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6 Optimal Filtering
6.1 Introduction
A basic problem in the application of stochastic proces-
ses is the estimation of a signal in the presence of addi-
tive noise. The signal may be random or deterministic, 
and the noise may be colored or white. 
The problem consists of establishing the presence of the 
signal or of estimating its form. The solution of this prob-
lem depends on the state of prior knowledge concerning 
the signal and the noise, e.g. we may be able to specify 
signal and noise covariance functions, power spectra or 
probability densities. 
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Furthermore, system constraints define the form of the 
solution. For example we might allow the system to be 
nonlinear/linear, time-variant/invariant, realizable, etc.
In the following, we shall be exclusively concerned with
linear time-variant/invariant systems but will not neces-
sarily require that they be realizable.

6.2 Matched Filtering
In Chapter 2 we considered stochastic processes and de-
scribed the impact of linear systems on these processes.  
Now, we develop techniques for designing linear filters to
minimize the effect of noise.
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The signal Xt could be either a signal in noise or noise 
only. The signal st is assumed to be deterministic. Addi-
tionally, we suppose that 𝜇𝜇U =E(Ut )=0 and the spectrum 
CUU (Ω) of the input noise Ut is known.
Now, we wish to determine the filter characteristics such
that the instantaneous ratio of the output signal power to 
the output noise power is maximized at sampling time t0, 
i.e.
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This problem typically arises in sonar and radar applica-
tions, where we wish to establish the presence and loca-
tion of a signal st returning from a distant target.  
Remark:
The matched filter does not preserve the waveform of the 
input signal. The objective is to distort the waveform and 
filter the noise such that at the sampling time t0 the out-
put signal level will be as large as possible compared to
the output noise level.
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Theorem:
The matched filter that maximizes

has a transfer function given by

where

are the Fourier transform of st and the spectrum of Ut, 
respectively, k is an arbitrary real constant and t0 is the 
sampling time when (S/N) is evaluated.
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Exercise 6.2-1:
Proof of the Theorem
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Remarks:
k is an arbitrary constant since the signal and the noise 
at the input are both multiplied by k. Thus k cancels in 
the relation for (S/N)out.
The filter found may or may not be causal. If it is not 
causal, it has to be approximated by a causal filter.
The transfer function of the optimum filter is proportional 
to the complex conjugate of the spectrum of the input 
signal. Hence, we might say that the linear system is 
matched to the specified signal.  
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6.2.1 Matched Filtering for White Noise
Theorem:
Suppose the input noise is white. Then the impulse res-
ponse of the matched filter is given by  

where c is an arbitrary real constant, t0 is the time of the 
peak signal output, and st is the known input signal wave-
form.
Consequently, the impulse response of the matched fil-
ter is simply a time reversed, complex conjugated and by 
t0 translated version of the known signal waveform. 
Therefore, the filter is said to be "matched to the signal". 

0, ,t opt t th c s∗
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Exercise 6.2-2:
Proof of the Theorem
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The signal-to-noise ratio at the output is given by

where                       is the energy of the input signal of 
finite length T.

Remarks:
The signal-to-noise ratio at the output of the filter depends 
on the signal energy and power level of the noise and not 
on the particular signal waveform used.
To improve the signal-to-noise ratio, we can increase the 
signal amplitude or the signal length.
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Example:
We want to find the matched filter for the known signal 

of finite extent T = t2 − t1 + 1, as visualized below, 

that is imbedded in additive white noise. Hence, the im-
pulse response of the matched filter is given by
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In order to obtain a causal matched filter, we have to re-
quire t0 ≥ t2. Choosing t0 = t2, the impulse response of the 
matched filter is shown below.

