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4 Signal Detection
4.1 Introduction to Hypothesis Testing

Introductory Example
X, =ns,+Z, (t=1...,n) or X=ns+2Z
with X=(X,,...,X ), s=(s,...,s,) and Z=(Z,...,.Z ),

where X,,..., X, are assumed to be stochastically inde-
pendent. Furthermore

S, : denotes the known wave form
n > 0: indicates the unknown amplitude
Z represents white noise with Z, ~ A/(0,5%)
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Let x.,..., x, denote the observations of X,..., X . Then we
are faced with the two following Problems.

Problem 1:

Parameter Estimation, i.e. we have to estimate 7, e.g. by
means of the least squares approach, cf. Chapter 3.

s'x
s’s

A=(s's)'s'x=

Problem 2:
Signal Detection, i.e. we have to decide whether
X=nps+Z or X=2, i.e. n>0 or n=0.
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Procedure to construct a hypotheses test

1) Setting up of a hypothesis H,

X does not contain the signal waveform s, i.e.
X=Z or =0 and X~ N (0,621).

2) Setting up of an alternative H,

X contains the signal waveform s, i.e.
X=ns+Z and X~ N (7s,0:),
where 7 >0 is an unknown parameter.

3) Selection of a favorable statistic t(x) of the observa-
tion x for testing the hypothesis H,,.

4) Determination of the distribution of T ={(X) under H,.
T=t(X)=s"X with X~ N (0,0:1)=T~N(0,05s"s)
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since E(T)=s'EX=0, Var(T)=E(s"XX's)=02s"s=0".

5) Calculation of the critical region of the observations x
for discarding hypothesis H,,.

For a given size o we can derive via
a=P(T>x|Hy)=P(T/o; >«/o; | H,)
=1-P(T/o; <ik/o; |Hy) =1-®(x/07)
the critical region R,={x: t(x)e/=(x,x)}.

6) If t(x)>x one decides for H,, i.e. X contains the wave-
form s, with the probability of error c. If t{(x)< xone de-
cides for H,, i.e. x does not contain the waveform s.
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Classification of hypotheses tests

The density fy(x) of X =(X,,...,X )" is element of the
known set { £, (x |0): 8 € Q3}, where 8 denotes an unknown
parameter vector and Q the parameter space.

Binary Hypotheses Tests

Let hypothesis H, (called null hypothesis) and the alter-
native hypothesis H, (also called one hypothesis) divide
the parameter space Q into the disjoint subset 2, and
Q,, respectively. Then the test

H,: 8Q, versus H,: 0eQ,

IS said to be a binary test of hypotheses and one is test-
iIng which of the two subsets contains the unknown 6.
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Simple and Composite Hypotheses

If Q@ _(m=0,1) contains only a single element 6, the cor-
responding hypothesis H_ is said to be simple. Other-
wise it is composite.

Multiple or M-ary Hypotheses Tests

Let Q=0Q,0Q,L...uQ,, ,represents a disjoint covering
of the parameter space and let H_ denote the hypothesis
that 8 € Q_. The test

H,:0eQ, versus H,:0 e, versus ...

. versus H,, ,:0€Q,, .

Is called multiple, or M-ary, hypothesis test.
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Exercise 4.1-1:
Introductory example

Exercise 4.1-2:
M-ary communication
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Testing of binary hypotheses

Atest of H, versus H, is described by a test function ¢
(function of the observation x) that satisfies 0< ¢(x)<1.

The value ¢(x) obtained for a given observation x means
that with P=1- ¢(x) the hypothesis H, and with P= ¢(x)
the hypothesis H, should be selected.

If #(x) can take only the values zero and one, i.e.
1 ifxeR,
X) = :
px) {O elsewhere

the test is termed deterministic, where R, denotes the
so-called critical region.
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It is desirable to construct a test function ¢ such that the
probability to deciding for

— H, even though H, is correct (probability of type 1 error)
— H, even though H, is correct (probability of type 2 error)

IS minimized.
Unfortunately both probabilities can not be controlled

simultaneously. Therefore one assigns a bound to the
probability of the type 1 error by imposing the constraint

a > E(¢(X)) = jRn d(x)f, (x|0)dx VB eQ,
which simplifies in case of a deterministic test to
o> E(1RC(X)) = jR f(x|8)dx VOeQ,.

(o
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Subject to this constraint it is then desired to minimize the
probability of the type 2 error or equivalently to maximize
the so-called power function

B,(8)=E(4(X)) = [ () (x|0)dx O eQ,
which in case of a deterministic test can be expressed by
B,(8) =E(1x (X)) = jRC f(x|8)dx VOeQ..

The level of significance o with 0<a<1 is called the size
of the test. The probability 5,(8) of correctly accepting H,
IS said to be the power of the test.

#(x) is said to be a uniformly most powerful (UMP) test
of the test problem (o, H,,H,) if the inequality

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 12
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p,(0)=4;(8) VvOeQ,
holds for any test ¢(x) of (o, H,y,H,).

Cross reference of statistical terms

Statisticians

Engineers

Observations x

Receiver output data

Null hypothesis H,

Noise only hypothesis

Alternative hypothesis H,

Signal + Noise hypothesis

Test function ¢(x)

Detector

Size of the test «
Probability of type 1 error

Probability of false alarm (P,)

Power of the test 5,(0) V0 € Q)

Probability of detection (Pp)

Probability of type 2 error

Probability of miss (P,, = 1-Pp)
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4.2 Simple Hypothesis Testing
Let H, and H, be simple hypotheses, i.e.
Q,=1{68,} and Q, ={6,}.
In this case one only has to distinguish whether
fX(X)ZfX(X|90)=fX(X|O) or fx(x):fx(x|91):fx(x|1)-

4.2.1 Neyman-Pearson Hypothesis Testing

For binary hypotheses tests with simple hypotheses the

following theorem, known as the fundamental lemma of
Neyman-Pearson, holds.
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Theorem:
Let H, and H, be simple hypotheses with corresponding

densities £, (x|0) and £, (x|1).
1) For testing H, against H, there exists a test ¢ and a
constant x such that

a) B,(0)=] #(x)fi(x|0)dx =g,

1 if £ (x| 1) > &1, (x| O)
{o if £(x | 1) < xf, (x| 0)

b) #(x)=

2) If ¢ satisfies 1a) and 1b) for some x then ¢ is most
powerful for (o, H,,H,).
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3) If ¢ is most powerful for («,H,,H,) then for some « it
satisfies 1b) almost surely and it satisfies also 1a) un-
less there exists a test of size < a and with power 1.

