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5 Spectrum Estimation
5.1 Estimation of Moment Functions
5.1.1 Ergodicity
In the following the relationship between statistical ave-
rages and time averages is considered. Suppose we 
would like to determine the mean of a stationary stochas-
tic process (Xt). For this purpose, we observe a large 
number of samples Xt(ξl), l =1,...,L and use their ensem-
ble average 

as estimate for µX = E(Xt). However, if we have access
1

1ˆ ( )
L

X t l
l

X
L

µ ξ
=

= ∑



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 4

only to a single sample xt = Xt(ξ ) for each t =1,...,N then
we can ask whether the time average 

can be used as estimate for µX. 

Definition:
Let (Xt) be a stationary stochastic process with mean µX
and covariance function cXX (τ ). Then (Xt) is said to be 
1) mean square ergodic in the mean if
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2) mean square ergodic in the covariance function if

Theorem:
A stationary process (Xt) is mean square ergodic
1) in the mean if its covariance function satisfies

2) in the covariance function if its covariance function 
and its fourth order cumulant function satisfy
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Exercise 5.1-1:
Cumulants and cumulant functions 
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Corollary:
A normally distributed stationary stochastic process is 
mean square ergodic in the mean and in the covariance 
function if its covariance function is absolute summable. 

Theorem:
A stationary ARMA(p,q)-Process possesses a absolute 
summable covariance function and is therefore mean 
square ergodic in the mean.

Corollary:
A stationary ARMA(p,q)-Process is mean square ergodic 
in the mean and in the covariance function if its white 
noise input process is normally distributed.
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5.1.2 Estimation of the Mean
Let (Xt) be a stationary stochastic process with mean µX
and covariance function cXX (τ ). For given observations 
x1,...,xN we propose to estimate µX by the time average 

which due to 

provides unbiased estimates of µX . The variance of the 
estimator     can be derived as follows.
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This result is exact for all values of N. However, if
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one can show, that 

i.e. the Caesaro sum converges to the unweighted sum 
and that consequently, 

Thus,      is a mean square consistent estimator of µX.
For large N the useful approximation 

can be applied. This may give larger/smaller values then
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the usual expression                          which applies in 
case of uncorrelated observations.
For example, if (Xt) is a stationary AR(1)-Process, i.e. 

with

we have

where     denotes the equivalent number of uncorrelated 
observations which would provide the same accuracy. 

2Var( ) XX Nσ≈

2 21 1Var( ) with ,
1 1

X Xa aX N N
N a aN

σ σ− +
≈ ⋅ = = ⋅

+ −






I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 12

Theorem:
If (Xt) is a general linear process of the form

where (Zt) is a sequence of independently and identically 
distributed random variables with

then for N → ∞ we have

with
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5.1.3 Estimation of the Covariance Function
Let x1,...,xN be N consecutive observations of a station-
ary stochastic process (Xt) with mean µX and covariance
function cXX (τ ). Then cXX (τ ) can be estimated by 
1) the sample covariance function

a) 

if the mean is unknown

b) 

if the mean is known
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2) the modified sample covariance function

a) 

if the mean is unknown

b) 

if the mean is known

The mean values of the estimators                            , 
which assume that the mean value µX is given, can be 
determined by
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If the covariance function cXX (τ ) is absolutely summable, 
the mean values of the estimators and can 
be expressed by
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and

respectively. 
Hence, we can conclude that            is an unbiased esti-
mator for cXX (τ ) and that                                 are only 
asymptotically unbiased estimators for cXX (τ ). 
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We are now going to consider the variance, covariance 
and mean square error of the covariance function esti-
mators.
The second order moments of the unbiased estimator            

can be expressed by
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with                                        Exploiting 

the covariances of             are given by

After changing the variables from n and m to t = n − m and 
n the summand depends only on t. A careful examination
of the limits of n provides the result
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where the function φ(t) is defined by

Setting now 0 ≤ τ = k = l < N, we obtain

( )
(

)

1

( ) 1

( )( )Cov ( ), ( )

( ) ( ) ( ) ( ) ( )

( , , ) ,

XX XX

N k

XX XX XX XX
t N l

XXXX

N k N l c k c l

t c t k l c t c t k c t l

t k t l

µ µ

φ

κ

− −

=− − +

− − =

= + − + + −

+ +

∑

 

0
( ) ( ) 0 .

