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Assignment 1 
 

1 Random variables and random Numbers 

1.1 Preparation 

1.1.1 Uniform distribution 
Specify the density function, distribution function and determine the expected value and variance 

of a on [a, b] uniformly distributed random variable X. 

1.1.2 Normal distribution 
Specify the density function and the distribution function of a -distributed random vari-

able X. How can the tabulated values of the standard normal distribution function be used to deter-

mine values for a -distributed random variable? 

1.1.3 Approximation of the distribution function 
What are the advantages in estimating the distribution function instead of estimating the corre-

sponding density function? 

1.1.4 Bivariate normal distribution 
Specify the density function ( , )XYf x y  and the characteristic function ( , )XY x y  of two bivariate 

normal distributed random variables X and Y with the expected values ,X Y  , the variances 
2 2,X Y   and the correlation coefficient  . Outline the level curves of the density function 

 ( , ) : ( , ) const.XYx y f x y  for 0   and 1/ 2  . To what shape degenerate the level curves in 

case of 1   ? 

1.1.5 Monte-Carlo-method 
Develop a method for estimating the constant   using realizations of a random variable uniformly 

distributed on the interval [0, 1].  

(Note: Consider pairs of these random numbers like coordinates of random points in the plane. 

How large is approximately the relative frequency that a point is lying inside the unit circle?) 
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1.2 Exercises with Matlab 

1.2.1 Mean value, variance and standard deviation 
Generate 1000 on the interval [0, 1] uniformly distributed random numbers. Display the numbers 

by using the MATLAB-instruction plot. Before generating the random numbers, the initial seed 

has to be set to 0 via the MATLAB function rng. Save the vector of random numbers in dat1_1. 

Calculate the sample mean, sample variance and sample standard deviation using the random se-

quence in three different ways.  

Using the MATLAB 

1) loop for ... end, 

2) functions sum and length and 

3) functions mean and cov. 

Compare the results. Take a look at the m-files mean and cov using help and/or type. 

1.2.2 Density function and histogram 
Write a function density, that estimates the density function of a random variable from a number 

of observations by applying the histogram function hist. Use the uniformly distributed random 

sequence from dat1_1. Show the estimates as bar graph and as line graph. Compare the theoretical 

density function with the result by drawing the theoretical density also into the line graph figure. 

Repeat the experiment for 1000 standard normal distributed random numbers, where the in-

itial value has to be set to 0. Save this random vector in dat1_2. 

(Note: The function density shall be applicable to any random sequences. Therefore, take 

into account the interrelationship between the scaling and the length of the random sequence and 

the width of the interval.) 

1.2.3 Distribution function and frequency 
Estimate the distribution function of the random sequences given in dat1_1 and dat1_2. For 

this, generate with the MATLAB instruction linspace a ramp within the interval [0, 1] and use 

it for drawing the estimate. 

(Note: Sort the data.) 

1.2.4 Generation of a bivariate normal distribution 
Set the initial seed of randn to 0. Generate through z1=randn(1000,2) a matrix of normal 

distributed random numbers. Multiply z1 from the right with the matrix D = [1 .5; 0 .5], 

thus z2 = z1 * D. Separate the result through x = z2( : ,1) and y = z2( : ,2) into 

two vectors and add 1.5 to each element of x and 0.5 to each element of y. Store the vectors by 

using the MATLAB instruction save dat1_3 x y. 
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1.2.5 Bivariate normal distribution 
Load dat1_3 that includes the two vectors x and y of length 1000 as samples of the two bivariate 

normally distributed random variables X and Y. Estimate for this dataset 2 2, , ,X Y X Y     and   by 

using the MATLAB function cov. Calculate the bivariate density function ( , )XYf x y  with the es-

timated parameters and display it as a 3dimensional and a level curve graphic. 

(Note: Use the MATLAB-functions mesh and contour.) 

1.2.6 Monte-Carlo-Method for approximation of  
Generate two on the interval [0, 1] uniformly distributed random sequences x and y of length 1000. 