Proof of 1):
Let g(k):P{fX(X|1)> kfX(X|O)|HO}
:P{T: x(X[1) >k | £, (X]0)>0, HO}:1—FT(k).
£ (X]0)

Thus g(k) is non-increasing, right continuous, g(—)="1
and g(«)=0. Given any o (0<a<1) and let k=« be such
that g(x) < a < g(x —0) the test ¢ can be defined by

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 16
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1 if £,(x|1)>xf, (x]0)

0 if £,(x|1)<xf, (x]0)
px)=y__a-9g(x) if £, (x|1)=x £, (x]0), g(k —0)—g(x)>0

9(x-0)-9g(x)

arbitrary if £, (x|1)=x1,(x]0), g(x-0)—g(x)=0
with
£,(0)= [, #(x)f, (x| 0)ax

= 1-P{f (X |1)> i (X[ 0)| Hy } +0-P{ (X |1)< s (X|0) | H, | +

2=9(K) _ prr x|N)=xf (x|0)|H
oo o P IKKID=k (X101,

=g(x @ —9(x) xk—0)—-g(x))=qc.
ef )+g(K_O)_g(K)(g( )-g(x))=c

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 17
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Proof of 2): .
Suppose ¢(x) satisfies 1a) and 1b) and ¢(x) denotes any
test of (a,H,,H,) we can argue as follows.

B(0)=[  x)f(x[0)dx <a =] ¢(x)f(x]0)dx
With the sets
:{x: ¢(x)>¢5(x)} and S. :{x: ¢(x)<$(x)}
we can state
if xeS. then ¢(x) >0, i.e. f,(x|1)> xf,(x]0)
if xeS_ then ¢(x) <1, i.e. f,(x|1)<xf,(x]0).
Hence,

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 18



[, (00— 00 (5x | ) - i (x | 0)) dx =
~Js.us. (¢(X)— &(X))(fx(x | 1) — xfy (X | 0)) dx >0

and the difference in power between ¢(x) and any #(x)
of (a,Hy,H,) therefore satisfies

jRn(czﬁ(x)—q’i(x))f (x[1)dx = 8,(1)- B;(1) 2
> [, (#(%) = (%)) (x]0)dx = ,(0) - 5;(0) > 0
as was to be proved.

Thus, the fundamental lemma of Neyman-Pearson pro-
vides an approach for constructing a most powerful test
for (a,Hy,H,).
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Examples to the Neyman-Pearson Approach

In the following we assume n=1, i.e. x=Xx.

1) For P{f,(x|1)=«xf.(x]|0)|H,} =0 the test function is
given by

1 if x> x, ! f.(x]0)
d(x)=<0 if x < X,

e.g.0 if x=x, 1
with
a :jjfx(x |0)dx.

H, Xo H,

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 20
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2) For P{f,(x|1)=«f,(x|0)| H,} = p>0, cf. figure below,

A
w0 Tt (x11)

) X ):(0 X, t

the test function can be defined by
1 if x> x,

P(x) = - @ —9(x) if x, <x<x,
9(x-0)-9(x)

0 if x <x,

with
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g(x) =P {f, (x|1)> & f, (x]0) | Hy} = j: f,(x]0)dx

p = I (x|0)d

Moreover, for this case another most powerful test ¢(x)
can be constructed by

_ 1 if x > X, 05=::Ofx(x|0)dx
N 0 ifx<x with % ”
< X, -| fX(x|0)dx+jX . (x]0)dx

For £, (x]0)=const. in (x,,X,) the boundary x, is given by

X, = X, (a—j” fX(x|O)dx).

Xo = X5 —
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Exercise 4.2-1:
Simple Hypothesis testing between two normal distribu-
tions with unequal mean and variance
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General description of the signal detection problem

H,: X=U, i.e. noise only, f, (x)=1,(x)=1(x]|0)

H,: X=S+U, i.e. signal + noise, f, (X)=f_ ,(X)=1(x]|1)
Now, we are looking for a detector ¢(x) of the problem

(a,Hy,H,), whereby the level for the probability of false
alarm P, =4,(0)=« is given.

For the detector ¢ the probability of detection P,=/,(1)
is determined, where P, is a function of a =Pg,.

The probability of detection P, as a function of the pro-
bability of false alarm P, is termed receiver operating
characteristic (ROC).
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Properties of P, (Pr,)
If §(x) is a most powerful test for (o,H,,H,) we can state:

1) P,(Pg,) is non-decreasing and concave in 0<P,,<1,

2) P,(Pg,) is continuous o t
in 0<Pg, <1, 1

3) Py(Pr,)/ P, is non-increasing
in 0<Pg, <1,

4) limp__ 4 Pp(Pea)! Pea=1,
5) 0<Po(Pey)! Pry<1/Pey. | 1 p
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Exercise 4.2-2:
Particular cases and most powerful tests
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4.2.2 Most Powerful Tests for Normal Variates

According to the Neyman-Pearson Lemma a most pow-
erful test asks whether

f(x]1) 2 x 1 (x]0).

Since density functions of normally distributed random
vectors X satisfy f,(x)>0 one can also ask whether

Ay (X) = (X | 1)/F, (x| 0) = «
or
(A (X)) =In(£, (x| 1)) =In(£ (x| 0)) = In(x).