( ) ( )

N k t t
t N k l k t

N l t N l t l k
φ

− − ≥
= − − − ≤ ≤
 − − − − ≤ ≤ − −

( ) ( )2 2( ) Cov ( ), ( ) ( ) Var ( )XX XX XXN c c N cµ µ µτ τ τ τ τ− = − =  



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 21

Consequently, if the covariance function and the fourth 
order cumulant function of (Xt) are absolute summable
the following orders of convergence hold for N → ∞.
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All the above results are easily modified for the biased 
estimator           . Since

the covariance, variance and mean square error can be 
simply derive as follows.
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and

Although the evaluation of the estimators            and         
is more difficult, cumbersome calculations demonstrate 
that similar asymptotic properties can be deduced.
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Theorem:
If (Xt) is a general linear process of the form

where (Zt) is a sequence of independently and identically 
distributed random variables with

then for N → ∞ we have

with
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5.1.4 Estimation of the Cross-Covariance Function
Let (x1,y1),...,(xN,yN) be N successive realizations of a bi-
variate stochastic process (Xt,Yt) with mean                   , 
covariance functions cXX (τ ),cYY (τ ) and cross-covariance 
function cXY (τ ). Then cXY (τ ) can be estimated by 
1) the sample cross-covariance function
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b)

2) the modified sample covariance function

a) 
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b) 

The mean values of the estimators           and , 
which assume that the mean values µX, µY are known, 
are given exemplarily for 0 ≤ τ < N by
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and 

If the cross-covariance function cXY (τ ) is absolutely sum-
mable, the mean values of the estimators
for 0 ≤ τ < N can be expressed by
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and
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respectively. 
As for the covariance function estimators, we can con-
clude for the cross-covariance estimators that           pro-
vides unbiased and                                 only asymptoti-
cally unbiased estimates of cXY (τ ).
The variance, covariance and mean square error of the 
proposed cross-covariance function estimators will be 
investigated in the following.
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We first consider the second order moments of the un-
biased estimator            which are given by

for                                       Hence, utilization of
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provides the covariances

with
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where the double sum is converted into a single sum by 
exploiting the arguments already applied for deriving the 
covariances of the covariance function estimators.
Setting now 0 ≤ τ = k = l < N, we obtain

Consequently, if the covariance functions, cross-covari-
ance function and the fourth order cross-cumulant func-
tion of (Xt,Yt) are absolute summable the following or-
ders of convergence hold for N → ∞.
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and

Since 

the asymptotic behavior of the covariance, variance and 
mean square error of the biased estimator can be 
easily deduced from the previous results. Thus
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and

The evaluation of the estimators and is more 
difficult. However, again laborious calculations show that
similar asymptotic properties can be stated.
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5.2 Nonparametric Spectrum Estimation
5.2.1 Finite Discrete-Time Fourier Transform
Let (Xt) be a stationary stochastic process. The samples
taken at the time instances t = 0,1,...,T−1 are supposed 
to be modelled by the random Variables   . 
Hence, 

denotes the finite discrete-time Fourier transform (finite 
DTFT) of the model. It is called discrete Fourier trans-
form (DFT) if only the discrete frequencies

1
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T
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t
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X X e
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are considered. The DFT 

can be efficiently determined by the so-called fast Fourier 
transform (FFT). The corresponding inverse finite DTFT 
and inverse DFT are given by 

and

respectively.
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Let wt denote a window of bounded variation with

The windowed DTFT is defined by

and windowed DFT accordingly by

Now, we suppose that the set                     can be parti-
tioned into L disjoint sets of length T' = T /L. Hence, the 
finite DTFT of the resulting L consecutive data pieces
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can be expressed by

Circular-Symmetric Complex Normal Distribution
A complex valued random vector is said 
to be circular-symmetric complex normally distributed 
with mean vector      and covariance matrix       , i.e.

if the corresponding real valued random vector

1
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is distributed as

where

Suppose is regular, then the density function of the
circular-symmetric complex normally distributed random

( )
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vector X is given by

For n = 1, i.e.                                   with 

Re(X ) and Im(X ) are independent and normally distri-
buted random variables with
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Exercise 5.2-1:
Verify the density function of a circular-symmetric com-
plex normally distributed random vector

Exercise 5.2-2:
Show the independence of Re(X) and Im(X)



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 43

Distributional Properties of the finite DTFT
Assumption:
(Xt) is a discrete time strictly stationary stochastic process 
whose cumulant functions satisfy

for all k = 2,3,...