The signal component of the matched filter output,    , is 
depicted in the following figure. 
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The peak output level occurs at t = t0. The input signal 
waveform has been distorted by the filter in order to peak 
up the output signal at t = t0.
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Exercise 6.2-3:
Matched filter design for exponentially decaying signals
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6.2.2 Matched Filtering as Correlation Processing
Consider a known signal waveform st of finite support t∈
{t1,…, t2 } embedded in white noise Zt, i.e. the signal extent 
is T= t2− t1+1. The output of the matched filter at t0 is

Using the matched filter for white noise with t0 = t2, i.e.
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and the convolution can be reformulated to

Hence, matched filtering can be interpreted as a correla-
tion operation which is illustrated in the following figure.
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6.3 Wiener Filtering
The matched filter considered in the previous section is 
an optimal filter in the sense that it provides the highest 
SNR at the output for detecting the presence of a known 
signal.

The Wiener filter considered now aims to provide an opti-
mal estimation of the realization of one stochastic pro-
cess from observations of another stochastic process.

More specifically, we consider a system configuration 
as shown in the figure below, where Xt, Yt and εt denote 
the stochastic process to be estimated, the observed sto-
chastic process and the error process, respectively. 



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 6 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 20

The goal is to design a linear time-invariant filter with im-
pulse response ht such that the expected value of the 
squared-error process, i.e. the MSE, is minimized. The
filter which minimizes the MSE is known as Wiener filter.
For the following considerations we suppose that Xt and 
Yt are real valued, zero-mean and jointly wide-sense sta-
tionary (WSS) stochastic processes.
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Since the processes Xt and Yt are jointly WSS and the 
filter with impulse response ht is assumed to be stable, 
the error process εt is also WSS.
Hence, the MSE, which is the second-order moment of 
εt, does not depend on the index t. The MSE can be ex-
pressed in terms of the filter response ht by
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The impulse response of the optimal (Wiener) filter ht,opt
is defined by

where  denotes the set of all absolutely summable im-
pulse responses.

6.3.1 Wiener-Hopf Equation
Now, we would like to solve the MSE problem

The solution of this problem is provided by exploiting the 
orthogonality principle stated in the following theorem.
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Theorem: (Orthogonality Principle)
Suppose Xt and Yt are jointly WSS. The impulse re-
sponse ht,opt ∈ minimizes the MSE if and only if

For finding the solution of the minimization problem a 
more convenient form of the orthogonality condition is 
given by the following result. 

Corollary:
ht,opt ∈ minimizes the MSE if and only if

( ),E 0 .t opt t uX h Y Y uτ ττ −
 − = ∀ ∈ ∑ 

( ),E 0 .t opt t t tX h Y h Y hτ τ τ ττ τ− −
 − = ∀ ∈ ∑ ∑ 



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 6 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 24

Exercise 6.3-1:
Proof of the Theorem
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Using the corollary, we obtain the equation that specifies 
the impulse response ht,opt of the optimum estimator. 
Reformulation of the orthogonality condition 

provides

and finally

which is known as Wiener-Hopf equation.
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6.3.2 Finite Wiener Filtering
We consider now the problem

where the stochastic process Yt is observed only over    
a finite discrete-time interval   = {t − T1,…, t +T2 }  with 
−T1 ≤ T2. It is desired to obtain an estimate      for Xt by 
applying a linear filter with impulse response ht, i.e.
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The filter ht is therefore of finite length as shown below
for T1,T2 > 0.
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As discussed in the previous section, we wish to deter-
mine the optimum solution ht,opt, which minimizes the MSE 
of the estimate     . 
The relation between the discrete-time interval  and the 
time t at which Xt should be estimated gives rise to the 
following three types of estimation problems.

Filtering
Suppose that Yt has been observed over the discrete-
time interval  = {t − T1,…, t } with T1 > 0. Then Xt has to 
be estimated from the most recent observations. The so-
lution to this problem provides a causal filter which can
be implemented in real-time.

tX
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Smoothing
If the observations are taken over the discrete-time inter-
val  = {t −T1,…, t+T2 } with T1,T2 > 0 then Xt can be esti-
mated from past and future observations. This is appli-
cable in post-processing situations, when a realization  
of Yt has been recorded and can be played back.