The initial value has to be set to 0 again.  How many points lie within the unit circle? Estimate 

thereby the constant  . 
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Assignment 2 
 

2 Functions of random variables 

2.1 Preparation 

2.1.1 Normal distribution and uniform distribution 
Transform the 2( , )N   −distributed random variable X into a standard normal distributed random 

variable. Transform the on [ , ]a b  uniformly distributed random variable X such that it is uniformly 

distributed on [ 1/2,1/2] . 

2.1.2 Exponential distribution 
Determine the expected value, the variance and the density function of 1 lnY X   for 0  , 

when X is uniformly distributed on [0, 1]. Which other distribution has the same density function, 

as the exponential distribution for 1/ 2  ? 

2.1.3 Sum of random variables 
Determine the expected value, the variance and the density function of Z  X  Y, when X and Y 

are two stochastically independent and on [0, 1] identically uniformly distributed random variables. 

2.1.4 Product of random variables 
Calculate the expected value, the variance and the density function of Z  XY, when X and Y are 

two stochastically independent and on [0, 1] identically uniformly distributed random variables. 

2.1.5  
2-distribution 

Determine the expected value, the variance and the density of  

4 2

1
,ii

Z X


  

where ( 1,2,3,4)iX i  are four stochastically independent, standard normally distributed random 

variables. How could one create a random variable from two stochastically independent exponen-

tially distributed random variables that possess the same distribution as Z? Calculate the density of 

Z through convolution of the density of an exponential distribution. 
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2.1.6 Normal distribution from uniform distribution 
Calculate the bivariate density 

1 2 1 2( , )Y Yf y y  of 

1 1 2 2 1 22ln sin(2 ) and 2ln cos(2 )Y X X Y X X      

where X1 and X2 are stochastically independent and on [0, 1] identically uniformly distributed ran-

dom variables. 
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2.2 Exercises with MATLAB 

2.2.1 Standard normal distribution 
Load dat1_3 containing the random sequences x and y of two bivariate normal distributed ran-

dom variables. Transform the random samples such that they obey a standard normal distribution. 

Make sure that your transformation is correct by showing the theoretical and the via density 

estimated density of the transformed random sequence x in a diagram. 

2.2.2 Exponential distribution 
Load the on [0, 1] uniformly distributed random sequence from dat1_1 and transform it as ex-

plained in Section 2.1.2 with 1/ 2  . Calculate the sample mean and sample variance of the trans-

formed sequence and compare the results with the theoretical values from Section 2.1.2. Show the 

in Section 2.1.2 calculated and via density estimated density function of the transformed random 

sequence in a figure. 

2.2.3 Sum of random numbers 
Generate two on [0, 1] uniformly distributed random sequences of the length 1000 after setting the 

initial seed to 0.  Save both random sequences in dat2_1. Then add the two sequences element-

by-element. Calculate the sample mean and sample variance of the sum and compare the results 

with the theoretical values from Section 2.1.3. Display the in Section 2.1.3 calculated and via den-

sity estimated density function in a diagram. 

2.2.4 Product of random numbers 
Multiply both on [0, 1] uniformly distributed random sequences from dat2_1 element-by-element. 

Calculate the sample mean and sample variance of the product and compare the results with the 

theoretical values derived in Section 2.1.4. Depict the in Section 2.1.4 calculated and via density 

estimated density function in a figure. 

2.2.5  
2-distribution 

Generate four standard normal distributed random sequences of the length 1000, where before the 

initial value has to be set to 0. Save the data in dat2_2. Determine the sum of squares of the four 

random sequences element-by-element. Calculate the sample mean and sample variance of the sum 

and compare the results with the theoretical values obtained in Section 2.1.5. Present the in Section 

2.1.5 calculated and via density estimated density function in a diagram. 
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2.2.6 Normal distribution from uniform distribution 
Now use again dat2_1 containing two on [0, 1] uniformly distributed random sequences. Build 

y1 as explained in Section 2.1.6. Calculate the sample mean and sample variance of y1 and compare 

the results with the theoretical values determined in Section 2.1.6. Show the in Section 2.1.6 cal-

culated and via density estimated density function in a figure. 
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Assignment 3 
 

3 Least-squares estimation 

3.1 Preparation 

3.1.1 Polynomial model 
The signal model is given by  

2
0 1 2 ...     p

i i i p i iY a a x a x a x Z . 

