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5 Spectrum Estimation

5.1 Estimation of Moment Functions
5.1.1 Ergodicity

In the following the relationship between statistical ave-
rages and time averages is considered. Suppose we
would like to determine the mean of a stationary stochas-
tic process (X,). For this purpose, we observe a large
number of samples X.,(&), /=1,...,L and use their ensem-
ble average

i =1 X, (&)

as estimate for u, = E(X}). However, if we have access
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only to a single sample x, = X,(&) foreach t=1,..., N then
we can ask whether the time average

=—ZX

can be used as estimate for .

Definition:
Let (X,) be a stationary stochastic process with mean
and covariance function c,, (7). Then (X)) is said to be

1) mean square ergodic in the mean if
. 1 i
I!IID;JOE EN;Xt—yXJ = 0.
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2) mean square ergodic in the covariance function if

lim E (%i(xtw_:uX)(Xt_:uX)_CXX(T)j =0 Vr.

N—o0 t=1

Theorem:
A stationary process (X)) is mean square ergodic

1) in the mean if its covariance function satisfies
Zi_oo‘cxx(f)‘ < %0,

2) in the covariance function if its covariance function
and its fourth order cumulant function satisfy

D o (r) <o and D7 iy (r+m,7,n)| < 0.
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Exercise 5.1-1:
Cumulants and cumulant functions
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Corollary:

A normally distributed stationary stochastic process is
mean square ergodic in the mean and in the covariance
function if its covariance function is absolute summable.

Theorem:

A stationary ARMA(p,q)-Process possesses a absolute
summable covariance function and is therefore mean
square ergodic in the mean.

Corollary:

A stationary ARMA(p,q)-Process is mean square ergodic
in the mean and in the covariance function if its white
noise input process is normally distributed.
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5.1.2 Estimation of the Mean

Let (X,) be a stationary stochastic process with mean
and covariance function c,, (7). For given observations
X4,..-,Xyy WE propose to estimate U, by the time average

which due to

E()?):E(%ZN;XJ ZE( )= Nyx m

provides unbiased estimates of x, . The variance of the
estimator X can be derived as follows.
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This result is exact for all values of N. However, if
Zi_w CXX(Z') < O
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one can show, that

im Y [ ( m (D)= 3 Ce(£) = o (0),
)

N=eo SN r=—o0

l.e. the Caesaro sum converges to the unweighted sum
and that consequently,

Var()_()z1 g [1—mjc () > 0
N N ) N 7

r=—(N-1)

Thus, X is a mean square consistent estimator of .

For large N the useful approximation

Var(X) z%CXX(O)

can be applied. This may give larger/smaller values then
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the usual expression Var(X) ~ % /N which applies in
case of uncorrelated observations.

For example, if (X)) is a stationary AR(1)-Process, i.e.
X +aX _ =7, |a|<1

with w
2 2 T
o o,(—a

C..(Q)= Z_ and c..(r)=—%
o) 1+ ae ] o (7) 1-8°

we have

_ 02 1-a o? 1+ a
Var(X)=2X._—9_%x  \ith N=N.——Z
N 1+a N 1-a’

where N denotes the equivalent number of uncorrelated
observations which would provide the same accuracy.
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Theorem:
If (X,) is a general linear process of the form

Xt = luX + Z hTZt—Z"

T=—00

where (Z,) is a sequence of independently and identically
distributed random variables with

E(Z,)=0, E(Z})<® and )

then for N - « we have
\/N(;(_,Ux) ~ (O’CXX(O))

N ‘hf‘<oo

T=—00

with
C,(0)=>" ¢, (o).

7=—-=00
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5.1.3 Estimation of the Covariance Function

Let x,,..., x,, be N consecutive observations of a station-
ary stochastic process (X,) with mean ., and covariance
function c,, (7). Then ¢, (7) can be estimated by

1) the sample covariance function
1 N-|z|

a) ¢ XX(T)_NZ(Xt+|f|_)_()(xt_)_()’ [7|<N

t=1
if the mean is unknown

) 1 N
b) Cﬁéx(f)=ﬁZ(Xt+|,|—ﬂx)(xt—ﬂx), [7]<N
t=1

if the mean is known
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2) the modified sample covariance function

1 N-|z|

a) ¢ = X, =X x,—X), <N
) xx (7) N—_|z| H( t+7] )( t ) 7]
if the mean is unknown
. (G
b) Cf(x(f):— Z (Xt+|z'|_lLlX)(Xt_lLlX)’ |7[<N
N-|z| 5

if the mean is known

The mean values of the estimators ¢4, (z) and ¢4, (z),
which assume that the mean value y, is given, can be

determined by

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 14
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N-|7|
E(éﬁéx(f)) B N_1|r| Z E((XHM ~ Hx (X _”X))
N—|z|
:N+|| 4 Cyx (7) = Cyx (7)
E(Cféx(f)) ( _|T|~ (T)j ( mijx(T)
N
—CXX(T)+O(1/N)

If the covariance function c,, (7 ) is absolutely summable,
the mean values of the estimators ¢,,(7) and ¢,,(7) can
be expressed by
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_ N—1Ir| Ntlle(((XH,TI — )= (X = 1))
(X = 1) = (X = 1))
_ N—1If| iz:rl(cxx(rHVar()_()
_%i(cxx(tﬂﬂ_n)"‘Cxx(n_t))j
— G, (7)+ O(1/N)
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_ (1_%(@“(7”0%))

= Cy, (7)+ O(1/N),

respectively.

Hence, we can conclude that ¢4, () is an unbiased esti-
mator for ¢, (7) and that C, (7), C4(7), C,x () are only
asymptotically unbiased estimators for c,, (7).
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We are now going to consider the variance, covariance

and mean square error of the covariance function esti-
mators.

The second order moments of the unbiased estimator
C (7) can be expressed by

(N=K)(N—1)E (&l (k) Ehn(l)) =

N-k N—I|

- E((ka_ﬂx)(xn—,UX)(XmH—,uX)(Xm—,uX))
n=1 m=1
N-k N-I|

- (Cxx(k)CXX(I)+Cxx(n_m+k—l)CXX(n—m)+
n=1 m=1

Crx(N—M+K)Cy(N—M—1)+ iy (N—m+k,n—m, 1))
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with0 <k <N and 0</ < N. Exploiting
Cov (Ei(k), Eiol) = E(C5x(k), (1)) = C (k) €yl
the covariances of ¢4, (r) are given by

(N—K)(N—1)Cov (i (k),Cixll)) =

=Y Y (cx(n—m+k=1I)Cy, (n—m)

n=1 m=1

+Cyu(N—M+K)Cy (N—M—1)+ Ky (N—M+k,n—m,1)).