Theorem: (properties of DTFT)
Suppose (Xt) satisfies the assumption above. 
1) XT(Ω) (0 < Ω < π ) is asymptotically complex normally

distributed with mean zero and variance TCXX (Ω).

1 1

1 1( , , )
k

X X k
τ τ

κ τ τ
−

∞ ∞

−
=−∞ =−∞
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XT(0) is asymptotically normally distributed with mean 
TµX and variance TCXX (0).
XT(π ) is asymptotically normally distributed with mean
zero and variance TCXX (π ).

2) For                                                                            
the XT(Ω1),...,X

T(ΩM) are asymptotically independent
random variables.

3) For L successive data pieces of length T', i.e. T = LT',
the XT'(Ω,1),...,XT'(Ω,L) are asymptotically indepen-
dent random variables.

0 , 1, ,  and 2 ,m m nm M T m nπ π≤ Ω ≤ = Ω −Ω ≥ ≠
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Theorem: (properties of windowed DTFT)
Suppose (Xt) satisfies the assumption above and the win-
dow wt is of bounded variation with

1) (0 < Ω < π ) is asymptotically complex normally 
distributed with mean zero and variance TCXX (Ω).

is asymptotically normally distributed with mean
and variance TCXX (0).

is asymptotically normally distributed with mean 
zero and variance TCXX (π ).

1 2
0

1.tw dt =∫
( )T

wX Ω

(0)T
wX

( )T
wX π

1

0X tT w dtµ ∫
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2) For                                                                           
the are asymptotically independent 
random variables.

3) For L successive data pieces of length T', i.e. T = LT',
the                                  are asymptotically indepen-
dent random variables.

Remark:
In case that (Xt) is a Gauss process its (windowed) finite
discrete-time Fourier transform is exactly normally distri-
buted with mean and variance asymptotically given by 
the results stated in preceding theorems. 

1( ), , ( )T T
w w MX XΩ Ω

( ,1), , ( , )T T
w wX X L′ ′Ω Ω

0 , 1, ,  and 2 ,m m nm M T m nπ π≤ Ω ≤ = Ω −Ω ≥ ≠
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5.2.2 Periodogram
Let (Xt) be a zero mean stationary stochastic process 
with an existing but unknown power spectral density func-
tion CXX (Ω) which shall be estimated. 
Now, if (Xt) can be observed at the time instances t = 0, 
1,...,T−1 the distributional properties of the finite DTFT 
suggest the periodogram defined by 

as an suitable estimator for CXX (Ω).
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Exercise 5.2-3:
Periodogram and Fourier transformed sample covariance 
function
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Theorem: (moment properties of the periodogram)
Let (Xt) be a zero mean stationary stochastic process.
1) If the covariance function of (Xt) satisfies 

i.e. CXX (Ω) is continuous, then

2) If the covariance function of (Xt) satisfies 

( ) ,XXc
τ
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i.e. CXX(Ω) is continuous differentiable, then 

3) If the cumulant functions of (Xt) satisfy 

for n = 1,...,k−1 when k = 2,3,..., then
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1 11 ( , , )
k

n X X kτ τ
τ κ τ τ

−

∞ ∞

−=−∞ =−∞
+ < ∞∑ ∑



 

( ) ( )
( )

( )
( )

2

2

2

sin ( ) 2
Cov ( ), ( )

sin ( ) 2

sin ( ) 2 1( ) .
sin ( ) 2

T T
XX XX

XX

T
I I

T

T
C O

T T

 Ω + ΛΩ Λ = +  Ω + Λ 
 Ω − Λ  + Ω +    Ω − Λ     



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 51

Exercise 5.2-4:
Proof of the Theorem if (Xt) is a Gauss process
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Corollary: 
If Ω = 2πn/T and Λ = 2πm/T with n,m = 0,1,...,T−1 the mo-
ments stated in the previous theorem can be simplified to

Assuming that the time interval [0,T ) is divided in L dis-
joint pieces of length T' = T /L the periodogram of the re-
sulting L subsequent data pieces can be expressed by
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Theorem: (distributional properties of the periodogram)
Suppose (Xt) is a zero mean stochastic process that sa-
tisfies the assumption stated on p. 43.
1) (0 < Ω < π ) is up to the factor CXX (Ω)/2 as-

ymptotically chi-square distributed with two degrees 
of freedom.

is up to the factor CXX (0) asymptotically chi-
square distributed with one degree of freedom.

is up to the factor CXX (π ) asymptotically chi-
square distributed with one degree of freedom.