Let the observations (xi , yi)  i = 1,2,…,N  be given. Derive the LS-Estimate for the unknown pa-

rameters ai   i = 0,1,…,p  and the estimate for the variance of the noise. How large has the number 

N of observations to be at least? Express with regard to a MATLAB implementation the problem 

in vector notation. 

3.1.2 Power model and exponential model 
The power model is given by 

b
i i iY a x Z   . 

Linearize the model assuming a  0, xi  0 and Zi  0. Why are the measuring errors assumed to be 

multiplicative? Estimate the parameters a and b as well as the variance of the measurement error 

after linearization. How large has to be the number N of observations at least? The exponential 

model is defined by  

ix
i iY a b Z   . 

Carry out all the tasks mentioned above also for this model. 

3.1.3 Sine model 
The amplitude a and phase b of the sine model  

sin( )  i i iY a x b Z  

are unknown. Linearize the sine model. Estimate the parameters a and b as well as the variance of 

the measurement error after linearization. How large has to be the number N of observations at least? 

3.1.4 Nonlinear LS-Approach to a circle 
A number of data points (xi , yi)  i = 1,2,…,N  are given in the xy-plane. Fit to them a circle with 

unknown radius r and unknown centre (x0, y0). The model for the observation is given by 
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2 2
0 0( ) ( ) ,i i i ix x y y r r z       

where ri indicates the distance between the i-th measurement point (xi , yi) and the centre (x0, y0) 

and zi indicates the error of the radius. Express the sum of squares of measurement errors q(x0, y0, r) 

and derive the necessary condition for their minimization. Is the resulting equation system solvable 

in an analytic way? Give reasons for your answer. Point out a method for solving the equation 

system numerically. 

3.1.5 Linear LS-Approach to a circle 
Supposed the centre 0 0( , )x y   of the circle from Section 3.1.4 is approximately known. Then it is 

possible to develop the function 0 0( , )ir x y  into a Taylor series in place 0 0( , )x y  . The approximation 

0 0 0 0

2 2
0 0 0 0

0 0 0 0
0 0 0 0 0 0

0 0( , ) ( , )

0 0
0 0 0 0 0 0

0 0 0 0

( , ) ( ) ( )

( , ) ( , )
( , ) ( ) ( )

( , ) ( ) ( )
( , ) ( , )

i i i

i i
i

x y x y

i i
i

i i

r x y x x y y

r x y r x y
r x y x x y y

x y

x x y y
r x y x x y y

r x y r x y

   

 
    

 

 
    

   

   

    
   

 

provides a new model for the error 

0 0
0 0 0 0 0 0

0 0 0 0

( , ) ( ) ( )
( , ) ( , )

i i
i i i

i i

x x y y
z r r r x y x x y y r

r x y r x y

 
       

    
   

 

that is now linear in x0 and y0. 

Formulate the minimization criterion for the linearized model. Determine the LS-Estimates 

0 0ˆ ˆ( , )x y  and r̂  from (xi , yi)  i = 1,2,…,N. The LS-Estimates obtained are only as good as the initial 

guess of the centre 0 0( , )x y  . One can improve the estimates if the procedure mentioned above is 

repeated after replacing 0 0( , )x y   by 0 0ˆ ˆ( , )x y . Furthermore, state two different stopping criteria for 

this iterative procedure. 
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3.2 Exercises with MATLAB 

3.2.1 Generating data 
Now data for four different signal models have to be created. Generate therefore an on [0, 1] uni-

formly distributed random sequence x1 and a standard normal distributed random sequence z1, 

each with a length of 100 values. Set in both cases first the initial seed to 0. Type now these com-

mands in MATLAB in the following order: 

x=x1*5+2; z=z1*sqrt(0.004); xy1=[x  exp(1+x*0.6+z)];

x=x1*4*pi; z=z1*sqrt(0.05); xy2=[x  2*sin(x+1)+z];

x=x1*5; z=z1; xy3=[x  -0.6*x.^3+0.9*x.^2+3*x+4.5+z];

x=x1*5; z=z1*sqrt(0.004); xy4=[x  exp(0.3+log(x)*0.5+z)];

x=x1*2*pi; z=z1*0.5+6; xy=[z.*cos(x)+4  z.*sin(x)+2];

save dat3_1 xy1 xy2 xy3 xy4

save dat3_2 xy

 

3.2.2 Model assignment 
Load dat3_1 that includes the four 100  2 matrices xy1, xy2, xy3 and xy4. The two column 

vectors of each matrix correspond to the observations xi and yi of a particular signal model. Show 

each dataset xi , yi in a diagram and assign to each matrix a model. 