Prediction
Let Yt be given over the discrete-time interval = {t −T1, 
…, t − k } with T1 > k > 0. Then Xt has to be predicted from 
past observations. Since the filtering procedure is de-
fined by a linear operation      represents a k-step linear 
predictor for Xt.

tX
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Now, the optimum solution ht,opt has to satisfy the Wiener-
Hopf equation

which can be expressed in matrix form as

where
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Assuming that CYY is positive definite (covariance matri-
ces are at least nonnegative definite) the optimum im-
pulse response is given by 

The optimum solution hopt can be efficiently computed by 
the Levinson-Durbin algorithm which exploits the Toeplitz
structure and the symmetry of CYY. 
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6.3.3 Noncausal Wiener Filtering
The following Wiener Filtering approach is termed non-
causal because one wants to estimate Xt based on ob-
servations Yt for all t ∈  = . Thus 

where the filtering operation is not necessarily causal, i.e. 
the impulse response may not satisfy ht = 0 for t < 0. 
Hence, the Wiener-Hopf equation can be written as

where the right side of the equation represents a discrete
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convolution of hτ,opt and cYY (v) with v = ...−1,0,1,...
Assuming that the following Fourier transforms exist

the Wiener-Hopf equation becomes

where Hopt (Ω), CXY (Ω) and CYY (Ω) denote the transfer 
function of the optimal filter, the power spectral density  
of Yt and the cross power spectral density of Xt and Yt.

,( ) , ( ) ( ) and

( ) ( ) with

j j v
opt opt XY XY

v

j v
YY YY

v

H h e C c v e

C c v e

τ
τ

τ

π π

∞ ∞
− Ω − Ω

=−∞ =−∞

∞
− Ω

=−∞

Ω = Ω =

Ω = − ≤ Ω ≤

∑ ∑

∑

( ) ( ) ( ), ,XY opt YYC H C π πΩ = Ω Ω − ≤ Ω ≤
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Hence, the Wiener-Hopf equation can be easily solved for
the transfer function of the optimum filter, i.e.

from which the impulse response is obtained by 

The minimum mean square error (MMSE) 

can now be expressed by

( )( ) , ,
( )

XY
opt

YY

CH
C

π πΩ
Ω = − ≤ Ω ≤

Ω

,
( )1 , .

2 ( )
j tXY

t opt
YY

Ch e d t
C

π

ππ
Ω

−

Ω
= Ω ∈

Ω∫ 

2

,( ) min ( ) minE
t t

t opt t t th h
q h q h X h Yτ τ

τ

∞

−∈ ∈
=−∞

 
= = − 

 
∑ 
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Since                                                            the infinite sum 
in the equation above can be written as

( ) ( ) and ( ) ( )XY YX YX XYc c C Cτ τ ∗= − Ω = Ω

, ,

2

1( ) ( ) ( ) ( )
2

( ) | ( )|1 1( ) .
2 ( ) 2 ( )

opt XY opt YX opt YX

XY XY
YX

YY YY

h c h c H C d

C CC d d
C C

π

τ τ
τ τ π

π π

π π

τ τ
π

π π

∞ ∞

=−∞ =−∞ −

− −

= − = Ω Ω Ω

Ω Ω
= Ω Ω = Ω

Ω Ω

∑ ∑ ∫

∫ ∫

2

, , ,

2
, ,

( ) E E

E( ) E( ) (0) ( ).

t opt t opt t t opt t t

t opt t t XX opt XY

q h X h Y X h Y X

X h X Y c h c

τ τ τ τ
τ τ

τ τ τ
τ τ

τ

∞ ∞

− −
=−∞ =−∞

∞ ∞

−
=−∞ =−∞

    
= − = −    

    

= − = −

∑ ∑

∑ ∑
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Moreover, exploiting 

the MMSE can be rewritten as

where

denotes the so-called magnitude squared coherence. 

