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4 Signal Detection
4.1 Introduction to Hypothesis Testing
Introductory Example

where   are assumed to be stochastically inde-
pendent. Furthermore

1, , nX X

2

denotes the known wave form
indicates the unknown amplitude
represents white noise with (0, )
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Let x1,…,xn denote the observations of X1,…,Xn. Then we 
are faced with the two following Problems.

Problem 1:
Parameter Estimation, i.e. we have to estimate η, e.g. by 
means of the least squares approach, cf. Chapter 3.

Problem 2:
Signal Detection, i.e. we have to decide whether

or ,  i.e.  0 or 0.η η η= + = > =X s Z X Z

1ˆ ( )
T

T T
Tη −= =

s xs s s x
s s
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Procedure to construct a hypotheses test
1) Setting up of a hypothesis H0

X does not contain the signal waveform s, i.e. 

2) Setting up of an alternative H1
X contains the signal waveform s, i.e.

3) Selection of a favorable statistic t(x) of the observa-
tion x for testing the hypothesis H0.

4) Determination of the distribution of T = t(X) under H0.

2or 0 and (0, ).n Zη σ= =X Z X I 

2and ( , ),
where 0 is an unknown parameter.

n Zη η σ
η

= +
>

X s Z X s I 

2 2( ) with ( , ) (0, )T T
n Z ZT t Tσ σ= = ⇒X s X X 0 I s s  
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5) Calculation of the critical region of the observations x
for discarding hypothesis H0. 
For a given size α we can derive via 

the critical region .
6) If t(x)>κ one decides for H1, i.e. x contains the wave-

form s, with the probability of error α. If t(x)≤κ one de-
cides for H0, i.e. x does not contain the waveform s. 

( ) ( )
( )

0 0

0

| |

1 | 1 ( )
T T

T T T

P T H P T H

P T H

α κ σ κ σ

σ κ σ κ σ

= > = >

= − ≤ = −Φ

2 2since E( ) E 0, Var( ) E( ) .T T T T
Z TT T σ σ= = = = =s X s XX s s s

{ }: ( ) ( , )CR t I κ= ∈ = ∞x x
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Classification of hypotheses tests
The density fX (x) of X = (X1,…,Xn)

T is element of the 
known set where denotes an unknown 
parameter vector and Ω the parameter space. 
Binary Hypotheses Tests
Let hypothesis H0 (called null hypothesis) and the alter-
native hypothesis H1 (also called one hypothesis) divide 
the parameter space Ω into the disjoint subset Ω0 and 
Ω1, respectively. Then the test 

is said to be a binary test of hypotheses and one is test-
ing which of the two subsets contains the unknown   .  

{ }( | ): ,f ∈ΩX x θ θ

θ

0 0 1 1: versus  :H H∈Ω ∈Ωθ θ

θ
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Simple and Composite Hypotheses
If Ωm (m = 0,1) contains only a single element θm the cor-
responding hypothesis Hm is said to be simple. Other-
wise it is composite.

Multiple or M-ary Hypotheses Tests 
Let Ω=Ω0∪Ω1∪…∪ΩM−1 represents a disjoint covering
of the parameter space and let Hm denote the hypothesis 
that            . The test

is called multiple, or M-ary, hypothesis test.

m∈Ωθ

0 0 1 1

1 1

: versus : versus
versus :M M

H H
H − −

∈Ω ∈Ω

∈Ω

θ θ
θ
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Exercise 4.1-1:
Introductory example

Exercise 4.1-2:
M-ary communication
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Testing of binary hypotheses
A test of H0 versus H1 is described by a test function φ
(function of the observation x) that satisfies 0≤φ (x)≤1.
The value φ (x) obtained for a given observation x means 
that with P=1− φ (x) the hypothesis H0 and with P=φ (x) 
the hypothesis H1 should be selected.
If φ (x) can take only the values zero and one, i.e. 

the test is termed deterministic, where RC denotes the 
so-called critical region.  

1 if 
( ) ,

0 elsewhere
CR

φ
∈

= 


xx
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It is desirable to construct a test function φ such that the 
probability to deciding for

– H1 even though H0 is correct (probability of type 1 error)
– H0 even though H1 is correct (probability of type 2 error)

is minimized.
Unfortunately both probabilities can not be controlled 
simultaneously. Therefore one assigns a bound to the 
probability of the type 1 error by imposing the constraint 

which simplifies in case of a deterministic test to

( ) 0E ( ) ( ) ( | )
n

f dα φ φ≥ = ∀ ∈Ω∫ XX x x θ x θ


( ) 0E 1 ( ) ( | ) .
C c

R R
f dα ≥ = ∀ ∈Ω∫ XX x θ x θ



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 12

Subject to this constraint it is then desired to minimize the
probability of the type 2 error or equivalently to maximize 
the so-called power function

which in case of a deterministic test can be expressed by

The level of significance α with 0<α<1 is called the size 
of the test. The probability          of correctly accepting H1
is said to be the power of the test. 
φ(x) is said to be a uniformly most powerful (UMP) test 
of the test problem (α,H0,H1) if the inequality

( ) 1( ) E ( ) ( ) ( | )
n

f dφβ φ φ= = ∀ ∈Ω∫ Xθ X x x θ x θ


( ) 1( ) E 1 ( ) ( | ) .
C C

R R
f dφβ = = ∀ ∈Ω∫ Xθ X x θ x θ

( )φβ θ
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holds for any test         of (α,H0,H1).

