (factorization theorem for densities) 
A necessary and sufficient condition for a statistic T = t(X) 
to be sufficient is that there exist non-negative functions

and h(x) such that  satisfies( | )g t θ ( | )fX x θ

( )( | ) ( ) | ( ).f g h= ⋅X x t x θ xθ
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Exercise 3.2-2: 
Proof of the Theorem

Exercise 3.2-3: 
Sufficient statistic for mean and variance
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Minimal Sufficient Statistic
A sufficient statistic T is said to be minimal if of all suffi-
cient statistics it provides the greatest possible reduction 
of data, i.e. if for any sufficient statistic T' there exists a 
function s such that T = s(T').

Complete Sufficient Statistic
A sufficient statistic T is said to be complete (or unique) 
if the condition

implies f(T) = 0 with probability 1 for all θ. 

Note:  Completeness ensures minimality 

θ
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Exercise 3.2-4: 
Minimal and complete sufficient statistics
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Uniqueness of unbiased estimating function
Completeness implies that there is just one estimating 
function of the sufficient statistic that provides an unbi-
ased estimator of   .
Let T be a complete sufficient statistic and f1 and f2 be 
two functions such that 

Then

and due to the completeness of T
( ) ( )1 2E ( ) ( ) E ( )− = = ∀ ∈Ωf T f T f T 0 θθ θ

1 2( ) ( ) ( ) with probability 1  = ⇒ = ∀ ∈Ωf T 0 f T f T θ

θ

( ) ( )1 2E ( ) E ( ) .= = ∀ ∈Ωf T f T θ θθ θ
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Theorem: (Rao-Blackwell)
Let      be an unbiased estimator of     and T = t(X) be a 
sufficient statistic for . Then the estimator defined by

is unbiased and improves on      as follows.

Theorem: (Lehmann-Scheffe)
If in addition to the assumptions employed for the Rao-
Blackwell theorem the sufficient statistic is complete, then

is unique MVU estimator of  .

θΘ

ˆ E( | )=Θ Θ T

ˆ E( | )=Θ Θ T

ˆCov( ) Cov( )T T p≤ ∀ ∈a Θ a a Θ a a



Θ

θ
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Exercise 3.2-5:
Proof of the Theorems
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Exponential Families
A family of distributions is forming a k-dimen-
sional exponential family if the distributions have
densities of the form

Frequently, it is more convenient to use the ξi as the pa-
rameters and write the density in the canonical form

{ }( | )FX x θ
( | )FX x θ

1
( | ) ( ) exp ( ) ( ) ( ) .

k

i i
i

f h t Bξ
=

 
= ⋅ − 

 
∑X x θ x θ x θ

1
( | ) ( ) exp ( ) ( ) .

k

i i
i

f h t Aξ
=

 
= ⋅ − 

 
∑X x ξ x x ξ
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Applying the factorization theorem for densities one can 
easily observe that 

constitutes a sufficient statistic for the exponential family.

Note:
The parameter space             of  the natural parameter
vector                        is convex.
If the exponential family is of full rank, i.e. the parameter 
space contains a k-dimensional rectangle, then T = (T1, 
…,Tk)

T is complete.

( ) ( )1 1, , ( ), , ( )T T
k kT T t t= =T X X 

kΞ ⊂ 
1( , , )Tkξ ξ=ξ 

Ξ
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For exponential families one can claim, that the integral

has derivatives of all orders with respect to the ξi which 
can be obtained by differentiating under the integral sign.
Exploiting the properties of the integral we can find

and

1
( | ) ( ) exp ( ) ( ) 1

n n

k

i i
i

f dx h t A dxξ
=

 
= ⋅ − = 

 
∑∫ ∫X x ξ x x ξ

 

( ) ( )E E ( ) ( )i i
i

T t A
ξ
∂

= =
∂

X ξ

( ) ( )
2

Cov , Cov ( ), ( ) ( )i j i j
i j

T T t t A
ξ ξ
∂

= =
∂ ∂

X X ξ
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Exercise 3.2-6: 
Rayleigh distribution, mean and variance of the natural 
sufficient statistic
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3.3 Linear Least Squares Estimation
Consider the linear model

where X and Z are n×1 vectors modeling the measure-
ments and the measurement noise, respectively. Further-
more, H denotes a known n×p matrix and θ the p×1 pa-
rameter vector that has to be estimated. 
The measurement noise is supposed to be statistically 
characterized by                and 
Hence, the measurement model X possess the mean vec-
tor                  and covariance matrix

E( ) =Z 0

2Cov( ) .Zσ=X I

2Cov( ) E( ) .T
Zσ= =Z ZZ I

1 1with , 1, , ,i i ip p iX h h Z i nθ θ= + = + + + =X Hθ Z  

E( ) =X Hθ
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Exercise 3.3-1: 
Model examples, 
• polynomial curve fitting, 
• amplitude and phase estimation of sinusoids 
• FIR filter identification
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Now, the least squares criterion can be expressed by 

Differentiating with respect to     by using the identities 

results after equating to zero in the following so-called 
normal equation system

A solution of the normal equation system is given by

( )2
1 1

1
( ) ( )

( ) ( ) 2 .

n

i i ip p
i

T T T T T T

q x h hθ θ
=

= − + +

= − − = − +

∑
x Hθ x Hθ x x θ H x θ H Hθ

θ

, ( )T T T∇ = ∇ = +θ θθ Aa Aa θ Aθ A A θ

ˆ .T T=H Hθ H x

ˆ ( ) ,T T−=θ H H H x

θ
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where             denotes a generalized inverse.