1(0) ( )
2XX XXc C d

π

ππ −

= Ω Ω∫

( )

2

,

2

| ( )|1( ) ( )
2 ( )
1 1 | ( )| ( ) ,

2

XY
t opt XX

YY

XY XX

Cq h C d
C

R C d

π

π
π

π

π

π

−

−

 Ω
= Ω − Ω Ω 

= − Ω Ω Ω

∫

∫

2
2 | ( )|| ( )|

( ) ( )
XY

XY
XX YY
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C C

Ω
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Applying the results stated in Chapter 2.6.3, RXY (Ω) can 
be expressed by

so that RXY (Ω) can be interpreted as the correlation coef-
ficient between the random components of Xt and Yt at 
frequency Ω. Thus,

Moreover, the equality sign holds for all Ω ∈ [−π,π ] if and 
only if Xt and Yt are related by a linear transformation                            

2| ( )| 1, .XYR π πΩ ≤ − ≤ Ω ≤

.t tX h Yτ ττ

∞

−=−∞
= ∑

( )
( ) ( )

Cov ( ), ( )
( )

Var ( ) Var ( )
X Y

XY
X Y

dZ dZ
R

dZ dZ

Ω Ω
Ω =

Ω Ω
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Exercise 6.3-2:
Signal estimation in additive noise, noncausal filtering

ht

H(Ω)Desired Signal

Noise

tX

tU

t tW X λ+= 

tY

Observed Signal
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6.3.4 Causal Wiener Filtering
Noncausal Wiener filtering is improper for applications in
which real-time estimation is required. Therefore, it is of 
practical relevance to consider the causal Wiener filter-
ing problem in which we wish to estimate Xt based on ob-
servations Yu for all u ∈ = {τ ∈  : τ ≤ t }.
Hence, with the causal filter approach

the Wiener-Hopf equation becomes
0

t

t t tX h Y h Yτ τ τ τ
τ τ

∞

− −
=−∞ =

= =∑ ∑

, 0
0

( ) ( ) .XY opt YYc v h c v vτ
τ

τ
∞

=

= − ∀ ∈ =∑  
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Since the Wiener-Hopf equation is only defined for v ≥ 0
it can not be solved by Fourier transform. Before we can 
derive the solution we first have to discuss the so-called 
spectral factorization.
Spectral Factorization and Linear Representation
Suppose Yt has an absolutely continuous and integrable 
spectral density CYY (Ω). Then Yt can be represented as 
noncausal filtered white noise 

and CYY (Ω) can be written as  

2with | | , ( ) 0 and ( )t t t t zz t
t

Y g Z g E Z c tτ τ
τ

δ
∞ ∞

−
=−∞ =−∞

= <∞ = =∑ ∑

( ) ( ) ( ) with ( ) .j t
YY tt

C G G G g e∞∗ − Ω
=−∞

Ω = Ω Ω Ω =∑
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Moreover, if CYY (Ω) satisfies the Paley-Wiener condition 

an unique causal impulse response gt with g0 > 0 and
exists, such that 

has no zeros outside the unit circle (minimum phase fil-
ter) and provides a factorization for CYY (Ω) in the form 

Furthermore,                       implies that no poles of       
are lying outside the unit circle.   