The function A,(x) and In(A,(x)) are termed likelihood
ratio and log-likelihood ratio, respectively.
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Let £, (x|0) be the density of N, (My,,Zxx,) under H, and
f(x|1) be the density of N, (My 1, Zxy ) under H, with My,
#My , and/or Z,, ;#Z,, . Hence, the log-likelihood ratio

1 _
In (Ax (X)) = 5 {In(det 2,x0)—In(detZ,, )+ “)T(,ole(,o“x,o

B “)T(,1Z)_(1(,1|-‘x,1 T XT(Z)_(;(,O B Z)_(l(n ) X}

T (U)T(nz)_(;m - ”)T(,oz)_(l(,o )X.
provides a most powerful test
4 (x) = {1 if In(Ay(X))>In(x) resp. t,(x)> &

0 elsewhere
for (a,H,,H,), where
Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 28
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_ _ 1 _ _
ty (X) = (“)Tm Zx;(n - ”)T(,o Zx;(,o)x T EXT (Zx1x,o - Zx1x,1 )X
and

=In(x) - 1(In(det Zxx,o )—In(det zxx,1) +

+ Mo Zxxo Mxo — Mt Zxcs My )-

Detection of a known deterministic signal in Gaussian
noise with known distribution

Hy : X=U, £ (x)=1y(x)=f(x]|0), X ~ N (Hy,Zyy)
H,: X=U+s, f,(x)=fy,(X)=f(x]1), X ~N (M, +8,Zy,)
Thus, the log-likelihood ratio can be expressed by
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1 . _ _
IN(Ay (X)) = E(pﬂ UMy —(My +8) Zoy (M + s)) +8'Z X

= —%ST T,S—-s I Z, +t ()

with
t (X)=8"Z, X

For the particular case that U is a sequence of white noise
Z with Var(Z)=1,i.e. U=Z~ N (0,l), we obtain

t(X)=s"x =K =In(k)+ %sTs.

The critical region R, ={x: t,(x)>x} is then the set of all
points that are lying above the plane tx(x)stx:E.
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Prewhitening Interpretation

An invertible linear transformation of normally distributed
data does not change the properties of the test problem.

As an particular example we consider
Z=C'(U-p,)
with
>,=CC" and I, =(C")C,
where Z is white noise with Z ~ N (0,1) and the inversion
of the transformation is given by
U=CZ+pu,.

Hence, due to the transformation

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 31



Y=C'(X-u,)
the test problem can be reformulated as follows.
H,: Y=C'(U-p,)=Z, Y ~N_(0,])
H: Y=C'(U+s—p,)=Z+C's =Z+s, Y ~N (s,
Since the noise model U ~ N (m,,Z,,) is mapped into the

white noise model Z ~ N (0,1) the transformation is called
prewhitening.

The log-likelihood ratio is given by
IN(Ay(y)) = —%§T§+§Ty——%s S +t, (y) = In(Ay(x)),

whereby the transformation does not alter the value of the
log-likelihood ratio.

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 32
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If C~' is selected as a lower triangle matrix (Cholesky de-
composition of 2,;) the transformation can be formulated
as a causal, digital, time-variant filtering procedure.

t
Y,=> (X, —uy )h,., where C"'=(h,, )withh_=0fort<z
=1

Matched Filtering Interpretation

Suppose Y represents a sequence of a time discrete sto-
chastic process Y, (t=1,...,n). Then the time-invariant fil-

ter with impulse response

ﬁ §n—r T=1,...,n
0 elsewhere

and filter output
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:Zﬁ y,. = t(y)=8"y=v

=1

is called matched filter for §=(S,,...,S )" in white noise Z.
The filter with impulse response

=1...,n
h =9 7 . where g’ =s'L,
0 elsewhere

and filter output
w,=> hx_ = t(x)=g'x=w,
=1

is called matched filter for s =(s,,...,s. )" in colored noise
U with covariance matrix

Z, = Toeplitz(c,,(0),...,c (N —1)).
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¥, HSB

Calculation of k=x(P-,)and P,=P,(P:,)
The test function

¢Y(),):{1 if t,(y)=8"y>In(x)+8'8/2=x¢

0 elsewhere
Is most powerful for (a,H,,H,), where « has to be deter-
mined such that the P., equals the predefined .

Now, employing the statistic T, =t, (Y)=s'Y we can write
H,: T,~N(@,s's) and H,: T, ~ N(8's,8"S)
such that the probability of false alarm is given by
P,=a=P(T, >x|H,)=1-P(T, <x|H,)

—1-0(&/J578)=1-d(N

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 35
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where Na:k/ V8’8 denotes the value, which is exceeded
by a standardized normally distributed random variable
with probability P.,= «.

Hence, the detection threshold is
=NJST8 =N,d (x=e 3 =gs=l2),

where

d?=§"8§=s"% s =n-(S/N). =(S/N),,

Is called deflection coefficient. Finally, the detection prob-
ability can be determined by

P,=P(T, >x|H,)=1-P(T, <x|H,)

~1-0((#-878)/J578) =1- 0 (N, —d).
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Receiver Operating Characteristic

1 i i . /
P.,=1-®(N,) f SR g el
and LA S
P,=1-®(N,—-d) ol i/ ya YA
with B o
d=\s's AL S =l
and e
N_ e (~o0,0) S

ol : : : :

0 02 04 06 08 1

Pea
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Exercise 4.2-3:

Detection of a Gaussian signal with known distribution
in Gaussian noise with known distribution, signal and
noise are stochastically independent
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Bounds for P, and P,

Ay (X)=F£(X|1)/f,(X]0) represents a random variable,
where f,(X|0)>0 is supposed for all X.

For the probability of false alarm
Pea = . fx(x | 0)dx

JAx (X)>K

= [ £, (A]0)dA = erererenienis (7110)dA

J K

with
v(C):In( B

=In( [, (RO 1)/f(x10))" £ (x ] 0)x

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 39
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and ¢>0 the so-called Chernoff bound

v(c)-cink [ ~cina v(c)
P.,<e e f, (1[0)d1/e™ <

J K

v(c)-cink [* ~cina v(c) _ av(c)-clnk
<e |, € f, (4[0)d1/e™ =e

can be derived.