1) If the rank(H) = p, the number of unknown parameters, 
then                            is the ordinary inverse. 

2) Let rank(H) = M < p, i.e. either n < p or the columns of
H are linearly dependent, then

is the Moore-Penrose inverse, where λ1,…,λM and u1, 
…,uM denote the non-zero eigenvalues and corre-
sponding eigenvectors of        , respectively.

( )T −H H

1( ) ( )T T− −=H H H H

1

1( ) ( )
M

T T T
m m

m mλ
− +

=

= = ∑H H H H u u

TH H



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 3 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 33

Supplement:
A generalized inverse of A is defined by the property 

It is not unique. The Moore-Penrose inverse of A is de-
fined by the properties

It is unique and provides the minimum length solution of 
the linear equation system

The Moore-Penrose inverse can be determined by 
employing the singular value decomposition of A.

, ,
( ) ( ) .T T

+ + + +

+ + + +

= =
= =

AA A A A AA A
AA AA A A A A

.− =AA A A

.=Ax b
+A
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Exercise 3.3-2: 
Normal equation system and generalized inverse
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Properties of the least squares estimator
The mean vector is given by

where the matrices V1 and V2 can be derived from the 
singular value decomposition

with
1( , , ,0, ,0)T T

Mdiag λ λ=H H V V 

1 1 2 2

ˆE( ) ( ) E( ) ( )
rank( )

,
( ) rank( )

T T T T

T T

p
M p

− −= =

=
= 

= − = <

Θ H H H X H H H Hθ
θ H
V V θ I V V θ H

( )1 2 1 1 2 1, , ( , , ) ( , , ).M M p+= = =V V V V v v V v v 
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The covariance matrix of the least squares estimator

results after exploiting  

in the expression

( )( )ˆ ˆ
ˆ ˆ ˆ ˆ ˆCov( ) E E( ) E( )

T = = − − 
 ΘΘC Θ Θ Θ Θ Θ

( )
( )

ˆ ˆ

2 2

E ( ) ( )( ) ( )

( ) E ( )( ) ( )

( ) ( ) ( ) ( ) .

T T T T

T T T T

T T T T
Z Zσ σ

− −

− −

− − −

= − −

= − −

= =

ΘΘC H H H X Hθ X Hθ H H H

H H H X Hθ X Hθ H H H

H H H I H H H H H

ˆ ˆ( ) and E( ) ( )T T T T− −= =Θ H H H X Θ H H H Hθ
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Exercise 3.3-3: 
LSE for p = 1 and sample mean
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Theorem: (Gauß-Markov)
Given the model

where

and

Then the best linear unbiased estimator (BLUE) is the 
least squares estimator

rank( ) .p=H

1 1with , 1, , ,i i ip p iX h h Z i nθ θ= + = + + + =X Hθ Z  

2E( ) , ( ) ( ) Zσ= = =X Hθ Cov X Cov Z I

1ˆ ( ) .T T−=Θ H H H X



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 3 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 39

Exercise 3.3-4: 
Proof of the Gauß-Markov Theorem
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Consequently, the minimum of the sum of squares is

where 

are projection matrices, which project a vector a ∈ n by 
Pa and P⊥a into R(H) and N(HT), respectively.
R(H): range of H, i.e. the space spanned by the columns of H 

N(HT): nullspace of HT, i.e. the space that is orthogonal to R(H)

1 1( ) and ( )T T T T− ⊥ −= = − = −P H H H H P I P I H H H H

( ) ( )1 1ˆ( ) ( ) ( )

( ) ( ) ( ) ( )
,

TT T T T

T T T

T T T

q − −

⊥ ⊥ ⊥

= − −

= − − = − −

= =

θ x H H H H x x H H H H x

x Px x Px x I P I P x
x P P x x P x
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Thus,                             and The projection 
matrices are also symmetric and idempotent, i.e.

Moreover, by employing the trace of a square matrix

together with its property

where A,B and C are n×k, k×l and l×n matrices the min-
imum of the sum of squares can be expressed by

, and , .T T⊥ ⊥ ⊥ ⊥ ⊥= = = =P P P PP P P P P P

,T ⊥ ⊥= =H P 0 P H 0

( ) , 1, ,
1

tr( ) with
n

ii ij i j n
i

a a
=

=

= =∑A A


.⊥ ⊥= =PP P P 0

tr( ) tr( ) tr( ),= =ABC BCA CAB

ˆ( ) tr( ).T Tq ⊥ ⊥= =θ x P x P xx
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Now we want to consider how the variance of the noise 
model      can be estimated. The expected value of the 
minimum of the sum of squares provides

where  

has been exploited. 

( )
( )

1

1

tr( ) tr ( )

tr ( ) tr( )

T T
n

T T
pn n n p

⊥ −

−

= −

= − = − = −

P I H H H H

H H H H I

2
Zσ

( ) ( ) ( )( )
( )( )

( )2 2 2

ˆE ( ) E tr( ) tr E ( )( )

tr E( ) E( ) E( )

tr ( ) tr( ) ( ) ,

T T

T T T T T T

T T
Z Z Z

q

n pσ σ σ

⊥ ⊥

⊥

⊥ ⊥

= = + +

= + + +

= + = = −

Θ P XX P Hθ Z Hθ Z

P Hθθ H Z θ H Hθ Z ZZ

P Hθθ H I P
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This result motivates 

as an unbiased estimator for 

Theorem:
If in addition to the Gauß-Markov theorem Z obeys a nor-
mal distribution, i.e.                          the following holds.