After changing the variables from nand mto t=n—-m and

n the summand depends only on t. A careful examination
of the limits of n provides the result

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 19



(N - k)(N—I)Cov(éf‘(x(k),éf(x(/)):

= ¢ (xx (t+k— l) (t)+cxx(t+k)cxx(t_l)

t=—(N—I)+

+ Kyoox (E+ K, L)),
where the function ¢(t) is defined by

(N-k-t t>0
H(t)=IN—k (I-k)<t<0
N-I-t —(N- n<t<4/;o

Setting now 0 < 7=k =1/< N, we obtain
(N=7)?Cov(Ciy (7),Chx (7)) = (N—7)*Var 4y (7)) =

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 20
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= > (N-r-]t)x

t=—(N—-7)+1

X (Gl (1) + o (E+7) Co (=) + K (E+7,1,7)).

Consequently, if the covariance function and the fourth
order cumulant function of (X)) are absolute summable
the following orders of convergence hold for N — .

Cov (S (k). (1)) = O(YN),  Var (s (r)) = O(1/N)
and
MSE (&4 (7)) = Var (Ciy ( ))+b2(cggx(r )=O(1/N).

~O(1/N) -0

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 21
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All the above results are easily modified for the biased
estimator ¢4, (7). Since

(N-7)

Chy (7) = Ch(r) 0<z<N

the covariance, variance and mean square error can be
simply derive as follows.

Cov (& (K), &L (1)) = Cov((N 10 6ééx<k>,¥6;x</>j
(N-K)IN-1) v ) & () = of ]
S )Qov(cxx(vk),cxx(l))) = o(ﬁj,

-0(1) =O(V/N)
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Var(éf(x(r)) = Var(
-o(%)
N
and

MSE (&l (7)) = yar(é;x(f)) +b’ (éf(x(f)) = o(%j.

~O(1/N) :0(17N2)

Although the evaluation of the estimators ¢, () and ¢, (7)
IS more difficult, cumbersome calculations demonstrate

that similar asymptotic properties can be deduced.
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Theorem:
If (X,) is a general linear process of the form

X luX+Zz-oortf’

where (Z,) is a sequence of independently and identically
distributed random variables with

E(Z,)=0, E(Z?) <o, E(Z})<o and Y7
then for N — « we have

YN (8 (0) = Cr (0),.... 8l (M) —C (M) BN, (0, )
with

= (N-Cov (& (k). & (1))

k=0....n:1=0....n
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5.1.4 Estimation of the Cross-Covariance Function

Let (x,,¥4),-...(Xy\.Yy) D€ N successive realizations of a bi-
variate stochastic process (X, Y;) with mean p = (u,, 14,)}
covariance functions c,, (), ¢, (7) and cross-covariance
function ¢, (7). Then c,, (7) can be estimated by

1) the sample cross-covariance function

(1 N-7 . .
) N (... —X)(y,—-yY) 0<z<N
a) CXY(T):< 1 lf:,1\, B B
N Z (xm—x)(yt—y) ~N<7<0
L t=—7+1

1 & 1 4
with X=—)> x,, y=—
N2 X Y N;yt

t=1

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 25
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N (Xtﬂ_ﬂx)(}/t_ﬂv) 0<z<N
{1

N Z (Xt+r_luX)(yl‘_'uY) -N<z<0
L t=—7+1
2) the modified sample covariance function
( 1 N-7 . .
) N—TZ(XHT X)(y,-¥) 0<z<N
a) Cy(7)=5 =
N+rtZ+1( X, —X)(¥,-¥) -N<z<0
. _ 1 1
with X :N;xt N;yt
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( N-7
N Z( e )( ,uy) O0<z< N

~ T =1

b) Ciy(7)=+ 1 N
\N+Tt:;+1( trr :Ux)(yt_luy) -N<7<0

The mean values of the estimators ¢%,(z) and ¢4, (7),
which assume that the mean values x,, 1, are known,
are given exemplarily for 0 < 7< N by

E(Chy (7)) = s 2B (X =)= )
) NirNt:CXY(T) ~ o)

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 27
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T 1
= (1 —NJCXY(T) =Cyy(7)+ O(ﬁj

If the cross-covariance function ¢, () is absolutely sum-
mable, the mean values of the estimators ¢, (z), C,, (7)
for 0 < 7< N can be expressed by

E(é 0) = 3 E((X,.. - X)(¥,~¥))

_Tt1
N—-t

E (X =)= (X = 1)) (Y = )= (Y = 12,))

—T -1

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 28
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(1) emtr+ o)) -emtreof7)

respectively.

As for the covariance function estimators, we can con-
clude for the cross-covariance estimators that ¢4, (7) pro-

n

vides unbiased and ¢4, (7), C,,(7), C,,(7) only asymptoti-
cally unbiased estimates of ¢, (7).

The variance, covariance and mean square error of the

proposed cross-covariance function estimators will be
investigated in the following.

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 30



We first consider the second order moments of the un-
biased estimator ¢4, () which are given by

(N—k)(N—I)E(Cx, (k)Cx, (1)) =

N—-k N-I|

= E((Xn+k_:uX )(Yn_:uY )(Xm+l_luX)(ym_luY ))
n=1 m=1
N-k N—-I|

- (ny(k)cxv(l)"'Cxx(n_m+k_l)cyy(n_m)
n=1 m=1

+Cyy (N—M+K)Cy (M—N+1)+ Ky (Nn—M+k,n—m, 1))

for 0<k <N and 0 </ < N. Hence, utilization of
Cov (Ehy (k). Cley (1)) = E(Clty (k). (1)) = oy (K) oy (1)

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 31



provides the covariances
(N—k)(N-1)Cov (&4, (k),C, (1)) =

NKNZ:( Cyx(N—m+k—1)c,, (n—m)

22

+Cyy(N—M+k)Cy, (M—N+1)+ Ky (N—mM+k,n—m,]))
N—-k—1

= > ) Cxult+hk=1)Cypy (t)+Cyy (t+K)Cyy (t—1)

t=—(N—-1)+1
+ Kyywy (E+ K, E1))

with

(N—-k-t t>0

d(t)=<N -k —(I-k)<t<O0 ,
N —1

t  (N=D<t<—(—k)
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where the double sum is converted into a single sum by
exploiting the arguments already applied for deriving the
covariances of the covariance function estimators.