0
( ) with ( ) ( )t j

t
t

G z g z G e G
∞

− Ω

=

= = Ω∑

( )log ( )YYC d
π

π−
Ω Ω > −∞∫

2
0
| |tt
g∞

=
< ∞∑

2 2( ) ( ) ( ) | ( )| | ( )| .j
YYC G G G G e∗ ΩΩ = Ω Ω = Ω =

2
0
| |tt
g∞

=
< ∞∑ ( )G z



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 6 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 42

The Paley-Wiener condition is a fairly weak condition that 
may hold in any situation of practical interest. 
However, if we impose the additional constraints

an explicit expression can be obtain for        .
The constraints imply that all zeros and poles of          are 
lying within the unit circle. Thus,         can be interpreted 
as the z-Transform of a linear, causal, stable, minimum 
phase and invertible stable filter. 
Now, the spectral density of Xt given by

( )G z

( )G z
( )G z

2 2( ) | ( )| | ( )|j
YYC G G e ΩΩ = Ω =

0 0
| | and ( ) 0 | | 1t

t tt t
g G z g z z∞ ∞ −

= =
< ∞ = ≠ ∀ ≥∑ ∑
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can be analytically continued 

in an annulus that contains |z| = 1. Since

we can conclude that if                    are zeros and poles 
of             respectively then                                               
are also zeros and poles of           .
Hence, we obtain the so-called canonical factorization

where            and contain all zeros and poles of

1( ) ( ) ( ) ( ) t
YY YY

t
C z G z G z c t z

∞
− −

=−∞

= = ∑

1( ) ( )YY YYC z C z−=

1 1 1 1
0, 0, 0, , , ,, , and , ,i i i j j jz z z z z z− ∗ ∗ − − ∗ ∗ −

∞ ∞ ∞

0, ,andi jz z∞

( )YYC z
( )YYC z

( ) ( ) ( ),YY YY YYC z C z C z+ −=

( )YYC z+ ( )YYC z−
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that are lying within or outside the unit circle re-
spectively. Since the zeros and poles of            are rela-
ted to the zeros and poles of            by mirroring at the 
unit circle we can write 

Solution of the Wiener-Hopf Equation
Due to the preceding assumptions and explanations we 
are now able to solve the Wiener-Hopf equation. For this
purpose we define the sequence

which has obviously to satisfy qv = 0 for all v ≥ 0. 

( )YYC z

( )YYC z−
( )YYC z+

1( ) ( ).YY YYC z C z− + −=

,
0

( ) ( )v XY opt YYq c v h c vτ
τ

τ
∞

=

= − −∑
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After applying the two-sided z-Transform we obtain

where the convolution theorem for z-Transforms and the 
canonical factorization has been exploited. 
Since qv is anticausal its z-Transform         does not con-
tain a constant component and can only possess poles 
outside the unit circle.  
Dividing the former equation by             we can write 

( ) ( ) ( ) ( )

( ) ( ) ( ),
XY opt YY

XY opt YY YY

Q z C z H z C z

C z H C z C z+ −

= −

= −

( )Q z

( )YYC z−

( )( ) ( ) ( ).
( ) ( )

XY
opt YY

YY YY

C zQ z H z C z
C z C z

+
− −= −
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Due to the aforementioned properties of          and since
has only zeros outside the unit circle we can infer 

that                      does not contain a constant component 
and possesses only poles outside the unit circle.
Moreover, as the poles of                       are lying within 
the unit circle its inverse z-Transform represents a cau-
sal sequence. 
Hence, after defining the operation

we can state that

( )YYC z−

( ) ( )YYQ z C z−

( )Q z

( ) ( )opt YYH z C z+

0
( ) t t

t t
t t

F z f z f z
∞ ∞

− −

+
=−∞ =+

   = =    
∑ ∑
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Finally, the latter provides together with

the desired solution for the Wiener filter in the z-domain

which in the frequency domain can be expressed by
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YY YY
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Exercise 6.3-3:
Solution of the Wiener-Hopf equation for white noise and 
its application after prewhitening

Exercise 6.3-4:
Signal estimation in additive white noise, causal filtering

ht

H(Ω)Desired Signal

White Noise

tX

tZ

tXtY

Observed Signal
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6.4 Kalman Filtering
The Wiener approach considered in the previous section 
solved the MMSE problem for filtering, prediction and 
smoothing of scalar wide sense stationary processes, 
where the derivation of the optimum filter could be pri-
marily considered as an frequency domain approach. 