Cross reference of statistical terms

1( ) ( )φ φβ β≥ ∀ ∈Ωθ θ θ


( )φ x

Statisticians Engineers
Observations x Receiver output data
Null hypothesis H0 Noise only hypothesis
Alternative hypothesis H1 Signal + Noise hypothesis
Test function φ(x) Detector
Size of the test α
Probability of type 1 error

Probability of false alarm (PFA)

Power of the test Probability of detection (PD)
Probability of type 2 error Probability of miss (PM = 1−PD)

1( )φβ ∀ ∈Ωθ θ
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4.2 Simple Hypothesis Testing
Let H0 and H1 be simple hypotheses, i.e.

In this case one only has to distinguish whether

4.2.1 Neyman-Pearson Hypothesis Testing
For binary hypotheses tests with simple hypotheses the 
following theorem, known as the fundamental lemma of 
Neyman-Pearson, holds. 

{ } { }0 0 1 1and .Ω = Ω =θ θ

0 1( ) ( | ) ( |0) or ( ) ( | ) ( |1).f f f f f f= = = =X X X X X Xx x θ x x x θ x
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Theorem:
Let H0 and H1 be simple hypotheses with corresponding 
densities fX(x|0) and fX(x|1). 
1) For testing H0 against H1 there exists a test φ and a 

constant κ such that 
a)

b)

2) If φ satisfies 1a) and 1b) for some κ then φ is most 
powerful for (α,H0,H1).

1 if ( |1) ( | 0)
( ) .

0 if ( |1) ( | 0)
f f
f f

κ
φ

κ
>

=  <
X X

X X

x x
x

x x

(0) ( ) ( | 0) ,
n

f dφβ φ α= =∫ Xx x x
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3) If φ is most powerful for (α,H0,H1) then for some κ it
satisfies 1b) almost surely and it satisfies also 1a) un-
less there exists a test of size < α and with power 1.

Proof of 1):
Let

Thus g(k) is non-increasing, right continuous, g(−∞)=1
and g(∞)=0. Given any α (0<α<1) and let k=κ be such
that                                the test φ can be defined by

{ }0

0

( ) ( |1) ( |0) |

( |1) | ( |0) 0, 1 ( ).
( |0) T

g k P f k f H

fP T k f H F k
f

= >

 
= = > > = − 

 

X X

X
X

X

X X

X X
X

( ) ( 0)g gκ α κ≤ ≤ −
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with

1 if ( |1) ( |0)
0 if ( |1) ( |0)

( ) ( )  if ( |1) ( |0), ( 0) ( ) 0
( 0) ( )

arbitrary if ( |1) ( |0), ( 0) ( ) 0

f f
f f

g f f g g
g g

f f g g

κ
κ

φ α κ κ κ κ
κ κ

κ κ κ

>
 <
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X X

X X

X X

X X

x x
x x

x x x

x x

{ } { }
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0
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( )( ) ( 0) ( ) . 
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f d

P f f H P f f H
g P f f H

g g
gg g g
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α κ κ
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Proof of 2):
Suppose φ (x) satisfies 1a) and 1b) and         denotes any 
test of (α,H0,H1) we can argue as follows.

With the sets

we can state

Hence,    

(0) ( ) ( | 0) ( ) ( | 0)
n n

f d f dφβ φ α φ= ≤ =∫ ∫X Xx x x x x x


 



( )φ x

{ } { }: ( ) ( ) and : ( ) ( )S Sφ φ φ φ> <= > = <x x x x x x 

if   then ( ) 0,  i.e. ( |1) ( | 0)
if   then ( ) 1,  i.e. ( |1) ( | 0).

S f f
S f f

φ κ
φ κ

>

<

∈ > ≥

∈ < ≤
X X

X X

x x x x
x x x x
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and the difference in power between φ(x) and any   
of (α,H0,H1) therefore satisfies 

as was to be proved.
Thus, the fundamental lemma of Neyman-Pearson pro-
vides an approach for constructing a most powerful test 
for (α,H0,H1).