Setting now 0 < 7=k =1/< N, we obtain
(N—7)YCov(Cy(7),64, (7)) = (N—7)*Var(C, (7)) =

N—-7-1

= Z (N_T_ltl)(Cxx(t)CW(t)+ny(t"‘T)va(t_T)

t=—(N-7)+1
+KXYXy(t+z',t,z')).

Consequently, if the covariance functions, cross-covari-
ance function and the fourth order cross-cumulant func-
tion of (X, Y,) are absolute summable the following or-
ders of convergence hold for N — .
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Cov (&4 (k),Cxy (1)) = O(%j, Var (&4 (7)) = o(ij

N
and
MSE (¢4, (r)) = Var (&4, (7)) + b* (&4 (7)) = o(%j.
—O(1/N) 0
Since
(N-7)

Chy(7) = Cyy(r) O0<z<N

the asymptotic behavior of the covariance, variance and
mean square error of the biased estimator ¢4, (z) can be
easily deduced from the previous results. Thus

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 34



INSTITUTE OF
WATERACOUSTICS,
2/ SONAR ENGINEERING AND
67 SIGNAL THEORY

Cov(&5 k)64 (1)) = AUV Cov(é§y<k>,6§y</>)=0(ij,

~0(1) J =O(1/N)

Var (84, (7)) = ((N-2)/N)* Var (&, () :o(ij

Y N
=0(1) =O(1/N)
and
MSE (&4, (7)) = Var (&, (7)) + b* (&l (7)) = o(%j.
o) ofiw)

The evaluation of the estimators ¢,.(z) and ¢,,(z) is more
difficult. However, again laborious calculations show that
similar asymptotic properties can be stated.

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 35



5.2 Nonparametric Spectrum Estimation
5.2.1 Finite Discrete-Time Fourier Transform

Let (X,) be a stationary stochastic process. The samples
taken at the time instances t =0,1,...,7-1 are supposed
to be modelled by the random Variables X,,..., X;_,.

Hence, iy
X'(Q)=) X e
t=0

denotes the finite discrete-time Fourier transform (finite
DTFT) of the model. It is called discrete Fourier trans-
form (DFT) if only the discrete frequencies

Q, =27zk/T, k=0,1,...,T -1,

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 36
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are considered. The DFT

T -1
X" (2zk/T)=>) X, e/ k=01..,T -1

can be efficiently determined by the so-called fast Fourier
transform (FFT). The corresponding inverse finite DTFT
and inverse DFT are given by

X, = 1 X" (Q)e’'dO
2r 7
and
T—1
X, = %ZXT(an/T)e“z”"/T” with X, = X, ;
k=0
respectively.

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 37



Let w, denote a window of bounded variation with

w,=0 vte[01] and [ wZdt=1.
The windowed DTFT is defined by
T-1
ch (Q) = ZWt/TXte_th
t=0

and windowed DF T accordingly by
T-1
X (27k | T):Zwt/TXte‘f‘z”"’”t.
t=0

Now, we suppose that the set {0,1,...,T—1} can be parti-
tioned into L disjoint sets of length T'=T/L. Hence, the
finite DTFT of the resulting L consecutive data pieces

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 38
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can be expressed by
T'-1

Xo Q1) =D Wy Xy, 1=1.,L.
t=0

Circular-Symmetric Complex Normal Distribution

A complex valued random vector X = (X,..., X ) is said
to be circular-symmetric complex normally distributed
with mean vector p, and covariance matrix Z,,, I.e.

X~ CN_ (Hy, Zyy ),
If the corresponding real valued random vector

Re(X) B T
(Im(x)j = (Re(X,).....Re(X,).Im(X,),....Im(X,))

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 39
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IS distributed as
Re(X)) + [[Re(e)] 1(Re(Zx) ~Im(Zy)
(Im(x)jN 2" Im(py ) ,E IMm(Z,x) Re(Zyy) |

where
E(X) =E(Re(X)+ jIm(X)) = Re(uy )+ jIm(py ) = py

E ((X —M, (X =, )" ) =2, (covariance matrix)
and

E((X — My )(X — My )T) =0. (pseudo covariance matrix)

Suppose %,, is regular, then the density function of the
circular-symmetric complex normally distributed random

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 40
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vector X is given by

1
f.(X) =
(%) 7" det(Zyy )

exp (— (X —Hy )" Zy (X —py))

Forn=1,i.e. X=X ~CN(u,,o:) with
E(X):E(Re<X)+jlm<X)):Re(ux>+jlm<ux)=ux
E((X = )X = 1)) =E(|X = [ ) = 7%

E((X = 1 XX = 1)) = B((X = g1 ¥ )=o,

Re(X) and Im(X) are independent and normally distri-
buted random variables with

Re(X)~ N(Re(uy),0%/2), Im(X)~ N(Im(uy),0%/2).

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 41



INSTITUTE OF
WATERACOUSTICS,
2/ SONAR ENGINEERING AND
67 SIGNAL THEORY

ochschule
x City Universit yoprplledS eeeeeee

Exercise 5.2-1.
Verify the density function of a circular-symmetric com-
plex normally distributed random vector

Exercise 5.2-2:
Show the independence of Re(X) and Im(X)
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Distributional Properties of the finite DTFT

Assumption:
(X)) is a discrete time strictly stationary stochastic process
whose cumulant functions satisfy

o0 o0

Z Z ‘Kx...x(71’---’fk—1)‘<oo

T1 =—00 Tk—'] =—00

forall k=2,3,...

Theorem: (properties of DTFT)
Suppose (X)) satisfies the assumption above.

1) X(Q) (0 < Q< 7) is asymptotically complex normally
distributed with mean zero and variance TC,, (Q).
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X'(0) is asymptotically normally distributed with mean
T 1, and variance TC,, (0).

X'(r) is asymptotically normally distributed with mean
zero and variance TC,, (r).