The Kalman approach addresses the filtering, prediction 
and smoothing problem of not necessarily stationary and 
vector valued processes. It provides solutions in the time 
domain by virtue of formulating the problem in the state 
space.
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6.4.1 State Space Model
Discrete-time dynamic systems can be represented by a 
state equation 

and a measurement equation

where (ft)t≥0 and (ht)t≥0 are sequences of functions, (Xt)t≥0
is a sequence inp describing the states of interest, (Ut)t≥0
is a sequence in q acting on (Xt)t≥1 and where (Yt)t≥0 and 
(Vt)t≥0 are sequences inr representing the measurements 
and the measurement noise, respectively. 

1 ( , ), 0,1,2,t t t t t+ = =X f X U 

1 ( , ), 0,1,2, ,t t t t t+ = =Y h X V 
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If the discrete-time system is linear the state and mea-
surement equations can be expressed by

and

where Ft, Gt and Ht are p×p, p×q and r ×p matrices, res-
pectively, for each t. 
Furthermore, if the system is time-invariant the matrices 
Ft, Gt and Ht become constant coefficient matrices which 
are accordingly denoted by F, G and H. Hence, the state 
and measurement equations simplify to 

, 0,1,2, ,t t t t t= + =Y H X V 

1 , 0,1,2, ,t t t t t t+ = + =X F X G U 

1 and , 0,1,2, .t t t t t t t+ = + = + =X FX GU Y HX V 
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Exercise 6.4-1:
State space representation of the one-dimensional mo-
tion of a particle
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6.4.2 State Estimation
Now, we suppose that the sequence Y0,…,Yt has been 
observed and that the state Xτ should be estimated.
This estimation problem is known as

a)  filtering problem if t = τ,
b)  smoothing problem if t > τ,
c)  prediction problem if t < τ.

To estimate the state Xτ by means of realizations of the 
measurement sequence Y0,…,Yt in the minimum mean 
square error sense we have to find an estimating func-
tion that minimizes 

2

0 2
ˆ ˆ( ) E ( , , ) .MSE tR τ τ τ

 = − 
 

X X X Y Y

0
ˆ ( , , )tτX y y
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We know from Chapter 1.10.4 or 3.7.1 that the optimum 
estimating function is given by the conditional mean, i.e.

However, we are usually interested in generating esti-
mates in real time as t increases. Since the data increase 
linear with t, an efficient calculation of the conditional 
mean will be impossible unless suitable restrictions on 
the system model structure are imposed, e.g. restriction 
to discrete-time linear systems with independent input 
and measurement noise sequences of independent zero-
mean Gaussian random vectors.

( )0 0 0
ˆ ( , , ) E | , , .t t tτ τ= = =X y y X Y y Y y 
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6.4.3 Kalman Filter Approach
Within the assumptions mentioned above a computatio-
nal efficient and simultaneous solution of the filtering and 
one step prediction problem can be stated. 
Theorem:
For the linear, finite-dimensional, discrete-time system

where (Ut) and (Vt) are independent sequences of inde-
pendent zero-mean Gaussian vectors which are indepen-
dent of the Gaussian initial condition X0 with

1 and , 0,1,2, ,t t t t t t t t t t+ = + = + =X F X G U Y H X V 

0 0 0 0E( ) ( ), E( ) ( ), E( ) , Cov( )T T
t t t tt t= = = =UU VVU U Σ V V Σ X μ X Σ
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the estimators

can be recursively determined by the following equations.

and

with initialization                 and Kalman gain matrix

where 

| 0 1| 1 0E( | , , ) and E( | , , )t t t t t t t t+ += =X X Y Y X X Y Y 

( )| | 1 | 1 0,1,2,t t t t t t t t t t− −= + − =X X K Y H X 

1| | 0,1,2,t t t t t t+ = =X F X 

( ) 1

| 1 | 1 ( ) ,T T
t t t t t t t t t

−

− −= + VVK Σ H H Σ H Σ

0| 1 0− =X μ
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is the covariance of the prediction error which can be com-
puted jointly with the filtering error covariance 

by the recursion

and

with the initialization               .