( )T
XXI Ω

(0)T
XXI

( )T
XXI π
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2) For                                                                            
the                                 are asymptotically independent 
random variables.

3) For L successive data pieces of length T', i.e. T = LT',
the are asymptotically indepen-
dent random variables.

Remark:
Similar results as those stated in the previous theorems 
can also be derived for the windowed periodogram 
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5.2.3 Smoothing and Averaging of Periodograms
Although the periodogram is asymptotically unbiased it 
is due to its variance behavior an inconsistent and con-
sequently an inadequate estimator for CXX (Ω). 
However, the distributional properties of the periodogram
immediately suggest the following two improvements.
Smoothing of the Periodogram

where NΩ is a neighborhood of Ω, i.e. a set of frequen-
cies Ωm which are located around Ω symmetrically.

2

1 1

21 1( ) ( ) ( ) , ,
M M

T T m
XX XX m m m

m m

kC I X N
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π
Ω

= =

Ω = Ω = Ω Ω = ∈∑ ∑
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For 0 < Ω < π the mean and variance of the smoothed 
periodogram are given by

and

Suppose CXX (Ω) is sufficiently smooth over NΩ we can 
write for large T approximately 

( ) ( )
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Averaging over Periodograms

where L denotes the number of consecutive data pieces
of length T' and l = 1,...,L represent the corres-
ponding periodograms.
For 0 < Ω < π the mean and variance of the averaged 
periodograms are given by

and
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For a suitably chosen number of data pieces L we can 
write for large T approximately 

Remark:
Smoothing of a periodogram and averaging of periodo-
grams do not provide consistent estimators. Neverthe-
less, they allow to control the variances of the estimators 
in a desired manner by properly selecting M and L.
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5.2.4 Consistent Spectrum Estimation
Moreover, the estimators proposed in the previous Chap-
ter might become consistent if the number M used for 
smoothing or L used for averaging is growing suitably to 
infinity as the number of observations T tends to infinity.
Smoothing of the Periodogram
Let W(Ω) denote a real valued and even spectral window 
of bounded variation and finite support (−π,π ) with

and
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( ) .W d
∞

−∞
Ω Ω < ∞∫

( ) 2 1W d π
∞

−∞
Ω Ω =∫

Ωππ−

( )W Ω

0



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Then, we can define the 2π -periodic spectral window 

with scalable bandwidth and

Assumption:
The bandwidth bT obeys                        

such that 

applies for the time-bandwidth product.
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Example:
Let          , i.e. , then 

Now, we are going to estimate CXX (Ω) by 

where T is assumed to be large enough such that

Since 
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can be understood as a weighted averaging of 
the periodogram over the 

frequencies that are closest to Ω, where asymptotically

Theorem: (mean and covariance properties of )
Let (Xt) be a zero mean stationary stochastic process.
1) If the covariance function of (Xt) satisfies 
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i.e. CXX (Ω) is continuous differentiable, then

holds and             is asymptotically unbiased, i.e.

2) If the cumulant functions of (Xt) satisfy 

for n = 1,...,k−1 when k = 2,3,..., then 
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with

Corollary: (mean square consistency of             )
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Averaging over Periodograms

where the number of consecutive data pieces L(T ) and          
the length of each data piece          are functions that mo-
notonically increase with the number of observations T.
For 0 < Ω < π the mean and variance of periodograms 
averaged in this way are given by
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and

Example:
Let                                             then
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and

Theorem: (mean and covariance properties of             )
Let (Xt) be a zero mean stationary stochastic process.
1) If the covariance function of (Xt) satisfies 

then             is asymptotically unbiased, i.e.
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2) If the cumulant functions of (Xt) satisfy 

for n = 1,...,k−1 when k = 2,3,..., then 

Corollary: (mean square consistency of             )
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5.3 Parametric Spectrum Estimation
5.3.1 Parametric Models
Auto-Regressive (AR)-Process
(Xt) is called p-th order auto-regressive process (denoted
by AR(p)) if it satisfies the difference equation

where a1,a2,...,ap are constant coefficients and (Zt) is
white noise, i.e.