( )( )
( )( )

( ) ( ) ( |1) ( | 0)

( ) ( ) ( |1) ( | 0) 0
n

S S

f f d

f f d

φ φ κ

φ φ κ
> <∪

− − =

= − − ≥

∫
∫

X X

X X

x x x x x

x x x x x






( )
( )

( ) ( ) ( |1) (1) (1)

( ) ( ) ( |0) (0) (0) 0
n

n

f d

f d

φ φ

φ φ

φ φ β β

κ φ φ β β

− = − ≥

≥ − = − ≥

∫
∫

X

X

x x x x

x x x x












( )φ x
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Examples to the Neyman-Pearson Approach
In the following we assume n=1, i.e. x=x.
1) For                                                the test function is 

given by 

with

0

0

0

1 if  
( ) 0 if  

e.g. 0 if  

x x
x x x

x x
φ

>
= <
 =

0
( | 0) .Xx

f x dxα
∞

= ∫

( | 0)Xf x

1 ( |1)Xf x
κ

0x

α

x
1H0H

{ }0( |1) ( |0) | 0X XP f x f x Hκ= =
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2) For                                                    , cf. figure below,

the test function can be defined by

with 

2

1 2

1

1 if  
( )( ) if  

( 0) ( )
0 if  

x x
gx x x x

g g
x x

α κφ
κ κ

 >
 −= ≤ ≤ − −

<

{ }0( |1) ( |0) | 0X XP f x f x H pκ= = >

( | 0)Xf x 1 ( |1)Xf x
κ

0x x2x1x

p
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and

Moreover, for this case another most powerful test      
can be constructed by  

with

For fX (x|0)=const. in (x1,x2) the boundary x0 is given by

{ }
2

0( ) ( |1) ( |0) | ( | 0)X X Xx
g P f x f x H f x dxκ κ

∞
= > = ∫

2

1
( | 0) .

x

Xx
p f x dx= ∫

0

0

1 if 
( )

0 if 
x x
x x

φ
>

=  ≤
x

( )φ x

0

2

0 2

( |0)

( |0) ( |0) .

Xx
x

X Xx x

f x dx

f x dx f x dx

α
∞

∞

=

= +

∫
∫ ∫

( )
2

2 1
0 2 ( |0) .Xx

x xx x f x dx
p

α
∞−

= − ⋅ − ∫
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Exercise 4.2-1:
Simple Hypothesis testing between two normal distribu-
tions with unequal mean and variance
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General description of the signal detection problem

Now, we are looking for a detector φ(x) of the problem 
(α,H0,H1), whereby the level for the probability of false 
alarm PFA=βφ(0)=α is given.
For the detector φ the probability of detection PD=βφ(1)
is determined, where PD is a function of α =PFA.
The probability of detection PD as a function of the pro-
bability of false alarm PFA is termed receiver operating 
characteristic (ROC).

0

1

: ,  i.e. noise only, ( ) ( ) ( |0)
: , i.e. signal + noise, ( ) ( ) ( |1)

H f f f
H f f f+

= = =

= + = =
X U X

X S U X

X U x x x
X S U x x x
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Properties of PD(PFA)
If φ(x) is a most powerful test for (α,H0,H1) we can state:

1) PD(PFA) is non-decreasing and concave in 0<PFA<1,

2) PD(PFA) is continuous 
in 0<PFA<1,

3) PD(PFA) /PFA is non-increasing 
in 0<PFA<1,

4) limPFA→1 PD(PFA) /PFA=1,

5) 0<PD(PFA) /PFA<1 /PFA.
FAP

DP

1

1
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Exercise 4.2-2:
Particular cases and most powerful tests
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4.2.2 Most Powerful Tests for Normal Variates
According to the Neyman-Pearson Lemma a most pow-
erful test asks whether

Since density functions of normally distributed random 
vectors X satisfy fX(x)>0 one can also ask whether

or

The function ΛX(x) and ln(ΛX(x)) are termed likelihood 
ratio and log-likelihood ratio, respectively. 

( |1) ( | 0).f fκX Xx x

( ) ( |1) ( | 0)f f κΛ =X X Xx x x 

( ) ( ) ( )ln ( ) ln ( |1) ln ( | 0) ln( ).f f κΛ = −X X Xx x x 
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Let fX(x|0) be the density of                        under H0 and 
fX(x|1) be the density of                       under H1 with

Hence, the log-likelihood ratio

provides a most powerful test

for (α,H0,H1), where

( ) {
( ) }

( )

1
,0 ,1 ,0 ,0 ,0

1 1 1
,1 ,1 ,1 ,0 ,1

1 1
,1 ,1 ,0 ,0

1ln ( ) ln(det ) ln(det )
2

T

T T

T T .

−

− − −

− −

Λ = − +

− + −

+ −

X XX XX X XX X

X XX X XX XX

X XX X XX

x Σ Σ μ Σ μ

μ Σ μ x Σ Σ x

μ Σ μ Σ x

,0 ,0( , )n X XXμ Σ

,1 ,0 ,1and/or .≠ ≠X XX XXμ Σ Σ

( )1 if ln ( ) ln( )  resp.  ( )( )
0 elsewhere

tκ κ
φ

 Λ > >
= 


X X
X

x xx 

,1 ,1( , )n X XXμ Σ ,0Xμ
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and

Detection of a known deterministic signal in Gaussian 
noise with known distribution

Thus, the log-likelihood ratio can be expressed by

( ) ( )1 1 1 1
,1 ,1 ,0 ,0 ,0 ,1

1( )
2

T T Tt − − − −= − + −X X XX X XX XX XXx μ Σ μ Σ x x Σ Σ x

(
)