2.Zσ

2 ˆ( ) ( )S q n p= −Θ

( )1 2 1

2

2 2 2

ˆa) ( ) , ( )
ˆb)  and  are stochastically independent

c) ( )

T T T
p Z

Z n p

S

n p S

σ

σ χ

− −

−

=

− ⋅

Θ H H H X θ H H

Θ
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Exercise 3.3-5: 
Proof of the Theorem

Exercise 3.3-6: 
Amplitude and phase estimation of sinusoids

Exercise 3.3-7: 
System identification (FIR filter)
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In the following we generalize the linear model to

where the measurement noise possesses still the mean
but now the covariance matrix

Prewhitening
If         is decomposed, e.g. by the Cholesky decomposi-
tion , and 

be introduced, the linear model can be reformulated to

with

E( )=U 0 2Cov( ) .Uσ= UUU C

UUC
T=UUC CC

1 1 1, ,− − −= = =Y C X K C H W C U

1 1with , 1, , ,i i ip p iX h h U i nθ θ= + = + + + =X Hθ U  

1 1 1− − −= = + = +Y C X C Hθ C U Kθ W

1 2E( ) and Cov( ) Cov( ) .Uσ
−= = = =Y Kθ C Hθ Y W I
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Hence, the weighted least squares criterion for the gen-
eralized linear model can be derived as follows. 

The normal equation system 

and its solution 

are obtained analogous to the white noise case.

( ) ( )1 1

1 1 1

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ).

T

T

T T T

q
− −

− − −

= − −

= − −

= − − = − −UU

θ y Kθ y Kθ

C x Hθ C x Hθ

x Hθ C C x Hθ x Hθ C x Hθ

1 1ˆ ˆresp.T T T T− −= =UU UUK Kθ K y H C Hθ H C x

1 1ˆ ( ) ( )T T T T− − − −= = UU UUθ K K K y H C H H C x
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Properties of the generalized least squares estimator
The mean vector is given by

where the matrices V1 and V2 can be derived from the 
singular value decomposition

with

1
1( , , ,0, ,0)T T

Mdiag λ λ− =UUH C H V V 

1 1 1 1

1 1 2 2

ˆE( ) ( ) E( ) ( )
rank( )

,
( ) rank( )

T T T T

T T

p
M p

− − − − − −= =

=
= 

= − = <

UU UU UU UUΘ H C H H C X H C H H C Hθ
θ H
V V I V V Hθ θ

( )1 2 1 1 2 1, , ( , , ) ( , , ).M M p+= = =V V V V v v V v v 
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The covariance matrix of the generalized least squares 
estimator

results after exploiting  

in the expression

( )( )ˆ ˆ
ˆ ˆ ˆ ˆ ˆCov( ) E E( ) E( )

T = = − − 
 ΘΘC Θ Θ Θ Θ Θ

1 1 1 1ˆ ˆ( ) and E( ) ( )T T T T− − − − − −= =UU UU UU UUΘ H C H H C X Θ H C H H C Hθ

( )
( )

1 1 1 1
ˆ ˆ

1 1 1 1

1 1 2 1 1

2 1

E ( ) ( )( ) ( )

( ) E ( )( ) ( )

( ) ( ) ( )
( ) .

T T T T

T T T T

T T T
U

T
U

σ
σ

− − − − − −

− − − − − −

− − − − − −

− −

= − −

= − −

=

=

UU UU UU UUΘΘ

UU UU UU UU

UU UU UU UU UU

UU

C H C H H C X Hθ X Hθ C H H C H

H C H H C X Hθ X Hθ C H H C H
H C H H C C C H H C H

H C H
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Theorem: (Gauß-Markov)
Given the model

where

and

Then the best linear unbiased estimator (BLUE) is the 
least squares estimator

rank( ) .p=H

1 1with , 1, , ,n i ip p iX h h U i nθ θ= + = + + + =X H U  θ

2E( ) , ( ) ( ) Uσ= = = UUX Hθ Cov X Cov U C

1 1 1ˆ ( ) .T T− − −= UU UUΘ H C H H C X
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Hence, the minimum of the weighted sum of squares is

where

represent again projection matrices.

1 1 1
1 1 1( )T T

− − −
− − − ⊥= = −

UU UU UUUU UUC C CP H H C H H C and P I P

( )( )
( )( )( )
( )( )( )

( )( ) ( )1 1

1

11 1 1 1 1 1

11 1 1

1 1

ˆ( ) tr( ) tr ( )

tr ( ) ( ) ( )

tr

tr tr ,

T T T T

T T T T T T

T T T

T T

q

− −

⊥ −

−− − − − − −

−− − −

− − ⊥

= = −

= −

= −

= − =
UU UU

UU UU UU

UU UUC C

P yy I K K K K yy

I C H H C C H H C C xx C

C I H H C H H C xx

C I P xx C P xx

θ
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Again, we are interested in estimating the variance      
of the noise. The expected value of the minimum of the 
weighted sum of squares results in

where

has been utilized.

2
Zσ

( ) ( ) ( )( )
( )( )

( )

1 1

1

1 1

1 1

1

1 2 2 2

ˆE ( ) E tr( ) tr E ( )( )

tr E( ) E( ) E( )

tr ( ) tr( ) ( ) ,

T T

T T T T T T

T T
U U U

q

n pσ σ σ

− −

−

− −

− ⊥ − ⊥

− ⊥

− ⊥ ⊥

= = + +

= + + +

= + = = −

UU UU

UU

UU UU

UU UUC C

UU C

UU UUC C

Θ C P XX C P Hθ U Hθ U

C P Hθθ H U θ H Hθ U UU

C P Hθθ H C P

( )
( )

1
1 1 1

1 1 1

tr( ) tr ( )

tr ( ) tr( )

T T
n

T T
pn n n p

−
⊥ − − −

− − −

= −

= − = − = −
UU UU UUC

UU UU

P I H H C H H C
H C H H C H I
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This result motivates 

as an unbiased estimator for  

Theorem:
If in addition to the Gauß-Markov theorem U obeys a nor-
mal distribution, i.e. the following holds.