1
,

p

t n t n t
n

X a X Z−
=

+ =∑

2E( ) 0 and ( ) .t ZZ Z tZ c τ σ δ= =
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Thus, using the transfer function of an AR(p)-Filter and 
the power spectral density of white noise, i.e.

the power spectral density of an AR(p)-Process can be 
parameterized by its coefficients a1,a2,...,ap and the white 
noise variance      as follows.
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Moving-Average (MA)-Process
A process (Xt) that obeys an equation of the form

is called moving-average process of order q (denoted by 
MA(q)), where b1,b2,...,bq and (Zt) denote constant coef-
ficients and white noise, respectively. 

The transfer function of a MA(q)-Filter is given by
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Hence, the power spectral density of a MA(q)-Process 
can be parameterized by its coefficients b1,b2,...,bq and 
the white noise variance      as follows. 

Auto-Regressive-Moving-Average (ARMA)-Process
We say that (Xt) is an auto-regressive-moving-average 
process of order (p,q) (denoted by ARMA(p,q)) if it can 
be represented in the form
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With the transfer function of an ARMA(p,q)-Filter 

the power spectral density of an ARMA(p,q)-Process can
be parameterized by its coefficients a1,a2,...,ap,b1,b2,...,bq
and the white noise variance       as follows.
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AR-Process + Noise
A process (Yt) defined by 

is known as a special case of a more general random 
signal plus noise model, where (Zt) and (Vt) denote in-
dependently distributed white noise processes. 
After some manipulations the equation stated above can 
be reformulated via 
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into the difference equation

The covariance function and spectral density function of 
(Yt) are given by

and

respectively.

( ) ( )( ) E E ( )( ) ( ) ( )YY t t t t t t XX VVc Y Y X V X V c cτ τ ττ τ τ+ + += = + + = +

2

2
2 2

1

( ) ( ) ( ) ( ) ( ) ( )

1 ,

YY XX VV ZZ VV

p j n
Z n Vn

C C C H C C

a eσ σ− Ω
=

Ω = Ω + Ω = Ω Ω + Ω

= + +∑



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 76

Oscillation + Noise
A process (Yt) defined by

where the random amplitudes satisfy

and (Zt) denotes white noise independent of A and B, is 
known to be wide sense stationary with covariance func-
tion, cf. Exercise 2.3-1, given by

 

0 0
totally predic- Oscillationwhite
table signal noise
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Hence, the spectral density function of (Yt) can be ex-
pressed as

with

Pisarenko Model
A generalization of the Oscillation + Noise model pro-
vides the Pisarenko Model which is defined by

( ) ( 2 ).
n

nη δ π∞
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where Am and φm are independent random amplitudes 
and phases with

and (Zt) denotes white noise which is independent of Am
and φm. Finally, with the covariance function given by 

the spectral density function of (Yt) can be expressed as
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Exercise 5.3-1:
Show that the Oscillation + Noise model can be interpret-
ed as unstably rationally filtered white noise
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Exponential Model of Bloomfield
In case that nonparametric spectral density estimates or
prior knowledge about the physics provide information 
about the frequency behavior of a process, a direct mo-
deling in the frequency domain might be advantageous.
An example of such an approach gives Bloomfield’s ex-
ponential model

which is appropriate for problems where the spectral den-
sity function shows a ripple behavior. Applying the loga-
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rithm to both sides of the last equation leads to the lin-
ear model given by

Remark:
The inverse Fourier transform of the logarithm of the 
power spectral density function, i.e.

called Cepstrum, is often used in audio signal analysis.
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5.3.2 Consistent Parameter Estimators
Auto-Regressive (AR)-Process
Let (Xt) be an AR(p)-Process that can be represented by 
the difference equation

where a1, a2,...,ap are constants and (Zt) is white noise.
Multiplying both sides of the difference equation by Xt− m
from the right and taking expectations
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we obtain