,0 ,1

1 1
,0 ,0 ,0 ,1 ,1 ,1

1ln( ) ln(det ) ln(det )
2

.T T

κ κ

− −

= − − +

+ −

XX XX

X XX X X XX X

Σ Σ

μ Σ μ μ Σ μ



0

1

: , ( ) ( ) ( |0), ( , )
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with

For the particular case that U is a sequence of white noise 
Zi with Var(Zi)=1, i.e. , we obtain

The critical region is then the set of all 
points that are lying above the plane  
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Prewhitening Interpretation
An invertible linear transformation of normally distributed 
data does not change the properties of the test problem. 
As an particular example we consider

with

where Z is white noise with                    and the inversion 
of the transformation is given by

Hence, due to the transformation

1( )−= − UZ C U μ

1 1 1and ( ) ,T T− − −= =UU UUΣ CC Σ C C

.= + UU CZ μ
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the test problem can be reformulated as follows.

Since the noise model                           is mapped into the 
white noise model the transformation is called 
prewhitening.
The log-likelihood ratio is given by

whereby the transformation does not alter the value of the 
log-likelihood ratio.

1
0

1 1
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If C−1 is selected as a lower triangle matrix (Cholesky de-
composition of       ) the transformation can be formulated
as a causal, digital, time-variant filtering procedure.

Matched Filtering Interpretation
Suppose Y represents a sequence of a time discrete sto-
chastic process Yt (t=1,…,n). Then the time-invariant fil-
ter with impulse response 

and filter output

UUΣ
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1
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t U t t tY X h h h t
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is called matched filter for                       in white noise Z.
The filter with impulse response

and filter output

is called matched filter for                       in colored noise 
U with covariance matrix

1
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Calculation of and 
The test function

is most powerful for (α,H0,H1), where has to be deter-
mined such that the PFA equals the predefined α.
Now, employing the statistic we can write 

such that the probability of false alarm is given by
0 1: (0, ) and : ( , )T T TH T H TY Ys s s s s s      
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where denotes the value, which is exceeded
by a standardized normally distributed random variable 
with probability PFA=α.
Hence, the detection threshold is

where

is called deflection coefficient. Finally, the detection prob-
ability can be determined by  

TNα κ= s s 
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Receiver Operating Characteristic
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Exercise 4.2-3: 
Detection of a Gaussian signal with known distribution 
in Gaussian noise with known distribution, signal and 
noise are stochastically independent
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Bounds for PFA and PD

represents a random variable, 
where fX(X|0)>0 is supposed for all X.
For the probability of false alarm

with
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and c≥0 the so-called Chernoff bound

can be derived. 
Moreover, one can show that dν /dc is monotonic increas-
ing and that ν (c) is convex. Hence, the Chernoff bound is
minimized by a c0 with 0≤c0≤∞ that satisfies
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Similarly, for the probability of detection

and c≤1 a lower bound can be found by
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The bound for the probability of detection is maximized 
by a c1 with −∞≤c1≤1 that satisfies

For normal distributions                      , i=0,1 we obtain
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which simplifies to 

for the detection problem introduced on p. 30. Hence,

together with the constraints on c0 and c1 provides

Finally, for κ=1 we obtain c0=c1= .5 and the inequalities
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4.2.3 Bayes Hypothesis Testing
Average Error Probability
Suppose the occurrence of the hypotheses can also be 
considered as a result of a random experiment, where 

denote the a priori probabilities for the occurrence of the 
null and alternative hypothesis. Now, we are interested in
finding an optimal test ψ (x) that minimizes the probability
of a wrong decision, i.e. the average error probability

( )
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Since

the test function that minimizes PE is given by

This test is a special case of the more general Bayesian 
approach. It is for p1>0 obviously a most powerful test for
(αψ,H0,H1) with  
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If the prior probabilities are equal, i.e.

the hypothesis with the larger conditional likelihood is cho-
sen and the test is termed (conditional) maximum likeli-
hood test. 
Moreover, exploiting Bayes rule 

where
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i i i
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does not depend on the true hypothesis, the test can be 
expressed by

and is therefore called maximum a posteriori (MAP) test.
Bayes risk
Now, we are going to generalize the former approach by
assigning losses to each type of error, i.e.

L00 = loss of a correct rejection,
L01 = loss of a miss,
L10 = loss of a false alarm,
L11 = loss of a correct detection,
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introducing the risk

and defining the expected risk

as Bayes risk which can also be expressed by 
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Since

the test function ψ (x) should be one only if the expres-
sion in rectangular brackets is negative, i.e. 

Thus, assuming L10>L00 and L01>L11 the test function that 
minimizes R(ψ) is given by
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Exercise 4.2-4:
Binary Signal Detection, MAP hypothesis test
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Multiple Hypothesis Testing
Here, we wish to decide among M possible hypotheses. 