For 0<Q <7z, m=1...,M and |Q, -Q,|>27/T, m=n
the X'(Q2,),..., X"(Q,,) are asymptotically independent
random variables.

For L successive data pieces of length T i.e. T=LT,
the XT(Q,1),..., X" (Q,L) are asymptotically indepen-
dent random variables.
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Theorem: (properties of windowed DTFT)
Suppose (X)) satisfies the assumption above and the win-

dow w;, is of bounded variation with j; widt =1.

1) X/ (Q) (0 < Q< ) is asymptotically complex normally
distributed with mean zero and variance TC,, (Q).

X! (0) is asymptotically normally distributed with mean
1
T“X.‘-o w, dt and variance TC,, (0).

X! () is asymptotically normally distributed with mean
zero and variance TC,, (7).
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For0<Q_ <z, m=1....M and > ,
the X/ (Q2),..., X (Q,,) are asymptotically independent
random variables.

For L successive data pieces of length 7', i.e. T=LT,
the X' (Q,1),..., X (Q,L) are asymptotically indepen-
dent random variables.

Remark:

In case that (X)) is a Gauss process its (windowed) finite
discrete-time Fourier transform is exactly normally distri-
buted with mean and variance asymptotically given by
the results stated in preceding theorems.
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5.2.2 Periodogram

Let (X,) be a zero mean stationary stochastic process
with an existing but unknown power spectral density func-
tion C,, (Q2) which shall be estimated.

Now, if (X;) can be observed at the time instances t =0,
1,...,T-1 the distributional properties of the finite DTFT
suggest the periodogram defined by

1 -1 '
== X, e’
=

as an suitable estimator for C,, (Q).

2

- @f

T
IXX
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Exercise 5.2-3:
Periodogram and Fourier transformed sample covariance
function
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Theorem: (moment properties of the periodogram)
Let (X,) be a zero mean stationary stochastic process.

1) If the covariance function of (X)) satisfies
Z:'o:—oo‘CXX(T)‘ < %

l.e. C,, () is continuous, then

L1 A sin((@-A)T/2)Y
EIXX(Q)_Z%'—Tﬂ[ sin((Q—A)/Z) ) Cxx(A)dA,
E/T (Q) — > Co ().

2) If the covariance function of (X)) satisfies

> lrl lexx (@) <,
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l.e. Cy(Q2) is continuous differentiable, then
E/ (Q)=Cyy () +O(1T).

3) If the cumulant functions of (X)) satisfy

Z::_oo' "22_1:_00(1 + ‘Tn‘)‘KX...X(T1”"’TK—1)‘ < ©
forn=1,....,k—1when k=2,3,..., then

o sin((Q+A)T/2) Y
COV(IXX(Q)’Ixx(A)) [[TSi(n((Q+A)/2§j +

sin((Q—A)T/2) i , 1
+[Ts,in((gz—/\)/z)] JCXX(QHO(TJ'
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Exercise 5.2-4:
Proof of the Theorem if (X,) is a Gauss process
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Corollary:
fQ=2zn/Tand A=2zm/T with n,m=0,1,...,T-1 the mo-

ments stated in the previous theorem can be simplified to
Cov (15 (Q), [} (A)) = O(Y/T) Q%A

Var(lT (Q)) — CiX(Q)_" O(1/T) Q=0,7
XX 2C2 (Q)+O(T) Q=0,7

Assuming that the time interval [0,T) is divided in L dis-
joint pieces of length T'= T/L the periodogram of the re-
sulting L subsequent data pieces can be expressed by

2
13X, grae
|- 1T+t
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Theorem: (distributional properties of the periodogram)
Suppose (X)) is a zero mean stochastic process that sa-
tisfies the assumption stated on p. 43.

1) 1,(Q) (0 < Q< x)is up to the factor C,, (Q)/2 as-
ymptotically chi-square distributed with two degrees
of freedom.

I}, (0) is up to the factor C,, (0) asymptotically chi-
square distributed with one degree of freedom.

Il () is up to the factor C,(7) asymptotically chi-
square distributed with one degree of freedom.
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2) For0<Q_<m,m=1,..,M and
the I}, (Q),...,15, (Q,,) are asymptotically independent
random variables.

3) For L successive data pieces of length T, i.e. T=LT",
the I}, (Q,1),...,15,(Q,L) are asymptotically indepen-
dent random variables.

Remark:
Similar results as those stated in the previous theorems
can also be derived for the windowed periodogram

1 L= By 2
I>T<WXW (Q):?‘XMC(Q)‘ :? ZWt/TXt e ™
t=0
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5.2.3 Smoothing and Averaging of Periodograms

Although the periodogram is asymptotically unbiased it
IS due to its variance behavior an inconsistent and con-
sequently an inadequate estimator for C,, (Q2).

However, the distributional properties of the periodogram
immediately suggest the following two improvements.

Smoothing of the Periodogram

C ()= Z/ ()= \XTsz)\ 22X

TmeNQ,

where N, is a neighborhood of Q, i.e. a set of frequen-
cies (2 which are located around Q2 symmetrically.
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For 0 < Q < 7 the mean and variance of the smoothed
periodogram are given by

£ (G @)= D E (@) =13 Co(2,)+O(IT)
and

Var(éXX(Q)) S

Cix(Q,,)+O(YT).

Suppose C,, (€2) is sufficiently smooth over N, we can
write for large T approximately

~

E(Cox(Q)) *Cie(Q) and Var(Cyy (Q)) = C3 (Q)/M.
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Averaging over Periodograms
A 1w 7 1 < ,
Cox(Q) == I (1) =—=X"|XT(Q])
L =1 LT =1

where L denotes the number of consecutive data pieces

of length T' and I, (Q,/), I=1,...,L represent the corres-
ponding periodograms.

For 0 < QQ < 7~ the mean and variance of the averaged
periodograms are given by
A 1< , 1< ,
E(Car()) = 7 2E(oe(@1) = 72 (Cox (@) +O(YT))
=1

=1

=Cy (Q)+O0(1T") = Cy, (Q)+ O(L/T)

2

, T =LT/

and
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For a suitably chosen number of data pieces L we can
write for large T approximately

~n

E(Cu(Q)) % Cipe(@) and  Var(Cp (@) = Co(Q)/L.