Moreover, one can show that dv/dc is monotonic increas-
ing and that v(c) is convex. Hence, the Chernoff bound is
minimized by a ¢, with 0 <c,<w that satisfies

(solution of v/(¢)=Inx if v'(0)<Inx <v'()

c, =+0 if Inx <v'(0)

00 elsewhere

\
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Similarly, for the probability of detection

P, :’I—.Ax(x)qfx(x | 1)dx =1- A)(()()<K/\)((x)f,((x |0)dx
:1—' f, (110)dA=1- j "' f, (A]0)dA
:1_ ‘Ke v(c)-v(c)+cinA+(1-c) Inl (ﬂ/ | O)dﬂ.
JO

and c<1 a lower bound can be found by
PD >1— ev(C)+(1—C)InK "‘ecln;t fAX (/1 | O)d/ft/eV(C) >

JO

> 1 . eV(C)+(1—C)|nK- 'Ooeclnl fAX (l | O)di/eV(C) —

JO
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The bound for the probability of detection is maximized
by a ¢, with —o< ¢, <1 that satisfies

‘solution of v'(c)=Inx if v(-0)<Inx <v'(1)

C, =11 if Inx>v'(1)

—00 elsewhere

.

For normal distributions N (Mx,;,Zxx;), i=0,1 we obtain

v(c) = %In(det % o)+ 1_Tcln(det %)

_%|n(det((1 —C)E s+ czxx,o))—%(c —C*)x

—1

X (Hxo — Hx ) ((1 —C)&yxq +C&yx ) (Mxo —Mx1)
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which simplifies to
c(

v(Cc)=—

1-C) 7e_
> s'E  S=-

for the detection problem introduced on p. 30. Hence,

V(©)=|é-1]a? =ik = 6=1 K
2 2 d
together with the constraints on ¢, and c, provides
c,=c, if c>1, ¢,=¢, if c<0 and c¢c,=c,=¢, if 0<c<1.
Finally, for k=1 we obtain ¢,=c,=.5 and the inequalities

~d?/8 ~d?/8
P.,<e and P,>1-e" ~.
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4.2.3 Bayes Hypothesis Testing
Average Error Probability

Suppose the occurrence of the hypotheses can also be
considered as a result of a random experiment, where

p, =P(H,) and p,=P(H,)=1-p,

denote the a priori probabilities for the occurrence of the
null and alternative hypothesis. Now, we are interested in
finding an optimal test y(x) that minimizes the probability
of a wrong decision, i.e. the average error probability

P-(v) = P(H,) P(H1|H0} + P(H,) P(H0|H1}

Pea=p,(0) Pu=(1-5, (1)
type 1 error probability type 2 error probability
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x G oyl scinces

Since

Pe(w) = o[ w () (x| 0)dx +p, [ (1= (x))fi (x| 1)aix
=P+ [ w(x)(B (%[ 0)— py (x| 1)) dx

the test function that minimizes P is given by
{1 if p, i (x| 1) > py (x| 0)
0 if p,f(x|1) < pyfy(x]0)

This test is a special case of the more general Bayesian
approach. It is for p, >0 obviously a most powerful test for
(a,,Hy,H,) with

o, = jRn w(x)f (x|0)dx and «=p,/p,.

w(X)=
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If the prior probabilities are equal, i.e.
1 iff(x|1)>1(x]0)
0 iff(x|1)<Ff(x]|0)

the hypothesis with the larger conditional likelihood is cho-

sen and the test is termed (conditional) maximum likeli-
hood test.

(X)=

Moreover, exploiting Bayes rule

p(H |x)= WXIHIP(H) _G(xIDp
" f (X) f, (X) .

where
fx(x) = Py fx(x | O)+ P; fx(x | 1)
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does not depend on the true hypothesis, the test can be
expressed by

(x) 1 ifP(H,|x)>P(H, |x)

X) =

P00 i P(H, | x) < P(H, | x)

and is therefore called maximum a posteriori (MAP) test.

Bayes risk

Now, we are going to generalize the former approach by
assigning losses to each type of error, i.e.

L,, = loss of a correct rejection,

L,, = loss of a miss,

L,, = loss of a false alarm,

L,, = loss of a correct detection,
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iIntroducing the risk

(Loo{D(Ho|Ho)+L1o(D(H1|Ho) if 0=0,
(1—ﬁ;(0)) Pea =,YB,,,(0)
Ry [0)=1 .
L01P(H0|H1)+L11P(H1|H1) it 0=0,
PM=(1:ﬂW(1)) Po=bw(1)

and defining the expected risk
Rw)=E(R(w18))=>"" OZ, Li P(H [H;)P(H,)
as Bayes risk which can also be expressed by
R(w)=Leo (1 5,(0)) Py + Loy (1= 8,(1) p; +
+Ly, 5,(0)p, +Lyy B, (1) P
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R(W) = Loo Po +Lo1 P; +§L10_Loo)po ,BW(O)—(L01—L11)p1 :BW(1}

JRn v (X)[(L1o —Loo) Po fx (X10) - (Lo1 —Ly1) py fx (X]1)] dx

the test function v (x) should be one only if the expres-
sion in rectangular brackets is negative, i.e.

(Lig—Lyo) Py i (X[ 0) < (Loy— L) p, Fi (X | 1)

Thus, assuming L,,>L,, and L,,>L, the test function that
minimizes R(y) is given by

{1 if £, (x|1)>x 1, (x]|0) (L, —Ly,) Py

w(X)=

_ , Where k= .
0 if f(x]1)<xfy(x]0) (Los—Li1) P
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Exercise 4.2-4.
Binary Signal Detection, MAP hypothesis test
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Multiple Hypothesis Testing
Here, we wish to decide among M possible hypotheses.
H,:0=0, versus H,:0=0, versus ...
. versus H,, ,:6=0,, ..
The loss assigned to the decision to choose H; when H,

is true is denoted by L. Hence, the expected/Bayes risk
can be expressed by

M-1 M -1
R(y)=3" "> 'L, P(H, | H,)P(H,).