2.Zσ

2( , ),n Uσ UUU 0 C

2 ˆ( ) ( )S q n p= −Θ

( )1 1 1 2 1 1

2

2 2 2

ˆa) ( ) , ( )
ˆb)  and  are stochastically independent

c) ( )

T T T
p U

U n p

S

n p S

σ

σ χ

− − − − −

−

=

− ⋅

UU UU UUΘ H C H H C X H C H

Θ





θ
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3.4 Confidence Intervals
Now, an unknown parameter θ is considered, where the 
density fX(x|θ) of X and an estimator for θ pos-
sessing the density              are given.
With the knowledge of              and a given α, e.g. α =
0.05, we can derive from

the probability equation

ˆˆ ( )Θ θ= X
ˆ

ˆ( | )fΘ θ θ

ˆ
ˆ( | )fΘ θ θ

( ) ( ) ( )ˆ ˆ1 2 2 1
ˆ1 | |P a a F a F aΘ Θα θ Θ θ θ θ θ θ− = − < ≤ + = + − −

( ) ( )
( ) ( )

1 2 1 2

1 2 2 1

ˆ ˆ1

ˆ ˆ ˆ ˆ

P a a P a a

P a a P a a

α θ Θ θ Θ θ

Θ θ Θ Θ θ Θ

− = − < ≤ + = − < − ≤

= − − < − ≤ − = − ≤ < +
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which states that random interval                         covers 
the parameter θ with probability 1−α. 

For given observations x the set

is called 
– confidence interval for θ with the confidence 

coefficient 1−α
or alternatively 

– interval estimate to the confidence level 1−α.

{ }2 1
ˆ ˆ( ) : ( ) ( )C a aθ θ θ θ= − ≤ < +x x x

2 1
ˆ ˆ[ , )a aΘ Θ− +
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In case of an unknown parameter vector an interval es-
timate can be constructed if a function exists such 
that the corresponding random variable

obeys a known distribution which is independent of   .

Frequently one can find such a function, which depends 
on x only over the estimate        , i.e. 

Examples are given in the subsequent exercises.

ˆ( )θ x

θ

( | )g x θ

( | )Y g= x θ

ˆ( | ) ( | ).g h=x θ θ θ

θ
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Exercise 3.4-1: 
Signal + white noise, confidence interval for the 
• signal amplitude estimate (known noise variance)
• signal amplitude estimate (unknown noise variance)
• noise variance estimate

Exercise 3.4-2: 
Sinusoids + white noise, confidence interval for the 
amplitude estimates (unknown noise variance)
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3.5 Cramer-Rao Lower Bound
In the following only unbiased estimators, i.e. 

are considered, whose covariance matrix 

exist. The Cramer-Rao inequality provides now a lower 
bound to the covariance matrix of any unbiased estima-
tor of   . Due to the following regularity conditions certain
expected values can be determined, which are of impor-
tance for deriving the Cramer-Rao inequality.

ˆ ˆE( ) ( ) ( | ) ,
n

f d= =∫ XΘ θ x x θ x θ


( )ˆ ˆ
ˆ ˆ ˆCov( ) E ( )( )T= = − −ΘΘC Θ Θ θ Θ θ

θ
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Regularity conditions:
a) The parameter set Ω is an interval in     .

b) The gradient                        exists for any x and . 

c) The gradient of                        with respect to can 
be obtained by taking the gradient under the integral
sign, i.e.                                                         . 

d) The gradient of with respect to can be ob-
tained by taking the gradient under the integral sign,
i.e. . 

p


( )ln ( | )f∇θ X x θ

( | )
n
f d∫ X x θ x



( | ) ( | )
n n
f d f d∇ = ∇∫ ∫θ X θ Xx θ x x θ x

 

ˆ ˆ( | ) ( | )
n n

f d f d∇ = ∇∫ ∫X θ Xθ x x θ x θ x x θ x
 

θ ( ) ( )

( )ˆE ( )θ X

θ

θ
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Corollary:
If the former regularity conditions hold, then
1)

2)

Proof of 1):

( )( )E ln ( | )f∇ =θ X X θ 0

( )( )( )ˆE ln ( | ) ( )Tf∇ − =θ X X θ Θ θ I

( )( ) ( )E ln ( | ) ln ( | ) ( | )

( | ) ( | ) ( | )
( | )

( | ) 1

n

n n

n

f f f d

f f d f d
f

f d

∇ = ∇ =

∇
= = ∇

= ∇ = ∇ =

∫

∫ ∫

∫

θ X θ X X

θ X
X θ X

X

θ X θ

X θ x θ x θ x
x θ x θ x x θ x

x θ
x θ x 0
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Proof of 2):

( )( )( )
( )( )

( )

( )

( )

ˆE ln ( | ) ( )

ˆln ( | ) ( ) ( | )

( | ) ˆ( ) ( | )
( | )

ˆ( | ) ( )

ˆ( | ) ( ) ( | )