Remark:

Smoothing of a periodogram and averaging of periodo-
grams do not provide consistent estimators. Neverthe-
less, they allow to control the variances of the estimators
In a desired manner by properly selecting M and L.
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5.2.4 Consistent Spectrum Estimation

Moreover, the estimators proposed in the previous Chap-
ter might become consistent if the number M used for
smoothing or L used for averaging is growing suitably to
infinity as the number of observations T tends to infinity.

Smoothing of the Periodogram

Let W(Q2) denote a real valued and even spectral window
of bounded variation and finite support (—z, 7) with

| w(@)da/2r =1 e

and B /\
[ W(©@)da <.

o R
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Then, we can define the 2 -periodic spectral window

W, ()¢
W, (Q) = ZW(Q 27k)/b; )
T k=—x0

with scalable bandwidth and

j_’; W, (Q)dQ/27 =1

—2r _fﬁb 0 ﬂbT” S
Assumption:
The bandwidth b obeys
b ————0 suchthat b7 ———>

applies for the time-bandwidth product.
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Example:
Let b; oc1/ﬁ l.e. b, > 0, then

T oo

bTTOCT/\/?:\/? 5w > X

Now, we are going to estimate C,, (€2) by
_ 1 T-1
Cox(Q) =
m=1
where T is assumed to be large enough such that

1T—1 1T—1 dQ
—> W _27emIT)~=> W _(2zmIT) ~ W =1.
Tn; o, (27miT) T,,Z‘) o (27 j A

W, (Q—2zmiT) I, (2zmIT),

Since
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W, (2zmIT)=0 if me{[b,T/2)],...|T(1-b,/2)]}

CZ(X(Q) can be understood as a weighted averaging of
the periodogram over the

M=T-(T(1-b./2)|-[ b;TI2)|+1) =~ b, T
frequencies that are closest to O, where asymptotically
b, >0 and M~=b. T > 0.

T >

T >

Theorem: (mean and covariance properties of C)T(X(Q) )
Let (X,) be a zero mean stationary stochastic process.

1) If the covariance function of (X)) satisfies
Z;O:—oo‘z-‘ ‘Cxx(f)‘ < %,
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.e. C,, (Q2) is continuous differentiable, then

ECT (Q ZW (Q-272mIT)C,,(2zmIT)+O(1/T)

= jo W, (Q—A)C, (A)dA+O(1/(b;T)),
holds and CJ, (Q) is asymptotically unbiased, i.e.

EC(Q) 555575 Ca Q)

2) If the cumulant functions of (X)) satisfy

Z::_o@' "22_1:_00(1 T ‘Tn‘)"fx...x(fw- o Ty )‘ < 0

forn=1,....,k—1 when k=2,3,..., then
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b, T Cov(Cly(€),Cl(A)) =

o F s dO 1
= (U(Q_A)+77(Q+A))CXX(Q)_£ WbT (Q)Z"‘ O[bT—T]

with

1 Q=2kr, keZ
n(Q) = :
0 elsewhere

Corollary: (mean square consistency of C)T(X(Q))

E (é;X(Q) - CXX(Q))2 —

= Var (CL (@) + (ECL(Q) ~Cpu(Q)) —5rtes 0

b; >0, b, T —o
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Averaging over Periodograms

) LTy
C)T(X(Q):ﬁZl;}(T)(Q,I) with T =L(T)-T/(T),
/=1

where the number of consecutive data pieces L(T) and
the length of each data piece T'(T) are functions that mo-
notonically increase with the number of observations T.

For 0 < Q < 7 the mean and variance of periodograms
averaged in this way are given by

) L)
£ (C() = 17 2 E( @)
=C,, (Q)+ O( 1 j =C,, (Q)+ O(@j
T(T) T
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_ Cix(Q)w(L(T)j_
L(T) T
Example:
Let T'(T)oc T with 0 < a <1, then
LT)=T/T(T)cT/T"* =T ———>
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L(T)/T «T*/T =1/T"™ > 0.

Theorem: (mean and covariance properties of (:‘)T(X(Q))
Let (X,) be a zero mean stationary stochastic process.

1) If the covariance function of (X)) satisfies
> Il [exc(@)| <o,
then (:‘)T(X(Q) Is asymptotically unbiased, i.e.

E(Clx(Q) —5755— Coue ().
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2) If the cumulant functions of (X)) satisfy

o0 o0

Z Z (1+‘Tn‘)"{x...x(ﬂw~’Tk—1)‘<OO

T4==> T-1="®

forn=1,...,k—1 when k=2,3,..., then
Var (C,(Q)) o > 0.

L(T)—>o, L(T)/T—0

Corollary: (mean square consistency of (:‘)T(X(Q))

E(CT(Q)~ Cp () = Var(CL (@) +

A 2
+HECI(Q)-Coe (Q)) —iris > 0

—0, L(T)/T—>0
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5.3 Parametric Spectrum Estimation
5.3.1 Parametric Models
Auto-Reqgressive (AR)-Process

(X,) is called p-th order auto-regressive process (denoted
by AR(p)) if it satisfies the difference equation

p
Xt + ZanXt—n = Zt’
n=1

where a,,a,,...,a, are constant coefficients and (Z,) is
white noise, i.e.

E(Z)=0 and c,(r)=0556,
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Thus, using the transfer function of an AR(p)-Filter and
the power spectral density of white noise, i.e.

H(Q) = 1 and C,,(Q)=o02,

P —jQn
1+ ZH a e

the power spectral density of an AR(p)-Process can be
parameterized by its coefficients a,,a,,..., a, and the white
noise variance o as follows.

2
Oy

2
P —jQn
‘1+an1ane

Cyx (Q) = ‘H(Q)‘ZCZZ(Q =
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Moving-Average (MA)-Process
A process (X)) that obeys an equation of the form

q
Xt — Zt + anzt—n
n=1

Is called moving-average process of order g (denoted by
MA(q)), where b,,b,,...,b, and (Z,) denote constant coef-
ficients and white noise, respectively.

The transfer function of a MA(q)-Filter is given by
q .
H(Q)=1+ ane‘fg”.
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Hence, the power spectral density of a MA(qQ)-Process

can be parameterized by its coefficients b,,b,,...,b, and
the white noise variance o as follows.