 (Note: For the model assignment you can exploit the fact that log g(x) behaves in case of the 

power model like a logarithmic function while log g(x) depends in case of the exponential model 

only linearly on x.) 

3.2.3 LS-Estimation of different models 
Estimate each of the parameters a, b and the variance of the measurement errors 2

Z  of the linear-

ized models, i.e., of the exponential model, the power model and the sine model. Therefore, write 

a function LSE that is able to deal with these three models and with a polynomial model of arbitrary 

order. 

3.2.4 Estimating the order of a polynomial 
Estimate the order p of the polynomial model. Therefore, you have to depict the estimated variance 

versus the model order p = 1,2,…,10. Consider the order that provides the smallest variance as the 

correct order. Estimate for that order the parameters ai for i = 1,2,…,p. 

3.2.5 Comparison of observations and estimated model 
For each of the models estimated above show the observations of the model (xi, yi)  i = 1,2,…,N 

and the corresponding reconstructed model curve (xi , g(xi))  i = 1,2,…,N  in one figure. 
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3.2.6 LS-adjustment to a circle: estimating the centre 
Load dat3_2 containing a 100  2 matrix that represent the coordinates of 100 measurement 

points in the xy-plane.  Take a look at the measurement points and guess from them the coordinates 

of the centre location.  

3.2.7 LS-Fit to a circle: iteration 
Carry out a LS-Estimation as shown in Section 3.1.5. Use the estimated centre as an improved 

initial value and repeat the LS-Estimation as long as 10
0 0 0 0( ( ), ( )) ( ( 1), ( 1)) 10x k y k x k y k         

is fulfilled, where  0 0( ), ( )x k y k   denotes the k-th LS-Estimate of the centre. Write a function 

LSE_circle that carries out the iteration. Depict the reconstructed circle and the measurement 

points in a diagram. 

3.2.8 LS-Fit to a circle: convergence 
Does this method converge, if the initial guess of the circle centre is very poor? Try it by giving 

your function LSE circle intentionally a very poor initial estimate of the centre location. Ex-

plain your observation. 
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Assignment 4 
 

4 Parameter estimation, AR(p)-processes 

4.1 Preparation 

4.1.1 Discrete white noise 
Specify the constant component, the covariance function and the spectral density of discrete white 

noise. 

4.1.2 Generation of AR(p)-processes 
Make oneself familiar with the MATLAB-function filter. The function filter is used for the 

generation of an AR(p)-process. Which values have to be entered for the filter coefficient vector 

b? Which value has to be assigned to the first element 0a  of the filter coefficient vector a?  

4.1.3 LS-Estimation 
How can one determine the least squares estimates of the parameters 2

1 2, ,..., ;p Za a a   for the given 

observations xi  i = 1,2,…,N ? How large has to be the number of observations N ?  

4.1.4 Levinson-Durbin-Algorithm 
Which particular property of the coefficient matrix of the following Yule-Walker-Equation system 

1

2

(0) (1) ( 1) (1)

(1) (0) ( 2) (2)

( 1) ( 2) (0) ( )

XX XX XX XX

XX XX XX XX

pXX XX XX XX

ac c c p c

ac c c p c

ac p c p c c p

     
              
          




    


 

permits the application of the Levinson-Durbin-Algorithm? Is the Levinson-Durbin-Algorithm be 

suited for solving the equation system of the LS-Estimation procedure? Give reasons for your an-

swer. Which advantage offers the Levinson-Durbin-Algorithm with respect to the model order es-

timation? How can the model order be estimated? 
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4.2 Exercises with MATLAB 

4.2.1 Sample covariance function 
Write a function covfct for determining the sample and the modified sample covariance function. 