The loss assigned to the decision to choose Hi when Hj
is true is denoted by Lij. Hence, the expected/Bayes risk 
can be expressed by

Our goal is now to construct a test functionψ(x) that takes 
on values in the set , where ψ(x)=m corre-
sponds to selecting Hm.
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Let R0,…,RM−1 denote the partitioning of the observation 
space for deciding H0,…,HM−1 respectively, so that

where 

describes the average loss of deciding Hi if x is observed.
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Now, each observation x has to be assigned to one and 
only one Ri. The assignment of x to Ri contributes to the 
Bayes risk with                     . 
To minimize the Bayes risk we should assign x to Rk if 

Hence, the test function is given by
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For the loss function defined by

i.e. R(ψ)=PE, we have to minimize

or equivalently to maximize P(Hi |x) with respect to i. Since
one seeks to maximize the a posteriori probability
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is called M-ary maximum a posteriori (MAP) test. 
If the prior probabilities are equal and therefore

we can conclude that to maximize P(Hi |x) we only have 
to maximize fX(x | i). Hence,

which is known as M-ary maximum likelihood (ML) test. 

{ }

{ }

0

1

0 if ( | 0) max ( | )

( )
1 if ( | 1) max ( | )
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Exercise 4.2-5:
Multiple Signal Detection, MAP hypotheses test
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4.3 Composite Hypothesis Testing
4.3.1 Sufficient Statistic
A function T= t(X) that is only depending on the observa-
tion model X is called a statistic. 
Definition: A statistic T= t(X) is called sufficient for the pa-
rameter if the conditional distribution of X given T= t(x)
is independent of for all t, i.e. 

Because the conditional distribution has to be determined 
a direct evaluation of sufficiency is usually difficult.
Fortunately, the following theorem exists whose condi-
tions can be verified easily.

( ) ( )| ( ); | ( ) .F F= = =X Xx T t x θ x T t x

θ
θ
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Theorem: (factorization theorem for densities) 
A necessary and sufficient condition for a statistic T= t(X)
to be sufficient is that there exist non-negative functions 
g(t |θ) and h(x) such that satisfies

Minimal Sufficient Statistic
If for any sufficient statistic T' there exists a function s 
such that T= s(T').
Complete Sufficient Statistic
A sufficient statistic T is said to be complete if condition

implies f(T)=0 with probability 1 
for all   .

( )( | ) ( ) | ( ).f g h= ⋅X x θ t x θ x

( )( )  for all E = ∈Ωθ f T 0 θ

( | )fX x θ

θ
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Exponential Families
A family                 of distributions is forming a k-dimen-
sional exponential family if the distributions              have
densities of the form

Frequently, it is more convenient to use the ξi as the pa-
rameters and write the density in the canonical form

Applying the factorization theorem for densities one can 
easily observe that                                               consti-
tutes a sufficient statistic for the exponential family.

( )1
( | ) ( ) exp ( ) ( ) ( ) .k

i ii
f h t Bξ

=
= ⋅ −∑X x θ x θ x θ

( )1
( | ) ( ) exp ( ) ( ) .k

i ii
f h t Aξ

=
= ⋅ −∑X x ξ x x ξ

{ }( | )FX x θ
( | )FX x θ

1 1( , , ) ( ( ), , ( ))T T
k kT T t t= =T X X 
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Exercise 4.3-1:
Introductory example
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4.3.2 Bayesian Approach
The unknown parameter vector of the density function             

is supposed to be a realization of the ran-
dom vector     that possesses the densities            and

under H0 and H1, respectively. 
The density functions of X and     are supposed to be 
known. Hence, with

the expected power of the test φ(x) can be defined by 

( ) ( ) ( | )
n

f dφβ φ= ∫ Xθ x x θ x


∈Ωθ
( |0)fΘ θ

( )
( ) ( ) ( | )

( ) ( | ) ( | ) ( ) ( | ) ,
p

n p n

i f i d

f f i d d f i d

φ φβ β

φ φ

=

= =

∫
∫ ∫ ∫

Θ

X Θ X

θ θ θ

x x θ θ θ x x x x


  

( | )fX x θ

( |1)fΘ θ
Θ

Θ
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where            can be interpreted as the density function 
of X under Hi which is independent of .
Thus, the test problem with composite hypotheses could
be transformed into one with simple hypotheses, so that 
the Neyman-Pearson Lemma and the likelihood ratio

provide a most powerful test 

( | ) ( |1)( |1)( ) if ( | 0) 0
( | 0) ( | ) ( | 0)

p

p

f f df f
f f f d

Λ = = >∫
∫

X ΘX
X X

X X Θ

x θ θ θxx x
x x θ θ θ





( | )f iX x

( |1)1 if  ( )
( ) .( | 0)

0 elsewhere

f
f

κ
φ


Λ = >= 




X
X

X X

xxx x

θ
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Theorem: Suppose, there exits a sufficient statistic t(x) 
for   , where    denotes a realization of the random para-
meter vector    . Then, a most powerful test φ(x) does only
depend over t(x) on x. 
Proof: 
In accordance with the Neyman-Pearson Lemma a most 
powerful test asks whether 

Using                                     with h(x)≠0 we obtain

which was to be proven.