2

Cyx (Q) = ‘H(Q)‘z C,,(Q)= 0-5

q .
1+) b,e ™
n=1

Auto-Reqgressive-Moving-Average (ARMA)-Process

We say that (X)) is an auto-regressive-moving-average

process of order (p,q) (denoted by ARMA(p,q)) if it can
be represented in the form

Xt + ianxt—n = Zt + Zq:bnzt—n
n=1 n=1
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With the transfer function of an ARMA(p,q)-Filter
q —jQn

1+> " be”
P —jon’

1+> ae”

the power spectral density of an ARMA(p,q)-Process can
be parameterized by its coefficients a,,a,,...,a,, b,b,,..., b
and the white noise variance o as follows.

q —jQn
1+ an1 b e

p —jQn
1+ an1ane

H(Q) =

q

Cyx (Q2) = ‘H(Q)‘Z C,,(Q) = G§
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AR-Process + Noise
A process (Y,) defined by

p
Y= X, +V, with X,+YaX_, =2
—— - P ,

random  noise \ .
signal AR(p)-Process

Is known as a special case of a more general random
signal plus noise model, where (Z,) and (V,) denote in-
dependently distributed white noise processes.

After some manipulations the equation stated above can
be reformulated via

p p
yt_vt:Xt:Zt_Z_;anXt— Z - tn)

n=1
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into the difference equation
p p
Yt T Zany—n = \/t +Zan\/t—n +Zt'
=1 =1

The covariance function and spectral density function of
(Y,) are given by
va(f):E(me) E((Xm e (X +V )) Cxx(7)+Cyy(7)
and

Cyy (Q) = C (Q)+ C,y (Q) = [H(Q) "C,, (Q) + C, ()

2
_ an
O-Z/‘1+Zn 1 ”

respectively.

2
+0y,

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 75



INSTITUTE OF

2 WATERACOUSTICS,

5/ SONAR ENGINEERING AND
SIGNAL THEORY

ochschule
x City Universit yoprplledS eeeeeee

Oscillation + Noise
A process (Y,) defined by

Y= X, +Z,  with X,=Acos(Q,t)+Bsin(Q,t),

—— .
totally predic-  white Oscillation
table signal noise

where the random amplitudes satisfy
E(A)=E(B)=0, E(A*°)=E(B*)=0° and Cov(A,B)=0

and (Z,) denotes white noise independent of A and B, is
known to be wide sense stationary with covariance func-
tion, cf. Exercise 2.3-1, given by

Cyy(7)=Cy(7)+Cyy(r) = o? cos(Q,7)+ 0'557.
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Hence, the spectral density function of (Y;) can be ex-
pressed as

Cyy (Q) = ”02(77(9 — Q) +1(Q+ Q )) + 07
with
n(Q)=>"_ §(Q-2zn).
Pisarenko Model

A generalization of the Oscillation + Noise model pro-
vides the Pisarenko Model which is defined by

M
Y= X, +2Z, with X,=> A cos(Q,t+d,),

—~—
totally predic-  white ¥
table signal noise Oscillations
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where A _ and ¢, are independent random amplitudes
and phases with

E(A )=0, E(A)=0? and ¢ ~ R(-x,x)

m

and (Z,) denotes white noise which is independent of A
and ¢ _. Finally, with the covariance function given by

C,, ()= Cyy (1) +Cyy (7 Za cos(Q, )+ ol

the spectral density function of (Y,) can be expressed as

Crr(@)= 2302 (10~ 0,) + 7(@+0,)) + %
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Exercise 5.3-1:
Show that the Oscillation + Noise model can be interpret-
ed as unstably rationally filtered white noise

Chapter 5 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 79



INSTITUTE OF

2 WATERACOUSTICS,

5/ SONAR ENGINEERING AND
SIGNAL THEORY

ochschule
x CltyU nnnnnnnn y of Applled Sciences

Exponential Model of Bloomfield

In case that nonparametric spectral density estimates or
prior knowledge about the physics provide information
about the frequency behavior of a process, a direct mo-
deling in the frequency domain might be advantageous.

An example of such an approach gives Bloomfield's ex-
ponential model

Cyy (Q)=0" exp[f C, COS(Qm)j,

m=1

which is appropriate for problems where the spectral den-
sity function shows a ripple behavior. Applying the loga-
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rithm to both sides of the last equation leads to the lin-
ear model given by

n(C,, (Q))=In(c?)+ fcm cos(Qm).

Remark:
The inverse Fourier transform of the logarithm of the
power spectral density function, i.e.

et ()= F H{In(C,y (Q))}

called Cepstrum, is often used in audio signal analysis.
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5.3.2 Consistent Parameter Estimators
Auto-Reqgressive (AR)-Process

Let (X,) be an AR(p)-Process that can be represented by
the difference equation

p
X,+a X +..+a,X_, =X, +> aX._,=2

where a,, a,,..., a, are constants and (Z,) is white noise.

Multiplying both sides of the difference equation by X,
from the right and taking expectations

(Xt T Zp:anxtnjxtm = E(ZtXt—m)
n=1
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we obtain
p

E(XtXt_m)+ Zan E(Xt_nXt_m) = E(ZtXt_m)
n=1

o: m=0
0 m>0

For m > 0 these equations, known as Yule-Walker equa-
tions, can be expressed in matrix notation by

p
Cxx(m)+zan Cyx(M—n)=c,(Mm)= O-§5m =

n=1

( Cxx(o) Cxx(1) Cxx(p_1)\/a1\ (Cxx(1)\
Cxx(1) Cxx(o) Cxx(p_z) a, _ Cxx(z)
\\Cxx(p_1) Cxx(p_z) Cxx(o) /“\ap/J \\Cxx(p)/J
C;x a c;x
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If all roots of

p
a(z)=2"+> a,z""
n=1

are lying within the unit circle one can show that the coef-
ficient matrix of the equation system C,,, which is a sym-
metric Toeplitz matrix, is positive definite.

Thus, assuming ¢, (0),..., Cy, (p) to be known the equa-
tion system can be uniquely solved for a;,a,,...,a,, e.g.
by means of the Levinson-Durbin algorithm, and the vari-
ance of the white noise can be subsequently determined
by the Yule-Walker equations for m=0, i.e.

p
07 = Cy (0) + Zan Cxx(N).
n=1
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However, c,, (7) is typically unknown. On the other hand
following Chapter 5.1.3, ¢, (7) can be consistently esti-
mated using the sample covariance function c,, (7).