Our goal is now to construct a test function y(x) that takes
on values in the set {0,1,...,M—1}, where y(x)=m corre-
sponds to selecting H_.
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Let R,...., R,,_, denote the partitioning of the observation

space for deciding H,,..., H,,_, respectively, so that
M—-1M-1

Ry)=> > L, jR, f (x| H,)P(H,)dx
i=0 j=0 ’
M1 M-
zsz L, f (x| H;)P(H,)dx
i=0 " j=0
—1 M- M1
-2 IR,- _ OL,.j P(H, | x)f, (x)dx = Z(;jR L. (x)f, (x)dx
= J= =
where
L(x)= Z P(H.|x), i=0,...M-1

describes the average loss of deciding H. if X is observed.
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Now, each observation x has to be assigned to one and
only one R,. The assignment of x to R; contributes to the

Bayes risk with L (x)f, (x)dXx.
To minimize the Bayes risk we should assign x to R, if
k = argmin {L,(x)}.

ie{O,...,M—'I}
Hence, the test function is given by
0 if L,(x)< rglon{L,(x)}
1 if L(X) < mi1n{L,.(x)}

W(X)=<:

{L(x)f
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For the loss function defined by
AR INEY
Ly _{O ifi=j
l.e. R(y)=Pg, we have to minimize
1

L(x)= Mz P(H.|x) ZP(H |x)-P(H,|x), i=0,...,M-1

J=0,j#i
or equivalently to maximize P(H. | x) with respect to /. Since
one seeks to maximize the a posteriori probability

0 if P(H,|x) > rrlygx{P(H, )}
w(X)=1: :
M-1 if P(H,_ 1|x)>mA§1>1<{ (H.|x)}

.

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 54



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Is called M-ary maximum a posteriori (MAP) test.
If the prior probabilities are equal and therefore

P(H.|x) = f(X|H,)P(H.) _ Af;(_gx | /) .
i (x) Z,-:O fe (x| 1)
we can conclude that to maximize P(H.|x) we only have
to maximize f,(x|/). Hence,

0 if £, (x]0) > max {f, (x | 1)}

, 1=0,....M-1

w(X)=-: ;
M =1 if fy(x| M —1)>max{f (x| )

which is known as M-ary maximum likelihood (ML) test.
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Exercise 4.2-5:
Multiple Signal Detection, MAP hypotheses test
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4.3 Composite Hypothesis Testing
4.3.1 Sufficient Statistic

A function T=t(X) that is only depending on the observa-
tion model X is called a statistic.

Definition: A statistic T=t(X) is called sufficient for the pa-
rameter 0 if the conditional distribution of X given T=t(x)
Is independent of 0 for all t, i.e.

Fo (x| T=1(x);0)=F (x| T =t(x)).
Because the conditional distribution has to be determined
a direct evaluation of sufficiency is usually difficult.

Fortunately, the following theorem exists whose condi-
tions can be verified easily.
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Theorem: (factorization theorem for densities)

A necessary and sufficient condition for a statistic T= t(X)
to be sufficient is that there exist non-negative functions
g(t]|0) and h(x) such that £, (x | 0) satisfies

f(x18) =g (t(x)]8)- h(x).

Minimal Sufficient Statistic
If for any sufficient statistic T' there exists a function s
such that T=s(T").

Complete Sufficient Statistic

A sufficient statistic T is said to be complete if condition
E,(f(T))=0 for all 8cQ implies f(T)=0 with probability 1
for all @.
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Exponential Families

A family {Fx(x | 0)} of distributions is forming a k-dimen-
sional exponential family if the distributions F, (x | 0) have
densities of the form

f(x18)=h(x)-exp( Y.} £(8),(x) - B(@))

Frequently, it is more convenient to use the & as the pa-
rameters and write the density in the canonical form

R(x1§)=h(x)-exp( 21, & 1,(x) - A§))

Applying the factorization theorem for densities one can
easily observe that T=(T.,...,T,) =(t,(X),...,t, (X)) consti-
tutes a sufficient statistic for the exponential family.
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Exercise 4.3-1:
Introductory example
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4.3.2 Bayesian Approach

The unknown parameter vector of the density function
f(x|0) is supposed to be a realization 8<Q of the ran-
dom vector O that possesses the densities f,(0]|0) and
fo(0]1) under H, and H,, respectively.

The density functions of X and © are supposed to be
known. Hence, with

B,(8) = |, #(x)f(x]8)dx
the expected power of the test ¢(x) can be defined by
B,()=|_, B,(8)fs(8]i)cB
:..R” ¢(X)(IRP fx(x|9)f0(9|i)d9)dx:jRn d(X)F (X |i)dX,
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where f((x|i) can be interpreted as the density function
of X under H; which is independent of 6.

Thus, the test problem with composite hypotheses could
be transformed into one with simple hypotheses, so that
the Neyman-Pearson Lemma and the likelihood ratio

Fx|) | (x18)f(8]1)qe

T x10) T T ix10)k(6]0)ce

provide a most powerful test

e

if £,(x|0)>0

. (x|1)
¢X(X):<1 if Ay (X)= x(X|0)

0 elsewhere
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Theorem: Suppose, there exits a sufficient statistic t(x)
for 8, where 8 denotes a realization of the random para-
meter vector ©. Then, a most powerful test ¢(x) does only
depend over t(x) on x.

Proof:

In accordance with the Neyman-Pearson Lemma a most
powerful test asks whether

| f(x18)fy(8]1)d8 = x| f,(x|8)f,(8]0)d®.
Using £, (x|0)=g (t(x)|9)h(x) with h(x);tO we obtain
jR g(t(x)|0)f,(8]1)d8 = Kj x)|8)f,(8|0)de
which was to be proven.

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 63



INSTITUTE OF
WATERACOUSTICS,
i) SONAR ENGINEERING AND

5 SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Exercise 4.3-2:
Detection of a sinusoid with unknown phase in white
Gaussian noise with known variance
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4.3.3 Monotone Likelihood Ratio and UMP Tests

Definition: A real-parameter family of densities {fx(x | 9)}
Is said to have monotone likelihood ratio if there exists a
real-valued function t(x) such that for any 6 > 6 the den-
sities f,(x|€) and fx(x|6’~) are distinct and the ratio
f(x16)
f (x| 0)

IS a non-decreasing function of #(x).