( | ) ( |1) ( | ) ( | 0) .
p p
f f d f f dκ∫ ∫X Θ X Θx θ θ θ x θ θ θ

 

( )( | ) ( )| ( )f g h=X x θ t x θ x
( ) ( )( ) | ( |1) ( ) | ( | 0)

p p
g f d g f dκ∫ ∫Θ Θt x θ θ θ t x θ θ θ

 

θ θ
Θ
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Exercise 4.3-2: 
Detection of a sinusoid with unknown phase in white 
Gaussian noise with known variance
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4.3.3 Monotone Likelihood Ratio and UMP Tests 
Definition: A real-parameter family of densities
is said to have monotone likelihood ratio if there exists a
real-valued function t(x) such that for any           the den-
sities and are distinct and the ratio 

is a non-decreasing function of t(x). 
Example: (introductory example, cf. Exercise 4.1-1,4.3-1)

{ }( | )f θX x

( | )f θX x

( )( | ) ( ) | ,
( | )

f g t
f

θ θ θ
θ

=X

X

x x
x
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−      − −
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Hence, the likelihood ratio given by

increases monotonic in t(x), i.e. the family has 
monotone likelihood ratio.
Theorem:
Let the random vector X have a real-parameter density 
fX(x |θ ) with monotone likelihood ratio in t(x). For testing

there exists a uniformly most powerful test

( )

2

2 2
( | ) exp exp
( | 0) 2

( ) | 0, with ( )

T T

Z Z

T

f
f

g t t

η η η
σ σ

η

   −
=    

   
= =

X

X

x s s s x
x

x x s x

{ }( | )f ηX x

{ } { }0 0 0 1 1 0: : against : :H Hθ θ θ θ θ θΩ = ≤ Ω = >
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where               are determined by 

and the power function

is strictly monotonic increasing for all θ for which 

1 if ( )
( ) 0 if ( ) ,

if ( )

t
t
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φ κ

γ κ

>
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 =
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Theorem:
One-parameter exponential families which possess den-
sity functions of the form 

have a monotone likelihood ratio in the sufficient statistic 
t(x), provided ξ(θ) is strictly monotonic increasing in θ. 

Hence, if the distribution of X (model of the observation 
vector) belongs to a one-parameter exponential family 
with strictly monotonic increasing ξ(θ), then there exits  
a uniformly most powerful test φ(x) for testing 

( )( | ) ( ) exp ( ) ( ) ( )f h t Bθ ξ θ θ= ⋅ −X x x x

{ } { }0 0 0 1 1 0: : against : : .H Hθ θ θ θ θ θΩ = ≤ Ω = >
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Exercise 4.3-3: 
Detection of a deterministic signal with unknown ampli-
tude in Gaussian noise with known distribution

Exercise 4.3-4: 
Detection of a Gaussian signal with unknown amplitude in
Gaussian noise with known distribution, signal and noise 
are stochastically independent
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4.3.4 Invariance Principle and UMP Invariant Tests 
Invariant and uniformly most powerful invariant tests
Definition: (group of transformations)
A set G of transformations of some set  onto itself is 
called group of transformations if the following holds.
1) The identity transformation belongs to G, i.e.

2) G is closed with respect to inversion, i.e.

3) G is closed with respect to compositions, i.e.

with ( )id G id x x∈ =

( )1 1with ( )g G g G g g x x− −∈ ⇒ ∈ =

1 2 1 2,g G g G g g G∈ ∈ ⇒ ∈
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Example: (scaling and translation)
Let  =  and 

for x ∈ . Since

1) , identity transformation

2) , inverse transformation of        

3) , composition of 

we can conclude that G is a group of transformations of 
 onto itself.

{ }, ,: ( ) , , , 0a b a bG g g x ax b a b a= = + ∈ ≠

1,0g G∈

,a bg1 ,a b ag G− ∈

1 1 2 2, ,anda b a bg g
1 2 1 2 1,a a a b bg G+ ∈
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Let G denote a group of one-to-one transformations of 
the sample space X onto itself.

Definition: (Invariance of a hypotheses testing problem)
A hypotheses testing problem is said to remain invariant 
under transformations g(x)∈G if g(x) leaves the distribu-
tion invariant in form, i.e.

and if the corresponding         preserves both Ω0 and Ω1,
so that                  holds in addition to .

( ) ( )
( )

( ) | ( | ) | ( )

| ( ) with ( ) ,

P F F

P

= ≤ = = =

= ≤ = Ω =Ω

Y XY g X y θ y θ y θ g θ

X y θ g θ g
( )g θ

0 0( )Ω =Ωg ( )Ω =Ωg
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Exercise 4.3-5: 
Invariant distribution, invariant parameter space
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Example: (invariant test problem) 
The problem of detecting a signal with unknown ampli-
tude in Gaussian noise with unknown variance should 
not depend on the amplification of the receiver system.

with density

where η and      are unknown. 
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The transformation 

leads to the detection problem

The detection problem remains invariant under the trans-
formation (positive scaling changes) since it preserves
the distribution type

2 2
0

2 2
1

: , ( , )
: , ( , ).
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and the parameter set

as required by the definition above.

Definition: (Invariance of a test)
A test function φ(x) satisfying 

is said to be invariant under G.