Thus, after replacing c,, (0),..., ¢, (p) in the Yule-Walker
equations by its estimates c,, (0),...,C,, (p), one obtains
the so-called empirical Yule-Walker equation system

( éxx(o) Cxx(1) éxx(p_1)\/é1\ /éxx(1)\
éxx(1) é (O) ot éxx(p — 2) a, _ é)0((2)
XX(p 1) xx(p 2) éxx(o) /J\ép) \\éxx(p)jj

Cxx a é;x

form=1,...,p and for m = 0 the equation
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p
G7 = Cyx (0)+ Za Cyx (N).

From the consistency property of the sample covariance
function, i.e.

éxx(f) TI77;>SOQ >CXX(T)’

follows

A ply T m.S.
(6x¢(0),- 5 (P) —55> (€ (0),--,Cxx (P))
and due to the continuity of the functions
a= f(éxx(o)’- : -,éxx(p)) = —C € s

Ul\; = f(éxx(o)w-’éxx(p)): éxx(o)+é§< a
= éxx(o) I( C
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C.(Q) = F(Q 4,62 /‘”Zn e

é 7[_7’)_)800 >d = f(CXX(O),,CX)((p)) — _C;XCXX’

67 i oy = f(Cxx(O)a---,Cxx(p)) = Cyx(0)+C}ya

Cox(Q) —> C (Q)=F(Q2] a O'é)
_GZ/"I-I—Z _ae -jon”
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Moving-Average (MA)-Process

Now, we suppose that (X)) is a MA(q)-Process that can
be expressed in the form

q
X, =Z,+bZ +..+bZ  =>bZ  with b=1
n=0

where b,,..., b, are constants and (Z,) is white noise.

Since (X)) is a linear combination of uncorrelated random
variables its mean and variance are given by

=,uzzq:bn and (TX—GZZbZ
n=0

Furthermore, (X)) is always stationary (|rrespective of the
values of b,,...,b,) and has the covariance function
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:quzq:bnme( Zi i m) quzq:bb C,,(Mm+7-n)
n=0 m=0 n=0 m=0

:iibﬂb 625m+r o= G§ qulglbmﬂﬂbm |T|Sq,
n=0 m=0 0 |T|>q

where E(Z,) = 0 = E(X,) = 0 has been exploited.

For given covariances c,,(0),..., ¢y, (q) the parameters
by, b,,..., b, and o2 can be determined by solving the sys-
tem of (g+1) non-linear equations
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qr| g o, n=0
XX T) Z bm+|r| m Z 7/m+|r|7/m Wlth 7/n {O'an n:,],. . .,q
which usually possesses 29 solution vectors (yo,...,yq)T.

However, under the additional constraint that the MA(q)-

filter has to be of minimum phase a unique solution can
be derived as follows.

First, the bilateral z-Transform of ¢, (7) provides

q gzl g q
= Z Cux(7)Z Z Z Vmijel V' m € z YaVmZ
r=—q r=—q m=0 n=0 m=0
q q
= Zyn Z_n Z 7/m Zm = F(Z)F(Z_1)
n=0 m=0
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with .
zT(z zqz v,Z " =0,2'> b,z" =0,2'(z")
n=0

=0, (zq +b,2°" 4+ b, 2"+ bq) =0, B(2),

where £(z) is known as the characteristic polynomial of
the associated MA(q)-filter.

To satisfy the minimum phase (invertibility) constraint the
roots of 5(z) and accordingly of zT'(z) must not lie out-
side the unit circle.

Moreover, the roots of zC(z)=zT'(z)I'(z"')=0 always
occur in pairs, i.e. if Z' is a root then 1/Z' is also a root.
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Hence, after selecting from the 2q roots of the polynomi-
al z’C(z) those q roots that satisfy |z | <1 for n=1,...,q,
the coefficients b;,,..., b,and the white noise variance o
can be determined by means of

B(z)= —F(Z Zan =7 1+Zy”

Oz Oz n=0 n=1 70

q q
=21 (1-z,z)=] |(z-2,)=2"+b,z" '+ --- +b,_,Z'+ b,

n=1 n=1

0§ = CXX(O)/[’I + Zq:b,fj
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Generally, c,, (7 ) is unknown. Thus, replacing c,,(0),...,
Cy,(q) in z7C(z) by its estimates ¢,,(0),...,C,,(p), we ob-
tain the empirical polynomial

q
2°C(z)=2° Z C(T)Z7 =Y E0 ()27,
r=—q

whose 2q roots usually have to be calculated numerically.
If from the 2q roots those q roots are selected that satisfy
|z | <1 for n=1,...,q the estimates b,,.. b and &2 can be
derived using

. q . . .
p(2)=](z-2,)=z2"+bz"+---+b,_,Z'+b,

and n=1 -
G2 =Cyy )/(’I + Zbﬁj
n=1
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The power spectral density can then be estimated by
éxx(Q) =0

Finally, from the consistency property of c,,(7), i.e.

A ,QZ
—J&2n
el

n=1

éxx(z') Tm_foo > Cy(7),

and the inherent continuous functional relations follows

(Zy..,2,) —25(2,,...,2,)

’7q
and consequently

~n

(b1,...,b GZ)T > >(b1,...,bq,0'§)T

T >
as well as ,
q —jQn
1+ ZH b e
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Auto-Reqgressive-Moving-Average (ARMA)-Process

In the following (X)) is considered to be an ARMA(p,q)-
Process that satisfies the difference equation

p q
X, +Ya X, , =3b,Z., wih b=1.
n=1 n=0

Multiplying both sides of the equation by X,  from the
right and taking expectations

E((Xt + nzp;anth]Xtm] = E((:Z;bnztnjxtmj

p q
E(XtXt_m)+ Za,, E(xt_nx,_m) - Zb E(Zt_nXt_m)
n=1

n
n=0
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we obtain

p
Cyx (M) + Zan Cxx(m—-n)=0 m>q,
n=1
where E(Z,) = 0= E(X,) =0 has been exploited. This set

of equations is sometimes called modified Yule-Walker
equations.

Form=qg+1,9+2,...,q+p the modified Yule-Walker equa-
tions can be expressed by

Cxx(q) Cxx(q_1) Cxx(q_p+1) a, Cxx(q+1)
Cxx(q+1) Cxx(q) Cxx(q_p+2) a, _ Cxx(q+2)
¥Cxx(q+p_1) Cxx(@+p-2) - Cyx(q) ) a, ¥CXX(q+P)g
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The coefficient matrix of the equation system is obviously
again a Toeplitz matrix but it is not anymore symmetric.