1

n

n

n

n n

T

T

T

T

T T

T T

f

f f d

f f d
f

f d

f d f d

∇ − =

= ∇ −

∇
= −

= ∇ −

= ∇ −∇

= ∇ − ∇ =

∫

∫

∫
∫ ∫

θ X

θ X X

θ X
X

X

θ X

θ X θ X

θ θ

X θ Θ θ

x θ θ x θ x θ x

x θ θ x θ x θ x
x θ

x θ θ x θ x

x θ θ x x x θ x θ

θ θ I
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Definition: (Fisher information matrix)
The p×p Fisher information matrix is defined by

Hence, the entries of the Fisher information matrix are 
for  i, j = 1,…,p given by

( ) ( )( )
( ) ( )

( ) E ln ( | ) ln ( | )

ln ( | ) ln ( | ) ( | ) .
n

T

T

f f

f f f d

= ∇ ∇ =

= ∇ ∇∫
θ X θ X

θ X θ X X

θ X θ X θ

x θ X θ x θ x




( ) ( )

( ) ( )

ln ( | ) ln ( | )
( ) E

ln ( | ) ln ( | )
( | ) .

n

ij
i j

i j

f f

f f
f d

θ θ

θ θ

 ∂ ∂
= ⋅  ∂ ∂ 

∂ ∂
= ⋅

∂ ∂∫

X X

X X
X

x θ X θ
θ

x θ X θ
x θ x
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Theorem: (Cramer-Rao inequality)
Suppose the former assumptions and regularity condi-
tions hold and the Fisher information matrix is posi-
tive definite. Then the variance of any estimator      
is bounded downwards by

If particularly a = ei, i.e. the i-th Cartesian unit vector, the 
inequality provides the lower limit for the variance of the 
i-th component of    .

( )θ
ˆˆ TΘ =a a Θ

1
ˆ ˆ

ˆVar( ) ( ) .T T pΘ −= ≥ ∀ ∈a ΘΘa C a a θ a a 

1 1
ˆ ˆ

ˆVar( ) ( ) ( )
1, ,

T T
i i i i i ii

i p

Θ − −= ≥ =

=
ΘΘe C e e θ e θ
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Proof:
First, the random vector

is introduced and its second order moment matrix

is determined. After exploiting the former corollary the

( )
( )( )
( )( )
( ) ( )( )

1

1

1 1

ˆ ˆE( ) E ( )( )

ˆE ( ) ln ( | ) ( )

ˆ( ) E ln ( | ) ( )

( ) E ln ( | ) ln ( | ) ( ) .

T T

T

T

T

f

f

f f

−

−

− −

= − −

− − ∇

− ∇ −

+ ∇ ∇

θ X

θ X

θ X θ X

YY Θ θ Θ θ

Θ θ X θ θ

θ X θ θ

θ X θ X θ θ

Θ





 

( )1ˆ ( ) ln ( | )f−= − − ∇θ XY Θ θ θ X θ
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second order moment matrix can be simplified to 

Since

the second order moment matrix is positive semidefinite.
Thus, we can write

and the assertion 

of the theorem follows.

( ) 1ˆ ˆE( ) E ( )( ) ( ) .T T −= − − −YY Θ θ Θ θ θ

( )2E( ) E( ) E ( ) 0T T T T T p= = ≥ ∀ ∈a YY a a YY a a Y a 

1
ˆ ˆE( ) ( ) 0T T T T p−= − ≥ ∀ ∈ΘΘa YY a a C a a θ a a 

1
ˆ ˆ ( )T T p−≥ ∀ ∈ΘΘa C a a θ a a 
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Under the following regularity condition an alternative and 
often more convenient expression for calculating the in-
formation matrix can be presented.

Regularity condition:
e) The Hessian matrix of                      

with respect to    can be obtained by taking all the re-
quired second partial derivatives under the integral 
sign, i.e.

( | ) ( | ) .
n n

T Tf d f d∇ ∇ = ∇ ∇∫ ∫θ θ X θ θ Xx θ x x θ x
 

( | )
n
f d∫ X x θ x



θ
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Corollary:
If the former regularity condition holds, the Fisher infor-
mation matrix can be alternatively determined by

Consequently, the elements of the Fisher information ma-
trix can be expressed by

( ) ( )( )
( )( )

( ) E ln ( | ) ln ( | )

E ln ( | ) .

T

T

f f

f

= ∇ ∇

= − ∇ ∇

θ X θ X

θ θ X

θ X θ X θ

X θ



( ) ( ) ( )2ln ( | ) ln ( | ) ln ( | )
( ) E E

, 1, , .

ij
i j i j

f f f

i j p

θ θ θ θ
   ∂ ∂ ∂

= ⋅ =−      ∂ ∂ ∂ ∂   
=

X X XX θ X θ X θ
θ
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Proof:

( )( )

( )

2

2

( | )E ln ( | ) E
( | )

( | ) ( | ) ( | ) ( | )E
( | )

( | ) ( | ) ( | )E E
( | ) ( | )

( | ) E ln ( | ) ln
n

T
T

T T

T T

T T

ff
f

f f f f
f

f f f
f f

f d f f

 ∇
∇ ∇ = ∇ = 

 
 ∇ ∇ ⋅ −∇ ⋅∇

=  
 
   ∇ ∇ ∇ ⋅∇

= −   
   

= ∇ ∇ − ∇ ∇∫

θ X
θ θ X θ

X

θ θ X X θ X θ X

X

θ θ X θ X θ X

X X

θ θ X θ X θ

X θX θ
X θ

X θ X θ X θ X θ
X θ

X θ X θ X θ
X θ X θ

x θ x X θ


( )( )( | )

( | ) ( ) 1 ( ) ( )
n

T Tf d= ∇ ∇ − = ∇ ∇ − = −∫
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θ θ X θ θ

X θ
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Theorem:
Let              belong to the exponential family in canonical 
form and T denote the corresponding sufficient statistic. 
1) The regularity conditions a) – e) are satisfied and the 

information matrix is positive definite

Thus, for unbiased estimators the Cramer-Rao in-
equality holds.