For m > 0 these equations, known as Yule-Walker equa-
tions, can be expressed in matrix notation by  
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If all roots of

are lying within the unit circle one can show that the coef-
ficient matrix of the equation system , which is a sym-
metric Toeplitz matrix, is positive definite. 
Thus, assuming cXX (0),...,cXX (p) to be known the equa-
tion system can be uniquely solved for a1,a2,...,ap, e.g. 
by means of the Levinson-Durbin algorithm, and the vari-
ance of the white noise can be subsequently determined 
by the Yule-Walker equations for m = 0, i.e.
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However, cXX (τ ) is typically unknown. On the other hand 
following Chapter 5.1.3, cXX (τ ) can be consistently esti-
mated using the sample covariance function           .  
Thus, after replacing cXX (0),...,cXX (p) in the Yule-Walker 
equations by its estimates                           , one obtains 
the so-called empirical Yule-Walker equation system

for m = 1,…,p and for m = 0 the equation
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From the consistency property of the sample covariance 
function, i.e.                                      

follows

and due to the continuity of the functions 
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and

finally

and
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Moving-Average (MA)-Process
Now, we suppose that (Xt) is a MA(q)-Process that can 
be expressed in the form 

where b1,...,bq are constants and (Zt) is white noise.
Since (Xt) is a linear combination of uncorrelated random 
variables its mean and variance are given by

Furthermore, (Xt) is always stationary (irrespective of the 
values of b1,...,bq) and has the covariance function
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where E(Zt) = 0 ⇒ E(Xt) = 0 has been exploited. 
For given covariances cXX (0),..., cXX (q) the parameters 
b1,b2,...,bq and       can be determined by solving the sys-
tem of (q + 1) non-linear equations
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which usually possesses 2q solution vectors                 .
However, under the additional constraint that the MA(q)-
filter has to be of minimum phase a unique solution can 
be derived as follows.
First, the bilateral z-Transform of cXX (τ ) provides
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with

where β (z) is known as the characteristic polynomial of 
the associated MA(q)-filter.
To satisfy the minimum phase (invertibility) constraint the 
roots of β (z) and accordingly of            must not lie out-
side the unit circle.
Moreover, the roots of                                          always 
occur in pairs, i.e. if is a root then        is also a root.
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Hence, after selecting from the 2q roots of the polynomi-
al those q roots that satisfy , 
the coefficients b1,…,bq and the white noise variance      
can be determined by means of
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Generally, cXX (τ ) is unknown. Thus, replacing cXX (0),..., 
cXX (q) in             by its estimates               , we ob-
tain the empirical polynomial

whose 2q roots usually have to be calculated numerically. 
If from the 2q roots those q roots are selected that satisfy

the estimates can be 
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The power spectral density can then be estimated by

Finally, from the consistency property of , i.e.

and the inherent continuous functional relations follows

and consequently

as well as 
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Auto-Regressive-Moving-Average (ARMA)-Process
In the following (Xt) is considered to be an ARMA(p,q)-
Process that satisfies the difference equation 

Multiplying both sides of the equation by Xt−m from the 
right and taking expectations
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we obtain

where                                    has been exploited. This set 
of equations is sometimes called modified Yule-Walker 
equations.
For m = q+1,q+2,...,q+p the modified Yule-Walker equa-
tions can be expressed by
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The coefficient matrix of the equation system is obviously 
again a Toeplitz matrix but it is not anymore symmetric.
However, one can show that the coefficient matrix         is 
regular if all roots of are lying with-
in the unit circle. 
Hence, assuming cXX (0),...,cXX (q + p) to be known the 
equation system can be uniquely solved for a1,a2,...,ap.
Subsequently, the parameters a1,a2,...,ap and the covari-
ances cXX (0),...,cXX (q+p) allow the calculation of the co-
variance function cYY (τ ) of the MA(q)-process introduced
by
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as follows.

Thus, after determining the covariances cYY (0),...,cYY (q) 
the parameters b1,b2,...,bq and      can be determined by 
solving the equation system
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where a unique solution can be derived by following the 
approach mentioned in conjunction with a MA(q)-Process.
Since cXX (τ ) is typically unknown we replace it here again
by its consistent estimate            . This leads us to the em-
pirical modified Yule-Walker equation system

which for a regular         provides with 
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consistent estimates of a1,…,ap. These estimates can be 
used along with            to estimate cYY (τ ) by means of

consistently. Replacing cYY (τ ) in             by            yields 
the empirical polynomial

From its 2q roots, which are typically to be determined 
numerically, we then have to select those q roots      (n=  
1,…,q) that do not lie outside the unit circle.
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Since the roots of             are consistent estimates of the 
roots of           , the coefficients b1,…,bq and the white 
noise variance      can be consistently estimated via