=g(t(x)| 6,6)

Example: (introductory example, cf. Exercise 4.1-1,4.3-1)

n v T 2l
f(x )= (2707) 2exp[ - Z‘]exp(”szx]exr{ = s]

2
o= o 2075
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Hence, the likelihood ratio given by
. 2T T
f(x|7) — exp| 1 st exp nszx
fX(x | O) 262 GZ
=g(t(x)|0,;7) with t(x)=s"x

increases monotonic in t(x), i.e. the family {f,(x|7)} has
monotone likelihood ratio.

Theorem:
Let the random vector X have a real-parameter density

f,(x|6) with monotone likelihood ratio in {(x). For testing
Hy:Q, ={6:6<86,} against H,:Q, ={0:0>6,}
there exists a uniformly most powerful test
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1 ift(x)> &
#p(x)=<0 ift(x)<k,
y  ifFHXx)=x

where ¥ and x are determined by
B,(6,) = s(x)f(x|6,)dx =
and the power function
B,(0) =E(#(X)) = |, #(x)fx(x | 6)dx

is strictly monotonic increasing for all 8 for which
0<,(0)<1.
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Theorem:
One-parameter exponential families which possess den-
sity functions of the form

f(x|0) = h(x)-exp(5(0)t(x)-B(0))

have a monotone likelihood ratio in the sufficient statistic
t(x), provided £(0) is strictly monotonic increasing in 6.

Hence, if the distribution of X (model of the observation
vector) belongs to a one-parameter exponential family
with strictly monotonic increasing &(#), then there exits
a uniformly most powerful test ¢(x) for testing

Hy:Q,={0:6<86,} against H,:Q, ={0:0>6,}.

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 68



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Hochschule Bremen
) City University of Applied Sciences

Exercise 4.3-3:
Detection of a deterministic signal with unknown ampli-
tude in Gaussian noise with known distribution

Exercise 4.3-4:

Detection of a Gaussian signal with unknown amplitude in
Gaussian noise with known distribution, signal and noise
are stochastically independent
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4.3.4 Invariance Principle and UMP Invariant Tests
Invariant and uniformly most powerful invariant tests

Detfinition: (group of transformations)
A set G of transformations of some set X onto itself is

called group of transformations if the following holds.

1) The identity transformation belongs to G, i.e.
id e G with id(x)=x

2) G is closed with respect to inversion, i.e.
geG=9g "' eG with g7'(g(x))=x

3) G is closed with respect to compositions, i.e.
9,€G,g,eG=g,09,¢G
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Example: (scaling and translation)
Let X=1R and

G=1{0., 9ap(X)=ax+b, abeR, a=0]
for x € R. Since
1) g,,€ G, identity transformation
2)  Gya_ps € G, inverse transformation of g, ,
3) 9. an.0€ G, compositionofg, ,andg, ,
we can conclude that G is a group of transformations of

X onto itself.
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Let G denote a group of one-to-one transformations of
the sample space X onto itself.

Definition: (Invariance of a hypotheses testing problem)
A hypotheses testing problem is said to remain invariant
under transformations g(x) € G if g(x) leaves the distribu-
tion invariant in form, i.e.

P(Y=g(X)<y|8)="F,(y|8)=Fyy|8=g(6))
=P(X<y|8=g(8)) with gQ)=0

and if the corresponding g(0) preserves both Q, and Q,,
so that g(Q2,)=Q, holds in addition to g(€2)=Q.
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Exercise 4.3-5:
Invariant distribution, invariant parameter space
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Example: (invariant test problem)

The problem of detecting a signal with unknown ampli-
tude in Gaussian noise with unknown variance should
not depend on the amplification of the receiver system.

Hy: X=Z,  X~N,(0,621), ©Q,={(0,6%):0%>0]
Hy: X=Z+ns, X~ N, (78,021), Q,={(n,02):n>0,6% >0}
with density

2 )—n/2

(X |1,07) = (2707, (x—7s)" (x—78),

exp .
O

where 7 and o2 are unknown.
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The transformation
Y=vX with v>0

leads to the detection problem
H,: Y=vZ, Y ~ N (0,v°c2l)
H : Y=vZ+vys, Y ~ N (vns,vio?l).
The detection problem remains invariant under the trans-

formation (positive scaling changes) since it preserves
the distribution type

f(ylva,vioy)=f(y/vinos)v™"
(y/v—ns) (y/v-ns)

2
205,

= (27[0'§ ) "2y " expd -
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£ (y|vmv2e?) = (21202 " exp {_ (y_VUS)Z(yz_W?s)}
2v o,
=f (y|7,62) with 7=v and &5 =v°c>
and the parameter set
Q,={(0,57): 520}, Q,={(7,52)": 7>0,5%>0].
as required by the definition above.

Definition: (Invariance of a test)
A test function ¢(x) satisfying

gb(g(x)) =@(X) VxeX and VgeG

IS said to be invariant under G.
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Definition: (Invariance & maximal invariance of a statistic)
A statistic t(x) is said to be invariant if

t(x)=t(g(x)) VxeX and VgeG
holds and is said to be maximal invariant if in addition
t(x,)=t(x,) implies x, =g(x,) forsome geG.

Remark:

The distribution of a maximal invariant statistic T=t(X)
depends only on a parameter vector of the same dimen-
sion as T. Thus the invariance principle leads to a reduc-
tion of the parameter space.
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Theorem:
Let t(x) be a maximal invariant statistic with respect to G.

Then, a test ¢(x) is invariant if and only if it depends on x
only through t(x), i.e. there exists a function h such that

o(x) = h(t(x)) VxeX.

Remark:

For an invariant test problem one would like to find a max-
imally invariant statistic t(x). This statistic is then used to
construct invariant tests. Within the restricted class of in-
variant tests, it is often possible to find a uniformly most
powerful tests which is termed uniformly most powerful
Invariant test.