( | )fX x ξ

( ) ( )( )
( )( )

( ) E ln ( | ) ln ( | )

E ln ( | )

( ) Cov( ) .

T

T

T

f f

f

A

= ∇ ∇

= − ∇ ∇

= ∇ ∇ = =

ξ X ξ X

ξ ξ X

ξ ξ TT

ξ X ξ X ξ

X ξ

ξ T C
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2) Let the vector valued function

be one-to-one and differentiable with 

Then the regularity conditions a) - e) are satisfied 
with respect to and the information matrix can be 
expressed by

( )( )
( )

( )

( )

( ) E ln ( | ) ( ) ( ) ( )

( ) ( ) ( ) .

T T

T T

f

A

=

=

= − ∇ ∇ =

= ∇ ∇

θ θ X ξ g θ

ξ ξ ξ g θ

θ X θ G θ ξ G θ

G θ ξ G θ

 

( ), , withk p p k= ∈ ∈ ≤ξ g θ ξ θ 

1, , ; 1, ,

( )
( ) ( ) .jT

i i p j k

g
θ

= =

∂ 
= ∇ =  ∂ 

θ
θ

G θ g θ
 

θ
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Now, one asks oneself immediately, does there exist an 
unbiased estimator for which the information inequality 
takes the equality sign, i.e. whose covariance matrix is 
equal to the inverse Fisher information matrix.
An estimator for which the information inequality takes 
the equality sign, i.e. whose covariance matrix coincides 
with the inverse Fisher information matrix (Cramer-Rao 
lower bound), is called efficient.
Efficient estimators can be achieved only in special ca-
ses, since the random vector Y, introduced for proving 
the information inequality, must be the zero-vector with 
probability 1. 
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Exercise 3.5-1: 
Non/efficiency of linear least squares estimators when 
the noise is i.i.d. and normally distributed
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The previous exercise showed, that the deviation of the 
covariance matrix from the inverse Fisher information ma-
trix can be neglected for large sample sizes.
This motivates the definition of the limit 

where n indicates the growing sample size. If the matrix 
exists and is not singular, then unbiased and con-

sistent estimators      are of interest that satisfy the limit 

Simultaneously, such estimators are then even consis-
tent in the mean square sense. 

1( ) lim ( ),nn n→∞
=Γ θ θ

( )Γ θ

1
ˆ ˆlim ( ) .

n nn
n −

→∞
=Θ ΘC Γ θ

ˆ
nΘ



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 3 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 73

Estimators used in practice are often neither unbiased 
nor mean square consistent. In these cases the limiting 
distributions of such estimators are considered. If the lim-
iting distribution satisfies the property

the estimator is said to be asymptotically efficient.
Furthermore, under certain regularity conditions (similar 
to the former) one can show that in the class of asympto-
tically normally distributed estimators the following lower
bound can be proved.

1( ) ( )T T p−≥ ∈a D θ a a Γ θ a a 

( ) 1ˆlim ( ) , ( ) and ( ) ( ) ,n pn
n −

→∞
− =Θ θ 0 D θ D θ Γ θ
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Exercise 3.5-2: 
Asymptotic efficiency of linear least squares estimators
when the noise is i.i.d. and normally distributed
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3.6 Maximum Likelihood Estimation
The maximum Likelihood method is one of the most im-
portant procedures for the construction of estimators. 
For given observations x the procedure selects that as 
maximum likelihood estimate        , for which the density 
function             takes its maximum. 
Thus, the maximum likelihood estimate can be interpre-
ted heuristically as that parameter vector that makes the 
occurrence of the data observed most likely. 
Instead of determining the maximum of , one can 
due to the monotonicity of the logarithmic function alter-
natively maximize . 

( | )fX x θ

( | )fX x θ

( )ln ( | )fX x θ

ˆ( )θ x
θ
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Definition:
Suppose X possesses the density              with           and  
the vector of observations x = (x1,…,xn)T is given. Then

and are called likelihood function and 
log-likelihood function respectively, and

is called the maximum likelihood estimate (MLE) of
If the gradient of              with respect to exists and if 

is positive for the given x, one can try to find the 
MLE by solving the likelihood equation system 

.θ

∈Ωθ( | )fX x θ

( | )fX x θ

( | )fX x θ
( | )fX x θ

( )ˆ argmax ( | ) argmaxln ( | )f f
∈Ω ∈Ω

= =X X
θ θ

θ x θ x θ

( ) ˆ ( )
ln ( | ) .f

=
∇ =X θ θ x

x θ 0θ

θ

( )ln ( | )fX x θ
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Remarks:
• Generally the likelihood equation system is nonlinear.
• The likelihood equation system can possess several 

solutions.
• The solutions of the likelihood equation system do not 

necessarily correspond to relative maxima.
• If the absolute maximum of the likelihood function lies 

on the boundary of Ω it can not be described by a so-
lution of the likelihood equation system.

• Consequently, one has generally to employ sophisti-
cated numerical optimization techniques for determin-
ing maximum likelihood estimates. 
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Properties of Maximum Likelihood Estimation:
1) Let                               be a continuous mapping of 

the parameter vector    and the MLE of . Then 
the MLE of               is given by

2) Suppose t(x) is a sufficient transformation for   , i.e.