However, one can show that the coefficient matrix CTs is
regular if all roots of oz(z):zp+2ﬁ:1 a _z"" are lying with-
In the unit circle.

Hence, assuming c,,(0),...,c,,(q +p) to be known the
equation system can be uniquely solved for a,,a,,...,a,.

Subsequently, the parameters a,,a,,...,a, and the covari-

ances c,,(0),..., ¢y, (q+p) allow the calculation of the co-

variance function cy. (7) of the MA(q)-process introduced

by 5

Y, =b(B)Z, =a(B)X, =) a,X,, with a; =1
n=0
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as follows.

Thus, after determining the covariances cy (0),..., cyy(q)
the parameters b,,b,,..., b, and o can be determined by

solving the equation system

4t , qr| " o, h=0
YY( ) Zn;) m+|z|~m n;)ymﬂrlym Vn szn n:'],”,,q
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where a unique solution can be derived by following the
approach mentioned in conjunction with a MA(q)-Process.

Since ¢, (7) is typically unknown we replace it here again
by its consistent estimate C,, (7). This leads us to the em-
pirical modified Yule-Walker equation system

éxx(q) éxx(q_ll) éxx(q p+1) é1 éxx(q+1)
éXx(q+1) éx)((q) é ( _p+2) éz _ éxx(q+2)
¥éxx(q+p_1) éxx(q"'p_z) éxx(Q) 4 ép kéxx(q+p)1
ey’ RN 3

which for a regular CT% provides with
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~ ~mod - A mod
a= _(Cxx ) Cxx
consistent estimates of a,,..., a,. These estimates can be

used along with ¢, (r) to estimate ¢, (7) by means of
p_ Pkl

éyy(f) = Z Z ém+|k|éméXX(T —K)

k=—p m=0
consistently. Replacing ¢, (7) in z°C(z) by ¢, (z) yields
the empirical polynomial

q
2'C(z) = Z° Z Co(7)Z7 =) E(1)2°.
r=—q

From its 2q roots, WhICh are typically to be determined
numerically, we then have to select those g roots z. (n=

1,...,q) that do not lie outside the unit circle.
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Since the roots of zqé(z) are consistent estimates of the
roots of z'C(z2), the coefficients b,,..., b, and the white

noise variance o can be consistently estlmated via
q

B(z)=T](z-2,)=29+bz""+---+b, Z'+b,

and n=1
G2 =Cyy O)/{1+Zb2j

Finally, the consistent power spectral density estimate of
the ARMA(p,q)-Process is given by

9 L L-jQn
) . 1+> " be
Cyx(Q) =07 y .2
1+> 4,e’
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5.3.3 Asymptotically Efficient Parameter Estimators

Asymptotic Efficiency
The Cramer-Rao inequality

a’'C,,a>a'Z(8)'a VaeR’,

provides a lower bound to the covariance matrix C , of
any unbiased estimator of 0, cf. Chapter 3.5.

An estimator for which the inequality takes the equality
sign, i.e. whose C, coincides with the inverse of the
Fisher information matrix Z(0) is called efficient.

However, estimators used in practice are often neither
unbiased nor mean square consistent, i.e. the Cramer-
Rao inequality can not be applied.
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On the other hand, one can often observe that the devia-
tion of the covariance matrix from the inverse Fisher in-
formation matrix decreases for large sample sizes N.

In these cases, estimators are typically evaluated using
their limiting distribution. If the limiting distribution has the
property i

im VN (©, -8) ~ N, (0,1(8)™),

where e 1
re)" = limNC, ., and T(8)= AI}LTJONIN(G)
with
olin(f(X|0)) Joln(f (X|0O
IN(G):E n(X( | )) n(X( | ))
00, 00, it
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and X = (X1,...,XN)T, the estimator is said to be asympto-
tically efficient.

Let (X,) be a stationary Gaussian process with zero mean
and power spectral density C,, (Q2)=C,, (€2]0) parame-
terized by 8=(6,,...,6.)".

) *) p
Hence, the probability density function of the random vec-
tor X =(X,,...,X, ) modeling N consecutive observations
of the process is given by

1 1 o
AX10= e oo o) exp{—gx cN<e>x}.

Employing the rules
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E(X"AX) = tr( AE(XX")) = tr (AC,(8))
and
E(X" AXX'BX) = tr(AC,(8))tr(BC,(8))
+2tr(AC,(8)BC,(0))
as well as the identities

6C,)(8) .1 0C,(8)

--C o
00 oo "

and

oIn(detC,(0)) _ C‘1(9)8CN(9)
00, " 00,

1
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the Fisher information matrix for a zero mean Gaussian
random vector can be expressed by

IN(G):% tr c;(e)@%Ng(_e)c;(e)“;N@(.e)

/

ij=1...p
If one parameterizes the covariance matrix according to

C.(0)= (CXx(i - j))i,j:1,...,N

jCXXQ|B)efQ” ae2

27 ij=1...N

= (_:N(CXX(Q | 9))
via the power spectral density, the Fisher information ma-
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trix becomes

Z,(0)- ;[tr{é (Cal210) [

1 P aCxx(Q | 9)
CN(CXX(Q | 9)) CN( 8(9j ]}J ) :

Furthermore, under certain regularity conditions on can
show that

im —tr{€,/(Cn (21 8))C,(8,(2] 8)C1 (2] 8)):

C/(Cxx(©218))Cy(a,(2]8)C,(2]8))} =+
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f aQ
= [a(Q10)a,(]8)
g T
holds. Exploiting this result by choosing
2, (Q]8) = oInC,,(Q2]0) _ 1 0C,, (2] 0)
’ a‘9i,j CXX(Q L) a‘gi,j
forij=1,...,p, we obtain
im 1 N(B):l j oInC,,(©2]10) dInC,,(Q2]0) dQ
N—o N 2\ - 00, 00, 27 o
17 aQ
= | VBInCXX(Q|9)VgInCXX(Q|G)Z:F(B)
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Maximum Likelihood Estimator
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Whittle Estimator
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Simple Approach for Designing Asymptotically Efficient
Estimators
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