Chapter 4 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 78



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Exercise 4.3-6:
Invariant t-test

Exercise 4.3-7:
Detection of a deterministic signal with unknown ampli-
tude in Gaussian noise with unknown scaling
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Linear Hypotheses and Least Squares Estimation

An area for the application of the invariance principle are
linear hypotheses, where we assume that the data X can
be modeled by

X=H8+Z H=(h,) and Z~ N, (0,621),

i=1,...,n;j=1,...,p
with 8 € R? and &2 > 0 unknown.
Z

Hence, for a given observation vector x the least squares
estimate is obtained by minimizing

q(8)=(x-HOe) (x-He)=x"x-20"H x +8"H"HO
with respect to 0. After equating the gradient
V,q(8)=-2H"x+2H He
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to zero, i.e. Veq(é):o, we can derive the estimate
8 =(H'H)'H'x, if rank(H)= p.
Furthermore, the minimum of the sum of squares
q(8) = (x —H(H'H)"H'x) (x ~H(H"H) 'H'x)
=(x —Px) (x -Px)=x"(I1-P) (I-P)x
=x'P"P'x =x"P'x =tr(P"xx"),
provides by
s* =q(8)/(n-p)
an estimate of o2, where
P=HHH)'H and P'=1-P=I-HHH)'H
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are projection matrices, which project a vector a eR" by
Pa and Pla into R(H) and N(H), respectively.

Statistical properties of the least squares estimator
a) ©=(HH)'H'X~ N (8,0;(HH)")
(n—-p)/o}-S* ~ 2% ,. where S*=q(8)/(n—p)

® and S? are stochastically independent

)
)

d) (O@7,S?) is a sufficient statistic for (87,c2)"
)

T

(@7,5?)" is an efficient estimator for (87,02)
.e. Cov((07,8%) )=17((8.02) )
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Geometrical interpretation of least squares estimation

The necessary condition

H (x —-H8)=0
iIndicates that the vector-valued residual is orthogonal to
the linear subspace V, c R" spanned by the columns of

the matrix H. If the columns of H are linear independent,
l.e. dim(V,) = p, the vector

HO = HHH) 'H" x = Px
is the orthogonal projection of x in V.. Thus, HO is inde-
pendent of the coordinates in V., so that one can choose

the basis of V, such that the columns of H become ortho-
normal, i.e. H'H = I . Moreover, E(X) =H8 €V, holds.
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Let V, be a linear subspaces of V.. Then the hypotheses
H, and H, are said to be linear if

Hy: (87,02) € Q, ={(8",02)": HB eV, o7 >0}
and

H,: (87,02 €Q, ={(6",07)": HB eV, \V,, o2 >0}.

Now, supposing

He = (H, Hz)(g;j =H0, +H,0, with H'H,=0,
where

H=(h,....,h ),H,=(h,,,....h ) and 8,eR", 8,eR"™"
and

Vo=span(h, ,.....h,),V;=span(h,,...,h ),

one has to test the hypothesis
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Ho: (87,02) € Q, ={(8",07)": 8,=0,8,e R"*,57>0}
against the alternative
H,: (07,07 e, ={(6",02)": 8]6,>0,8, R"", 52>0}.

Thus, if the hypotheses H, and H, are assigned to linear
spaces appropriate detection problems can be defined.

Assuming that signals and interferences span the space
V., and interferences only span the subspace V,,, then an
element from V, is interpreted as interference and one

from V, as signal plus interference.

If e.g. V,, contains a dc component, then the dc compo-
nent of a signal would be interpreted as interference and
would therefore be undetectable.
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Invariance properties of least squares estimation
The test problem (a,H,,H,) is invariant with respect to

a) arbitrary one-to-one transformations in V,,, orthogonal
transformations in V.- = R”, orthogonal transforma-

tions in VOL NV, , i.e. in the signal space of interest.
Maximal invariant are then

W =w(©,)=0'DO, and Q=q(0@)=X"X-0"HHO,
where D =(A-BC'B”) with H'H= (A Bj.

B' C
b) positive changes of scaling. Maximal invariant is then
__Wip,
Q/(n-p)
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Statistical properties of the maximal invariant statistics

a)

Distributional properties of Q, W and V under H,
Q/c3 ~ Xn_, and W/c2 ~ ;(;,

Q and W are stochastically independent,
V=(n-p)/p,-W/Q~F, .

Distributional properties of Q, W and V under H,
Q/c? ~ x%, and W/o?2 ~noncentral 42,

with noncentrality parameter 6> = @]DO, /o2,

Q and W are stochastically independent,
V=(n-p)/p,-W/Q ~ noncentral F

P1,N—pP
with noncentrality parameter 5°.
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Example: (F-test, least squares estimation)
Now, we consider the detection problem

H,:X=Z~N (0,5:1) versus H,:X=H8+Z~ N (H6,5:l)
with Q, ={(0",6%)": 07 >0} and
Q,={(6",6%)":676 >0, 05 >0}.

Application of the former results for p,=p provides the
F-distributed maximal invariant statistic

n—p.w(é)_n—p. ©'H'HO

V =v(X) = = =
%) p q® p X'X-0'HHO
T
_nop _ XPX  ith P=HHH)H
p X' X-XPX
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Since the noncentral F-distribution possesses monotone
likelihood ratio the test function

¢(x):{1 if v(X)>K

0 elsewhere

defines a uniformly most powerful invariant test. For a
given P,=a the threshold K can be obtained from

P.,=P(V>&|H,)=1-P(V<k=F |Hy),

p,Nn—p,a
where K=x(a,p,n) does not depend on o4, i.e. the test
provides a so-called constant false alarm rate (CFAR).
Finally, the P, of the test can be calculated by

Py(a,p,n,6%)=P(V>k|H,)=1-P(V<k=F

p,n—p,52,a
with 52 =0"H"HB/o2 (non-centrality parameter).
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Exercise 4.3-8:
Detection of superimposed sinusoids with unknown am-
plitudes and phases in white Gaussian noise with un-
Kknown variance
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4.3.5 Maximum Likelihood Ratio Test

If the methods considered up to now do not allow to con-
struct uniformly most powerful tests, maximum likelihood
ratio tests (MLRT) also known as generalized likelihood
ratio tests (GLRT) are frequently applied.