To calculate both sample covariance functions take the first 200 random numbers from dat1_1. 

Display the results and explain the differences between the functions. What indicates that a sequence 

of random numbers can be interpreted as a realisation of discrete white noise? 

(Note: In MATLAB exists a similar function xcov. Ascertain the correctness of your func-

tion covfct by comparing the results of the experiments with covfct and xcov.) 

4.2.2 Generation of AR(p)−processes 
Load dat1_2 that includes a realization of white noise. For the generation of an AR(p)-process 

you have to filter the white noise by a recursive filter with the filter coefficients 1 20.5, 0.3,a a   

3 4 50.1, 0.7, 0.3a a a   . Use the MATLAB-function filter. Save the white noise and the 

AR(p)-process for later use in dat4_1. 

4.2.3 LS-Estimation 
Carry out a LS-Estimation of the parameters 1, 2,...,5ia i   and the variance 2

Z  of the AR(p)-

process. 

4.2.4 Empiric Yule-Walker-Equation 
Determine the first 11 values of the sample covariance function, e.g. ˆ ˆ(0), , (10)XX XXc c , using 

function covfct. Estimate the parameters 1,2,...,5ia i   and 2
Z  by solving the empirical Yule-

Walker-Equation via the 

a) Gaussian Elimination Algorithm 

b) Levison-Durbin Algorithm. 

(Note: Use the MATLAB-function toeplitz to generate the coefficient matrix and read 

for a) the MATLAB-help for the operator backslash and for b) use the MATLAB-function 

levinson) 

4.2.5 Estimation of the model order 
Estimate the parameters 1, 2,...,5ia i   and 2

Z  as in Section 4.2.4 b), but now for the wrong 

model order p = 4 and p = 6. Compare the estimated parameters with those obtained in Section 

4.2.4 b). Which consequences have an underestimation or an overestimation of the model order? 

Estimate now for the model order 1,2,...,10k   the variance 2
,Z k with the Levinson-Durbin Algo-

rithm. Present the result in a diagram. Draw also the values of the Akaike and Rissanen criterion 

and deduce from them the model order p of the AR(p)-process. 
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Assignment 5 
 

5 Discrete Fourier Transform 

5.1 Preparation 

5.1.1 FFT in MATLAB 
Make oneself familiar with the MATLAB function fft. Why do you get complex valued results 

in spite of real input values? 

5.1.2 Comparison of DFT and FFT 
What is the difference between DFT and FFT? Do you get different results by using both Fourier 

Transforms?  

5.1.3 Nyquist-Criterion 
Suppose we are sampling a sinusoidal signal of frequency  f  with the sampling frequencies  fs = f, 

fs = 2 f and  fs = 3 f . What signals do you get? 

5.1.4 Filling with zeroes 
Can you improve the resolving power of the Fourier Transform for a given data length by zero 

padding? Motivate your answer. Which effect does zero padding have? Is it important where you 

insert zeroes?  

5.1.5 Windows 
The MATLAB-functions hanning, hamming, blackman and bartlett should be used for 

the implementation of windows. Make oneself familiar with their functionality. Which properties 

of the Fourier Transforms of windows are particularly important for applications?  

5.1.6 Ideal filter 
Which properties does an ideal low pass filter possess? Which impact does the choice of windows 

have on the design of a transversal (FIR) low pass filter?  

5.1.7 Fast convolution 
The fast convolution is implemented in MATLAB by the function fftfilt which is based on 

the Overlap-Add-Method. Make oneself familiar with their functionality. The correct data length 

of Fourier Transforms is important in the use of the fast convolution. What happens, if one does 

not pay attention to it?  
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5.2 Exercises with MATLAB 

5.2.1 Image frequencies 
A sinusoidal signal 0( ) sin(2 )x t f t  with the frequency 0 2 kHzf   is given. Sample 512 values 

of the signal with the sampling frequencies´ 10 kHz  and  3 kHzsf  . Represent the squared mag-

nitude of the Fourier Transform. Explain the phenomenon of image frequencies.  

(Note: The MATLAB-function fft can be used to calculate the DFT for this and all the 

following exercises.) 