Then the maximum likelihood estimate    only de-
pends over t(x) on x.

3) If              belongs to the exponential family in cano-
nical form the related likelihood equation system 

possesses a unique solution.

( )=θ g η ˆ ˆ( ).=θ g η

θ̂

η η̂
: ,q p p q→ ≤g  

( )( | ) ( ) | ( ).f g h= ⋅X x θ t x θ x

( )ln ( | ) ( ) ( )f A∇ = −∇ =ξ X ξx ξ t x ξ 0

( | )fX x ξ

θ

η
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Exercise 3.6-1: 
Maximum likelihood estimation for linear models when 
the noise is i.i.d. and normally distributed

Exercise 3.6-2: 
Sinusoids + white noise, maximum likelihood estimation 
of amplitude, phase and frequency when the noise is
i.i.d. and normally distributed

Exercise 3.6-3: 
Example for inconsistent maximum likelihood estimation
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3.7 Bayesian Estimation
In the Bayesian theory of parameter estimation the un-
known parameter vector is treated itself as a realiza-
tion of a random experiment that obeys its own so called
prior distribution        .
The objective is to use          together with the measure-
ments x drawn from the distribution              to turn the 
prior distribution         into a posterior distribution

that is used for the statistical inference. 

( )fΘ θ
( )fΘ θ

( )fΘ θ
( | )fX x θ

( , ) ( | ) ( ) ( | ) ( )( | )
( ) ( , ) ( | ) ( )

p p

f f f f ff
f f d f f d

= = =
∫ ∫

XΘ X Θ X Θ
Θ

X XΘ X Θ

x θ x θ θ x θ θθ x
x x θ θ x θ θ θ

 

θ
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Loss function
The quality of the estimate         is measured by a real-
valued loss function               , e.g. by the Euclidean dis-
tance between and        , i.e.

Risk or loss average
The risk is the loss                averaged over the distribu-
tion of the measurements for any fixed parameter vector 

, i.e.

( ) ( )ˆ ˆ ˆ( , ( )) ( ) ( ) .
T

L = − −θ θ x θ θ x θ θ x

ˆ( , ( ))L θ θ x

ˆ( , ( ))L θ θ x

ˆ( )θ x

∈Ωθ

( )|
ˆ ˆ ˆ( | ) E ( , ( )) ( , ( )) ( | ) .

nLR L L f d= = ∫X θ xθ θ θ θ X θ θ x x θ x


ˆ( )θ x

θ
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Bayes risk
The Bayes risk is the risk                averaged over the pri-
or distribution , i.e.

The Bayes risk measures the average risk one incurs if 
the estimator                is used for the random experiment
at hand. Hence,           is depending only on the estimat-
ing function . 

( ) ( )( )

( )

|
ˆ ˆ ˆ( ) E ( | ) E E ( , ( ))

ˆ( , ( )) ( | ) ( )

ˆ ˆ( , ( )) ( , ) E ( , ( ))

p n

n p

L LR R L

L f f d d

L f d d L
+

= =

=

= =

∫ ∫
∫

Θ Θ X θ

X Θ

XΘ XΘ

θ θ Θ Θ θ X

θ θ x x θ θ x θ

θ θ x x θ x θ Θ θ X
 



ˆ( )LR θ

( )fΘ θ

ˆ ˆ( )=Θ θ X

ˆ( )θ x

ˆ( | )LR θ Θ
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Bayes estimator
Minimization of the Bayes risk over the class of all 
estimating functions for which exists, provides 
the Bayes estimating function

and therefore the Bayes estimator                      

In the following Bayes estimators are considered in more 
detail for the square error, the absolute error and uniform 
error loss functions.

ˆ( )LR θ
ˆ( )LR θˆ( )θ x

ˆ ˆ ( ).L L=Θ θ X

( ),
ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) argmin ( ) argminE ( , ( ))L LR L= = X Θ
θ x θ x

θ x θ Θ θ X
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3.7.1 Minimum Mean Square Error Estimation
Non-Linear Minimum Mean Square Error Estimation
To estimate the random parameter vector by means 
of the realization of the random vector X in the minimum 
mean square error sense we have to find an estimating 
function  such that

is minimum. Over the class of all functions for which
the expected value exists, is minimized by

ˆ( )θ x

ˆ( )θ x

( ) ( )
( ) ( )

ˆ ˆ ˆ( ) E ( ) ( )

ˆ ˆ( ) ( ) ( , )
n p

T

MSE

T

R

f d d
+

 = − − 
 

= − −∫ XΘ

θ Θ θ X Θ θ X

θ θ x θ θ x x θ x θ


ˆ( )MSER θ

Θ
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cf. Exercise 1.9-18.

Linear Minimum Mean Square Error Estimation
Now, we wish to estimate the random parameter vector

by the linear estimating function

such that the mean square error

( )ˆ ( ) E | ,MMSE = =θ x θ X x

ˆ( ) = +θ x Ax b

( ) ( )( )
( ) ( )

( , ) E ( ) ( )

( ) ( ) ( , )
n p

T
LMSE

T

R

f d d
+

= − + − +

= − + − +∫ XΘ

A b Θ AX b Θ AX b

θ Ax b θ Ax b x θ x θ


Θ



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 3 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 86

is minimized by varying the parameter matrix A and vec-
tor b. Thus, we have to solve the minimization problem

The mean square error is minimum if 

are satisfied. Applying the expectation operator we obtain

where 

( )
,

ˆ ˆ( , ) argmin ( , ) .LMSER=
A b

A b A b

( )( )
( )

ˆ ˆ( , ) 2E ( )