Definition:
For the test problem H,: 0 € Q, versus H.: 8 € O, the max-
imum likelihood ratio test is defined by

. supf,(x|0)
1 if t X
sx)= 1 THX>E k) = o2 |
0 elsewhere supf,(x]0)
0<Q,

where x has to be determined so that 5,(0) <« V0 € Q.
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Remark:
The maximum likelihood ratio test is sometimes defined
in a slightly different form by

. 7 i supf,(x]0)
px)=d ! TEHX>K i Fx) = o= .
0 elsewhere supf,(x|0)

0<Q,

For f(x) >1 the two definitions coincide due to
supf,(x|0) (supf(x|0) | supf,(x|6)
H(x)=—2 =max<{ == AL =2 =t(x).
supf,(x|0) supf,(x|0) supf,(x|0)

0<Q, | 80 y 8
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The computation of the threshold x can be very compli-
cated. In some cases the following asymptotic result can
be utilized.

Theorem:

Let Q2 be a k-dimensional interval and Q, an /-dimensional
subinterval of Q. Furthermore, suppose that certain regu-
larity conditions are satisfied. Then

2Int(X) ~ yZ, under H,

holds asymptotically, i.e. for large n.

Hence, the threshold x can be determined by
K = exp(;(,f_,,a /2)
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Example: (maximum likelihood ratio test, F-test)
Again, we consider the detection problem

H,:X=Z ~ N (0,051) versus H,:X=H8+Z ~ N (H8,57l)
with Q, = {(OT,J§ ) o2 >O} and
Q,={(67,62)":8 € R” \{0}, o2 >0}.
The maximization of the log-likelihood function under H,
Inf, (x| 8,02) = —gm(zm;)— 1 (x—H@Y (x —H8)

2
O

provides the estimates, cf. Exercise 3.6-1,
0 =(H'H)'H x
and
62 =x"P*x/n with P* =1-P, P =HHH)'H’
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as well as the supremum

~ n
Inf,(x|0,62)= —E(In(Zﬂ/n)+ In(x"P*x)+1).

The maximization of the log-likelihood function under H,

Inf, (x|0,02) = —g|n(2ﬂ(7§)— ;2
z

leads to the estimate 62 = x”x/n and the supremum

Inf, (x]0,62) = —g(m(zn/n) +In(x"x) +1).

x' x

Hence, the logarithm of the maximum likelihood ratio is

T T
|nt(x)zgm(%jzgln(1+%}:gln(1+ P v(x)).

X Px n—-p
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The function Int(x) increases monotonic with v(x). Thus,
a comparison of Int(x) with a threshold is equivalent to a
comparison of v(x) with a threshold, i.e. the MLRT and
F-test for p and n—p degrees of freedom are equivalent
In this case.

Moreover, since x"P*x/n provides an accurate estimate

of o> and (1+a/n)" ~ e” for large n the approximation
T n T n T

2Int(x):ln(1+ﬂj zln[1+x Px] - X Px

TPl 2 2
X P~x no, o=

can be deduced and the asymptotic distributional proper-
ties of 2Int(X) stated in the theorem can be established.
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Exercise 4.3-9:

Detection of a deterministic signal with unknown ampli-
tude n, unknown arrival time r and unknown doppler
shift in white Gaussian noise with unknown variance
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4.3.6 Non Parametric Tests and Invariance

For composite hypotheses testing problems, where the
number of unknown parameters is too large or the class
of densities cannot be described sufficiently close, it is
often inappropriate to try to design parametric tests in the
aforementioned way.

Example: (Detection of a deterministic signal with un-
known amplitude in independent and identically distri-
buted noise with unknown distribution)

H,: X, =2, k=1...,n with EZ, = 1,, where
Z, are i.i.d. with unknown density.
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H: X.=ns,+Z, k=1...,n, where

s, are known with »'s, =0, 7 >0 unknown.
k=1

One says that the hypotheses are not parametric. Since
the s; (i=1,...,n) are known the data can be reordered by

i €{l...n} k=1..n with i #i, for k=]
In such a way that

S <8 £...<8S
i i, i

n-1

<s,,

where at least once a < sign holds. Hence, X; grows un-
der H, stochastically with k and under H, it does not.
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Furthermore, we suppose to know about the receiver
system that the amplitude range of the received signal
does not lead to saturations, i.e. it possesses an unknown
but strictly monotonic characteristic.

The test problem remains invariant under this aspect, if
the observations are consistently amplified by a transfor-
mation from the group of strictly monotonic growing func-
tions which is denoted by

y.=9(x;) i=1...,n.

Maximally invariant are obviously the size relations of the
data among themselves, i.e. the ranks r; of the data. The
r; (I=1,...,n) specify the number of observations Xx; (j=1,
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...,n) that satisfy the inequality
X; < X;.

Thus, if e.g. r;= 3 then x; is the third smallest element of
the set {x,,...,X,..., X, }.

Invariant tests depend thus only over the ranks r; on the
data and are therefore called rank tests.

A rank test is a non-parametric test that uses for instance
the test function

t(x)=>_" s h(r,),

where h(i) denotes a suitable function of the numbers i=
1,....n.
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Under certain regularity conditions such as normality un-
der H, one can show that a rank test provides a locally
uniformly most powerful invariant test for small 7.

Moreover, it can be shown that this rank test applied to
the data of Exercise 4.3-5 achieves asymptotically, i.e. for
large n, the same efficiency as the t-test utilized there
and that the t-test can even fail compared to the rank
test in the more general situation described in Exercise
4.3-5.

However, in certain situations, e.g. for dependent data,
the design of an appropriate rank test and the evaluation
of its efficiency is a difficult and partly still an unsolved

problem.
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