5.2.2 Aliasing 
A rectangular signal of duration T = 1 ms is given, i.e. 

1 0
( )

0 else

t T
x t

 
 


 

Sample 512 values of the signal with the sampling frequencies 4 kHz  and  16 kHzsf  . Represent 

the squared magnitude of the Fourier Transform. Explain the impact of the sampling frequency on 

the aliasing effect by using the results obtained. 

5.2.3 Filling with zeroes 
Take the first 32 samples for 10 kHzsf   from Section 5.2.1 and represent the squared magnitude 

of the Fourier Transform. Fill your data set with 480 zeroes and repeat the experiment now. Which 

effect does the zero padding of the data set have? Compare the result with that of Section 5.2.1. 

What can you say about the impact of the correct data length (without filled zeroes) on the resolving 

power of the Fourier Transform? 

5.2.4 Leakage effect 
Use the first 33 values for 10 kHzsf   from Section 5.2.1 and represent the squared magnitude of 

the Fourier Transform. How does the leakage effect make itself noticeable? Execute the Fourier 

Transform with another number of samples once more. When does the leakage effect make itself 

noticeable? 

5.2.5 Effect of windows 
Represent the following windows 

 

Rectangle-window: 
1, 0 1nw n N     
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Bartlett-window: 
2 1

, 0
1 2
2 1

2 , 1
1 2

n

n N
n

Nw
n N

n N
N

         
 

 

Hann-window 
1 2 ( 1)

1 cos , 0 1
2 1n

n
w n N

N

           
 

Hamming-window 
2

0,54 0,46cos , 0 1
1n

n
w n N

N

       
 

Blackman-window 
1 2 4

0, 42 cos 0,08cos , 0 1
2 1 1n

n n
w n N

N N

                
 

in the time domain for 1,...,51n  .  Use the relevant MATLAB function. 

Calculate the logarithmic amplitude responses  1020log ( ) max ( )W W   using the FFT 

of length L = 1024 and depict them in diagrams.  Determine the frequencies of the 3dB limits and 

the suppression of the highest sidelobe of the amplitude response. Discuss the results. 

(Note: Depict always the time function and the corresponding amplitude response in one 

figure. For this reason, use the MATLAB function subplot.) 

5.2.6 Transversal (FIR) low pass filter 
The impulse response of an ideal low pass filter is given by 

 1 1
( ) si ( ) ,

2 2

c

c

j n j j n c
n ch H e d e e d n







  


   

 


          

where c denotes the cutoff frequency. Because only a finite number of filter-coefficient can be 
processed in a computer, the impulse response is truncated to the finite length N. For ( 1) 2N    

we get a causal low pass filter with linear phase and the property 1n N nh h    .  

Use the first 51 values of the impulse response with the cutoff frequency 1c   as filter 

coefficient. Represent every tapered impulse response n n nh w h   and its amplitude response (in 

dB) in a common figure. Determine the suppression of the highest side lobe and the bandwidth of 

the low pass filter at 3 dB und 20 dB level. Discuss the results. 

(Note: A scaled version of function si(x) = (sin x)/x is called sinc in MATLAB. You 

should see the MATLAB-help to sinc before you use it.) 
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5.2.7 Fast convolution 
Write a function firfilt for a direct implementation of a transversal (FIR) filter. Create the 

rectangular signals 
1 if 0,1,...,100

0 elsewheren

n
h


 


 

and 
1 if 0,1,...,900

0 elsewheren

n
x


 


. 

Execute the filtering both directly with its function firfilt and with help of MATLAB function 

fftfilt, which implements the overlap-add-method. For that, an FFT-length of 256 for fft-

filt should be used.  Compare the results and the CPU-Processing time for the arithmetic oper-

ations of both approaches. 
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Assignment 6 
 

6 Spectral Analysis 

6.1 Preparation 

6.1.1 Representation of the spectrum 
Familiarise oneself with the MATLAB-functions freqz and periodogram. 

6.1.2 Periodogram 
Why does one use the Periodogram and not the Fourier-transform of a signal for spectrum estima-

tion? Is the Periodogram itself suited to provide a reasonable estimate of the spectrum? 