ˆ ˆ( , ) 2E ( )

T
LMSE

LMSE

R

R

∂
= − − + =

∂

∇ = − − + =b

A b Θ AX b X 0
A

A b Θ AX b 0

ˆ ˆ ˆ ˆand ,T− − = − − =ΘX XX X Θ XR AR bμ 0 μ Aμ b 0

E( ),  E( ),  E( ) and  E( ).T T= = = =XX ΘX X ΘR XX R ΘX μ X μ Θ
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Resolving for and leads after some manipulations to

and therefore to the estimating function

After exploiting the relationships between the covariance
and the first and second order moments

the estimating function can also be expressed by

Â

( )1ˆ ( ) .LMMSE
−= + −Θ ΘX XX Xθ x μ C C x μ

andT T= − = −XX XX X X ΘX ΘX Θ XC R μ μ C R μ μ

( )( ) ( )1ˆ ˆ ˆ( ) .T T
LMMSE

−
= + = + − − −Θ ΘX Θ X XX X X Xθ x Ax b μ R μ μ R μ μ x μ

( )( )
( )( )

1

1

ˆ

ˆ

T T

T T

−

−

= − −

= − − −

ΘX Θ X XX X X

Θ ΘX Θ X XX X X X

A R μ R μ μ

b μ R μ μ R μ μ μ

µ

b̂
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Theorem:
Let Y be a random vector composed of the random vec-
tors X and and obeying the distribution

Then X and possessing the marginal distributions 

and the conditional distribution

cf. exercise 1.10-7.  

, .n p+

    
=             

XX XΘX

Θ ΘX ΘΘ

Σ ΣμX
Y

μΘ Σ Σ
 

( ) ( ), , ,n pX XX Θ ΘΘX μ Σ Θ μ Σ  

( )1 1| ( ),p
− −= + − −Θ ΘX XX X ΘΘ ΘX XX XΘΘ X x μ Σ Σ x μ Σ Σ Σ Σ 

Θ

Θ
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Theorem:
Given the linear model

where H is a known matrix, and Z are statistically in-
dependent random vectors with                          and 

. Then  

and the MMSE estimate can be expressed by

,= +X HΘ Z

( , )p Θ ΘΘΘ μ Σ 

( ) 1ˆ ( ) ( ).T T
MMSE

−
= + + −Θ ΘΘ ΘΘ ZZ Θθ x μ Σ H HΣ H Σ x Hμ

,
T

n p T+

    + 
=             

Θ ΘΘ ZZ ΘΘ

Θ ΘΘ ΘΘ

HμX HΣ H Σ HΣY
μΘ Σ H Σ
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Exercise 3.7-1: 
Proof of the Theorem 
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3.7.2 Minimum Mean Absolute Error Estimation
The mean absolute error estimation is considered for the 
single parameter case only. To estimate the random para-
meter Θ by means of the realization of the random vec-
tor X in the minimum mean absolute error sense

has to be minimized. As shown in the subsequent exer-
cise the minimization of               leads to 

Hence, the                is the median of the posterior den-
sity function             .

ˆ ( )MMAEθ x

ˆ( )MAER θ

( ) 1
ˆ ˆ ˆ( ) E | ( )| | ( )| ( , )

nMAER f d dΘθ Θ θ θ θ θ θ
+

= − = −∫ XX x x x


ˆ ( )

ˆ ( )
( | ) ( | ) .MMAE

MMAE

f d f d
θ

Θ Θθ
θ θ θ θ

∞

−∞
=∫ ∫

x

x
x x

( | )fΘ θ x
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Exercise 3.7-2: 
Proof of median 
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3.7.3 Maximum A Posteriori Estimation
Another estimation technique that fits within the Bayesian 
framework is the maximum a posteriori estimation (MAP).
Single parameter case
To motivate the approach the uniform loss function 

is introduced. The Bayes risk is then given by 

ˆ0 | ( )|ˆ( , ( )) where 0
ˆ1 | ( )|

L
θ θ δ

θ θ δ
θ θ δ

 − ≤= >
− >

x
x

x

( )
( )

1
ˆ ˆ ˆ( ) E ( , ( )) ( , ( )) ( , )

ˆ( , ( )) ( | ) ( ) .
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n

LR L L f d d

L f d f d

Θ

Θ

θ θ θ θ θ θ θ

θ θ θ θ

+

∞
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= =
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X

X
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Since fX(x) and the integral in the brackets are always po-
sitive it is sufficient to minimize  

or equivalently to maximize

for every x.
For δ arbitrary small         determines the mode of              
and is termed maximum a posteriori (MAP) estimate, i.e. 

ˆ( )θ x
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ˆ( )
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Multiple parameter case
Employing the marginal posterior density functions 

the MAP estimates are given by

However, due to the required integration we might pro-
pose the alternative vector valued MAP estimate 

Remark:
Generally, both MAP estimates are not equivalent.

1 1 1 1( | ) ( | )
pi i i i pf f d d d dΘ θ θ θ θ θ
− − += ∫ Θx θ x



 

,
ˆ ( ) argmax ( | ) 1, , .

i
i

i MAP if i pΘ
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θ θ= =x x 

ˆ ( ) argmax ( | ) argmax ( | ) ( ).MAP f f f= =Θ X Θ
θ θ

θ x θ x x θ θ
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Exercise 3.7-3:
MMSE, MMAE and MAP estimation of the parameter of 
an exponential distribution, where the parameter obeys 
also an exponential distribution 

Exercise 3.7-4: 
Signal + noise, MMSE signal amplitude estimation
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