{ } { }2 2 2 2
0 1(0, ) : 0 , ( , ) : 0, 0 .T T

Z Z Z Zσ σ η σ η σΩ = > Ω = > >

2 2 2 2 /2
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Definition: (Invariance & maximal invariance of a statistic)
A statistic t(x) is said to be invariant if

holds and is said to be maximal invariant if in addition

Remark:
The distribution of a maximal invariant statistic T= t(X) 
depends only on a parameter vector of the same dimen-
sion as T. Thus the invariance principle leads to a reduc-
tion of the parameter space.

1 2 2 1( ) ( ) implies ( ) for some .G= = ∈t x t x x g x g

( )( ) ( ) and G= ∀ ∈ ∀ ∈t x t g x x g



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 78

Theorem:
Let t(x) be a maximal invariant statistic with respect to G. 
Then, a test φ(x) is invariant if and only if it depends on x
only through t(x), i.e. there exists a function h such that

Remark:
For an invariant test problem one would like to find a max-
imally invariant statistic t(x). This statistic is then used to 
construct invariant tests. Within the restricted class of in-
variant tests, it is often possible to find a uniformly most 
powerful tests which is termed uniformly most powerful 
invariant test.
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Exercise 4.3-6: 
Invariant t-test

Exercise 4.3-7: 
Detection of a deterministic signal with unknown ampli-
tude in Gaussian noise with unknown scaling
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Linear Hypotheses and Least Squares Estimation
An area for the application of the invariance principle are 
linear hypotheses, where we assume that the data X can 
be modeled by

with            and            unknown. 
Hence, for a given observation vector x the least squares
estimate is obtained by minimizing 

with respect to   . After equating the gradient  

( ) 2
1, , ; 1, ,

, and (0, ),ij n Zi n j p
h σ

= =
= + =X Hθ Z H Z I

 



2 0Zσ >p∈θ 

( ) ( ) ( ) 2T T T T T Tq = − − = − +θ x Hθ x Hθ x x θ H x θ H Hθ

( ) 2 2T Tq∇ = − +θ θ H x H Hθ
θ
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to zero, i.e.                , we can derive the estimate

Furthermore, the minimum of the sum of squares 

provides by

an estimate of     , where

ˆ( )q∇ =θ θ 0
1ˆ ( ) ,    if rank( ) .T T p−= =θ H H H x H

( ) ( )1 1ˆ( ) ( ) ( )

( ) ( ) ( ) ( )
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TT T T T

T T T

T T T T
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= = =
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x Px x Px x I P I P x
x P P x x P x P xx

1 1( ) and ( )T T T T− ⊥ −= = − = −P H H H H P I P I H H H H

2 ˆ( ) ( )s q n p= −θ
2
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are projection matrices, which project a vector by 
Pa and P⊥a into R(H) and N(HT), respectively.

Statistical properties of the least squares estimator

( )1 2 1

2 2 2 2

2

2 2

2
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ˆb) ( ) , where ( ) ( )
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Geometrical interpretation of least squares estimation
The necessary condition

indicates that the vector-valued residual is orthogonal to 
the linear subspace spanned by the columns of 
the matrix H. If the columns of H are linear independent, 
i.e. dim(V1) = p, the vector           

is the orthogonal projection of x in V1. Thus,       is inde-
pendent of the coordinates in V1, so that one can choose
the basis of V1 such that the columns of H become ortho-
normal, i.e. HTH = Ip. Moreover,                        holds. 

ˆ( )T − =H x Hθ 0

1ˆ ( )T T−= =Hθ H H H H x Px
ˆHθ

1E( ) V= ∈X Hθ

1
nV ⊂ 
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Let V0 be a linear subspaces of V1. Then the hypotheses
H0 and H1 are said to be linear if

Now, supposing

one has to test the hypothesis
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Thus, if the hypotheses H0 and H1 are assigned to linear 
spaces appropriate detection problems can be defined.
Assuming that signals and interferences span the space 
V1 and interferences only span the subspace V0, then an 
element from V0 is interpreted as interference and one 
from V1 as signal plus interference. 
If e.g. V0 contains a dc component, then the dc compo-
nent of a signal would be interpreted as interference and
would therefore be undetectable. 

{ }
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Invariance properties of least squares estimation
The test problem (α,H0,H1) is invariant with respect to
a) arbitrary one-to-one transformations in V0, orthogonal

transformations in              , orthogonal transforma-
tions in , i.e. in the signal space of interest. 
Maximal invariant are then

b) positive changes of scaling. Maximal invariant is then

1
nV ⊥ ⊂ 

0 1V V⊥ ∩

1 1 1

1

ˆ ˆ ˆ ˆ ˆ ˆ( ) and ( ) , 

where ( ) with .
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Statistical properties of the maximal invariant statistics

1

1

0
2 2 2 2
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a) Distributional properties of ,  and  under  
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Example: (F-test, least squares estimation) 
Now, we consider the detection problem