( )
| 1 0 1

| 1 | 1 0 1

Cov( | , , )

E ( )( ) | , ,
t t t t

T
t t t t t t t

− −

− − −

=

= − −

Σ X Y Y

X X X X Y Y





( )| 0 | | 0Cov( | , , ) E ( )( ) | , ,T
t t t t t t t t t t t= = − −Σ X Y Y X X X X Y Y 

| | 1 | 1, 0,1,2,t t t t t t t t t− −= − =Σ Σ K H Σ 

1| | ( ) , 0,1,2,T T
t t t t t t t tt t+ = + =UUΣ F Σ F G Σ G 

0| 1 0− =Σ Σ
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Exercise 6.4-2:
Proof of the Theorem
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The recursions consist of the following two basic steps.
Measurement update

which updates the 
– state estimate of Xt by incorporating the new measurement Yt,
– filter error covariance matrix.

Time update

which provides the
– one-step prediction of the state estimate,
– prediction error covariance matrix.

( )| | 1 | 1 | | 1 | 1andt t t t t t t t t t t t t t t t t− − − −= + − = −X X K Y H X Σ Σ K H Σ

1| | 1| |and ( )T T
t t t t t t t t t t t t tt+ += = + UUX F X Σ F Σ F G Σ G
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The measurement update equation

can be viewed as a combination of the predicted state 
vector and a correction term. Since

the difference in the correction term can be interpreted 
as an error signal 

which is known as innovation. The term innovation comes 
from the fact that It is the part of

( )| | 1 | 1t t t t t t t t t− −= + −X X K Y H X

| 1 0 1

0 1 0 1 | 1

E( | , , )
E( | , , ) E( | , , )

t t t t

t t t t t t t t

− −

− − −

=

= + =

Y Y Y Y
H X Y Y V Y Y H X



 

| 1 | 1,t t t t t t t t− −= − = −I Y Y Y H X
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that cannot be predicted and therefore contains the new
information that is gained by the current observation.

Remarks:
The innovation sequence It is a sequence of independent
not identically distributed zero-mean Gaussian random 
vectors.
Yt consists of a part, Yt |t−1, completely dependent and a 
part, It, completely independent of the past. Thus It pro-
vides a set of independent observations that forms suit-
ably scaled the output of a prewhitening operation.  

| 1t t t t−= +Y Y I
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Exercise 6.4-3:
Proof of the remarks
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Kalman Filtering Algorithm

Measurement update (Correction)

Time update (Prediction)

Initialize the state prediction Initialize the prediction error covariance matrix

Update the state vector

Projection of state vector ahead

Calculate the Kalman gain matrix

Update the error covariance matrix

Projection of error covariance matrix ahead

0| 1 0− =X μ

1| |t t t t t+ =X F X

| | 1t t t t t t−= +X X K I

( ) 1

| 1 | 1 ( )T T
t t t t t t t t t

−

− −= + VVK Σ H H Σ H Σ

1| | ( )T T
t t t t t t t tt+ = + UUΣ F Σ F G Σ G

0| 1 0− =Σ Σ

| | 1 | 1t t t t t t t t− −= −Σ Σ K H Σ

Calculate the Innovation

| 1t t t t t −= −I Y H X
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Exercise 6.4-4:
Scalar Kalman filter

Exercise 6.4-5:
Track-While-Scan Radar with independent accelerations 
from scan to scan

Exercise 6.4-6:
Track-While-Scan Radar with dependent accelerations
from scan to scan

Exercise 6.4-7:
State space representation of  AR(p)-, MA(q)-, and  
ARMA(p,q)-Processes
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