Finally, the consistent power spectral density estimate of
the ARMA(p,q)-Process is given by
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5.3.3 Asymptotically Efficient Parameter Estimators 
Asymptotic Efficiency
The Cramer-Rao inequality 

provides a lower bound to the covariance matrix of 
any unbiased estimator of   , cf. Chapter 3.5. 
An estimator for which the inequality takes the equality 
sign, i.e. whose        coincides with the inverse of the 
Fisher information matrix is called efficient. 
However, estimators used in practice are often neither 
unbiased nor mean square consistent, i.e. the Cramer-
Rao inequality can not be applied. 

ˆ ˆΘΘC
θ

1
ˆ ˆ ( ) ,T T p−≥ ∀ ∈ΘΘa C a a θ a a 

( )θ
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On the other hand, one can often observe that the devia-
tion of the covariance matrix from the inverse Fisher in-
formation matrix decreases for large sample sizes N.
In these cases, estimators are typically evaluated using 
their limiting distribution. If the limiting distribution has the 
property

where

with

1
ˆ ˆ

1( ) lim and ( ) lim ( )
N N

NN N
N

N
−

→∞ →∞
= =Θ ΘΓ θ C Γ θ θ

( )1ˆlim ( ) , ( ) ,N pN
N −

→∞
−Θ θ 0 Γ θ

( ) ( )
, 1, ,

ln ( | ) ln ( | )
( ) EN

i j i j p

f f
θ θ

=

 ∂ ∂
= ⋅  ∂ ∂ 

X XX θ X θ
θ
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and X = (X1,…,XN)T, the estimator is said to be asympto-
tically efficient.

Let (Xt) be a stationary Gaussian process with zero mean 
and power spectral density                                 parame-
terized by                      .
Hence, the probability density function of the random vec-
tor modeling N consecutive observations 
of the process is given by  

Employing the rules

( ) ( | )XX XXC CΩ = Ω θ
1( , , )Tpθ θ=θ 

1( , , )TNX X=X 

1
2

1 1( | ) exp ( ) .
2(2 ) det ( )

T
NN

N

f
π

− = − 
 

X x θ x C θ x
C θ
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and

as well as the identities

and

( ) ( )E( ) tr E( ) tr ( )T T
N= =X AX A XX AC θ

( ) ( )
( )

E( ) tr ( ) tr ( )

2 tr ( ) ( )

T T
N N

N N

=

+

X AXX BX AC θ BC θ
AC θ BC θ

1
1 1( ) ( )N N

N N
i iθ θ

−
− −∂ ∂

= −
∂ ∂

C θ C θC C

( ) 1ln det ( ) ( )tr ( )N N
N

i iθ θ
−∂  ∂

=  ∂ ∂ 

C θ C θC θ
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the Fisher information matrix for a zero mean Gaussian 
random vector can be expressed by

If one parameterizes the covariance matrix according to

via the power spectral density, the Fisher information ma-

1 1

, 1, ,

( ) ( )1( ) tr ( ) ( ) .
2

N N
N N N

i j i j p
θ θ

− −

=

  ∂ ∂
=     ∂ ∂  

C θ C θθ C θ C θ
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dC e

C

π

π π

=

Ω −

− =

= −

 Ω
= Ω 

 

= Ω

∫

C θ

θ

C θ







I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 107

trix becomes 

Furthermore, under certain regularity conditions on can 
show that 

( )

( )

1

1
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N N XX N

i

XX
N XX N

j
i j p

CC

CC

θ

θ

−

−

=

   ∂ Ω= Ω ⋅    ∂  
 ∂ Ω Ω    ∂  

θθ C θ C

θC θ C




( ) ( ){
( ) ( )}

1

1

1lim tr ( | ) ( | ) ( | )

( | ) ( | ) ( | )

N XX N i XXN

N XX N j XX

C a C
N

C a C

−

→∞

−

Ω Ω Ω ⋅

Ω Ω Ω =

C θ C θ θ

C θ C θ θ 





I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 108

holds. Exploiting this result by choosing  

for i,j =1,…,p, we obtain  

,
, ,
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Maximum Likelihood Estimator
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Whittle Estimator
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Simple Approach for Designing Asymptotically Efficient 
Estimators
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