Application of the former results for p1= p provides the 
F-distributed maximal invariant statistic
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Since the noncentral F-distribution possesses monotone 
likelihood ratio the test function

defines a uniformly most powerful invariant test. For a 
given PFA=α the threshold     can be obtained from

where                     does not depend on     , i.e. the test 
provides a so-called constant false alarm rate (CFAR). 
Finally, the PD of the test can be calculated by

with                           (non-centrality parameter). 
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Exercise 4.3-8: 
Detection of superimposed sinusoids with unknown am-
plitudes and phases in white Gaussian noise with un-
known variance
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4.3.5 Maximum Likelihood Ratio Test 
If the methods considered up to now do not allow to con-
struct uniformly most powerful tests, maximum likelihood
ratio tests (MLRT) also known as generalized likelihood 
ratio tests (GLRT) are frequently applied. 
Definition:
For the test problem                  versus                 the max-
imum likelihood ratio test is defined by

where κ has to be determined so that 
0

sup ( | )1 if  ( )
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Remark:
The maximum likelihood ratio test is sometimes defined 
in a slightly different form by 

For              the two definitions coincide due to

1 1

0 0 0

sup ( | ) sup ( | ) sup ( | )
( ) max ,1 ( ).
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The computation of the threshold κ can be very compli-
cated. In some cases the following asymptotic result can
be utilized. 
Theorem:
Let Ω be a k-dimensional interval and Ω0 an l-dimensional 
subinterval of Ω. Furthermore, suppose that certain regu-
larity conditions are satisfied. Then 

holds asymptotically, i.e. for large n.
Hence, the threshold κ can be determined by

2
02ln ( ) ~  under k lt Hχ −X

( )2
,exp 2 .k l ακ χ −=
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Example: (maximum likelihood ratio test, F-test) 
Again, we consider the detection problem

The maximization of the log-likelihood function under H1

provides the estimates, cf. Exercise 3.6-1,

and
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as well as the supremum

The maximization of the log-likelihood function under H0

leads to the estimate                    and the supremum

Hence, the logarithm of the maximum likelihood ratio is
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The function lnt(x) increases monotonic with v(x). Thus, 
a comparison of  lnt(x) with a threshold is equivalent to a 
comparison of v(x) with a threshold, i.e. the MLRT and 
F-test for p and n−p degrees of freedom are equivalent 
in this case. 
Moreover, since                provides an accurate estimate
of       and                         for large n the approximation

can be deduced and the asymptotic distributional proper-
ties of 2lnt(X) stated in the theorem can be established. 

2 22ln ( ) ln 1 ln 1
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t
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Exercise 4.3-9: 
Detection of a deterministic signal with unknown ampli-
tude η, unknown arrival time τ and unknown doppler 
shift in white Gaussian noise with unknown variance
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4.3.6 Non Parametric Tests and Invariance 
For composite hypotheses testing problems, where the 
number of unknown parameters is too large or the class 
of densities cannot be described sufficiently close, it is 
often inappropriate to try to design parametric tests in the 
aforementioned way.

Example:  (Detection of a deterministic signal with un-
known amplitude in independent and identically distri-
buted noise with unknown distribution)

0 : , 1, ,   with  E , where
 are i.i.d. with unknown density.  

k k k Z

k

H X Z k n Z
Z

µ= = =



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 99

One says that the hypotheses are not parametric. Since 
the si (i=1,…,n) are known the data can be reordered by 

in such a way that 

where at least once a < sign holds. Hence, Xik grows un-
der H1 stochastically with k and under H0 it does not. 

{ }1, , 1, , with fork k li n k n i i k l∈ = ≠ ≠ 

1

1

: , 1, , , where 

 are known with  0,  0 unknown.
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Furthermore, we suppose to know about the receiver 
system that the amplitude range of the received signal 
does not lead to saturations, i.e. it possesses an unknown 
but strictly monotonic characteristic. 
The test problem remains invariant under this aspect, if 
the observations are consistently amplified by a transfor-
mation from the group of strictly monotonic growing func-
tions which is denoted by 

Maximally invariant are obviously the size relations of the 
data among themselves, i.e. the ranks ri of the data. The 
ri (i=1,…,n) specify the number of observations xj ( j=1,

( ) 1, , .i iy g x i n= = 
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…,n) that satisfy the inequality

Thus, if e.g. ri = 3 then xi is the third smallest element of 
the set                         . 
Invariant tests depend thus only over the ranks ri on the 
data and are therefore called rank tests.
A rank test is a non-parametric test that uses for instance 
the test function

where h( i ) denotes a suitable function of the numbers i=
1,…,n. 

1
( ) ( ),n

i ii
t s h r

=
= ∑x

.j ix x≤

{ }1, , , ,i nx x x 
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Under certain regularity conditions such as normality un-
der H1 one can show that a rank test provides a locally 
uniformly most powerful invariant test for small η.
Moreover, it can be shown that this rank test applied to 
the data of Exercise 4.3-5 achieves asymptotically, i.e. for 
large n, the same efficiency as the t-test utilized there 
and that the t-test can even fail compared to the rank 
test in the more general situation described in Exercise 
4.3-5. 
However, in certain situations, e.g. for dependent data, 
the design of an appropriate rank test and the evaluation 
of its efficiency is a difficult and partly still an unsolved 
problem. 
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