6.1.3 Averaging of Periodograms 
Which are the advantages and disadvantages of the averaging of Periodograms? Why is one al-

lowed to average Periodograms of successive data pieces of observations? 

6.1.4 Trend removal 
Why does a trend in the data disturb the spectrum analysis? How does a constant or linear trend 

affect a direct estimation of a spectrum? Discuss in that context the Periodogram of the sum of a 

trend and a noise signal without a constant component. Does a constant trend have an effect at 

discrete frequency locations? 

6.1.5 Smoothing of Periodograms 
For which spectra is the smoothing of Periodograms not suitable? What are the advantages and 

disadvantages of smoothing compared to averaging periodograms? 

6.1.6 Prewhitening 
Which advantages does prewhitening offer? Why does one not compute the spectrum directly from 

the estimated parameters of an AR(p) process? 
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6.2 Exercise with Matlab 

6.2.1 Estimation of spectra 
Write a function spec, which estimates the spectrum from any data record by averaging of Peri-

odograms. The number of data pieces L and the window type employed should be freely selectable. 

Estimate the spectrum of the AR(p) process from Section 4.2.2 for L = 1,2,5,10 using the rectan-

gular window in each case. Represent each time the spectrum and its estimate in a common figure. 

Repeat the investigations using the Hann-window and discuss the results. 

6.2.2 Estimation of transfer functions 
Write a function Hw which estimates the spectrum of a stochastic signal, the cross spectrum of two 

stochastic signals and from this the transfer function of the underlying system by means of averag-

ing of Periodograms. Use as input and output signal the realizations of the white noise and the 

AR(p) process from Section 4.2.2, respectively. Estimate the transfer function of the recursive filter 

by means of the function Hw for L = 5 using the Hann-window. Represent the estimated and theo-

retical amplitude response in one figure and discuss the result. 

(Note: The theoretical amplitude response can be easily determined employing the 

MATLAB function freqz.) 

6.2.3 Add Trend to an AR(p)-Process 
Load the data record dat4_1, which contains the realizations of the AR(p) process generated in 

Section  4.2.2. Add a trend to the data by means of x = x + linspace(0,3,1000) and 

store the resulting vector in dat6_1. 

6.2.4 Trend removal 
Load the data record dat6_1 containing a vector x of length 1000. Represent the vector as a graph 

in a figure. One recognizes that the data possess a linear trend. Determine this trend by means of 

least squares estimation. Remove the trend from the data and store the data in dat6_2. 

6.2.5 Smoothing of Periodograms 
Extend your function spec from Section 6.2.1 in such a way that now also a smoothing of Peri-

odograms is possible over a freely selectable number of 2m + 1 frequency bins. Make sure that the 

averaging at the edges of the frequency domain only utilizes the existing Periodogram values and 

that the Periodogram values at the frequencies  = 0 and  =   are also not taken into account. 

Depict the smoothed Periodograms of the trend removed data vector given in dat6_2 for all fre-

quencies 
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2 1
, 1,...,

2n

n N
n

N

       
 

and m = 0,2,5,10 in a diagram and discuss the results. 

6.2.6 Prewhitening 
In order to avoid a smoothing over spectral peaks, a prewhitening of the trend removed process stored 

in dat6_2 has to be carried out first. Therefore, estimate the parameters ai :  i = 1, 2,…, p and the 

order p of the AR(p) process using the Levinson-Durbin algorithm and the MDL criterion respec-

tively. With these estimates the prewhitened process ˆnz  can be determined by  
ˆ

1

ˆˆ
p

n n k n k
k

z x a x 


  . 

Represent the corresponding data vector ẑ  in a figure and save it in dat6_3. 

6.2.7 Spectrum estimation 
Compute the smoothed Periodogram of ˆnz  stored in dat6_3 for m  10 and depict the result in a 

diagram. Now, the spectrum of the AR(p) process shall be determined using the amplitude response 

of the underlying recursive filter and the smoothed Periodogram of ˆnz . Finally, display the squared 

amplitude response of the recursive filter and the spectrum ˆ ( )XXC   in a figure, and compare the 

latter with the results from Section 6.2.5. 

 


