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Assignment 1

1 Random variables and random Numbers

1.1 Preparation

1.1.1 Uniform distribution

Specify the density function, distribution function and determine the expected value and variance

of a on [a, b] uniformly distributed random variable X.

1.1.2 Normal distribution

Specify the density function and the distribution function of a N (u,0?)-distributed random vari-
able X. How can the tabulated values of the standard normal distribution function be used to deter-

mine values for a A/ (u,0°)-distributed random variable?

1.1.3 Approximation of the distribution function

What are the advantages in estimating the distribution function instead of estimating the corre-

sponding density function?

1.1.4 Bivariate normal distribution

Specify the density function f,,(x,») and the characteristic function @, (x,y) of two bivariate
normal distributed random variables X and Y with the expected values p,,, , the variances
c%,o, and the correlation coefficient p . Outline the level curves of the density function
{(x,»): fyy(x,y) =const.} for p=0 and p=1/2. To what shape degenerate the level curves in
case of p==%1?

1.1.5 Monte-Carlo-method

Develop a method for estimating the constant 7 using realizations of a random variable uniformly
distributed on the interval [0, 1].
(Note: Consider pairs of these random numbers like coordinates of random points in the plane.

How large is approximately the relative frequency that a point is lying inside the unit circle?)



1.2 Exercises with Matlab

1.2.1 Mean value, variance and standard deviation

Generate 1000 on the interval [0, 1] uniformly distributed random numbers. Display the numbers
by using the MATLAB-instruction plot. Before generating the random numbers, the initial seed
has to be set to 0 via the MATLAB function rng. Save the vector of random numbers in datl 1.
Calculate the sample mean, sample variance and sample standard deviation using the random se-
quence in three different ways.
Using the MATLAB

1) loop for ... end,

2) functions sum and length and

3) functions mean and cov.

Compare the results. Take a look at the m-files mean and cov using help and/or type.

1.2.2 Density function and histogram

Write a function density, that estimates the density function of a random variable from a number
of observations by applying the histogram function hist. Use the uniformly distributed random
sequence from datl 1. Show the estimates as bar graph and as line graph. Compare the theoretical
density function with the result by drawing the theoretical density also into the line graph figure.

Repeat the experiment for 1000 standard normal distributed random numbers, where the in-
itial value has to be set to 0. Save this random vector in datl 2.

(Note: The function density shall be applicable to any random sequences. Therefore, take
into account the interrelationship between the scaling and the length of the random sequence and
the width of the interval.)

1.2.3 Distribution function and frequency
Estimate the distribution function of the random sequences given in datl 1 and datl 2. For
this, generate with the MATLAB instruction 1 inspace a ramp within the interval [0, 1] and use

it for drawing the estimate.
(Note: Sort the data.)

1.2.4 Generation of a bivariate normal distribution

Set the initial seed of randn to 0. Generate through z1=randn (1000, 2) a matrix of normal
distributed random numbers. Multiply z1 from the right with the matrixD = [1 .5; 0 .5],
thus z2 = z1 * D. Separate the result throughx = z2( : ,1)andy = z2( : ,2) into
two vectors and add 1.5 to each element of x and 0.5 to each element of y. Store the vectors by
using the MATLAB instruction save datl 3 x y.



1.2.5 Bivariate normal distribution
Load dat1l 3 thatincludes the two vectors x and y of length 1000 as samples of the two bivariate
normally distributed random variables X and Y. Estimate for this dataset x,,u,,0%,0; and p by
using the MATLAB function cov. Calculate the bivariate density function f,(x,y) with the es-
timated parameters and display it as a 3dimensional and a level curve graphic.

(Note: Use the MATLAB-functions mesh and contour.)

1.2.6 Monte-Carlo-Method for approximation of 7

Generate two on the interval [0, 1] uniformly distributed random sequences x and y of length 1000.
The initial value has to be set to 0 again. How many points lie within the unit circle? Estimate

thereby the constant 7.



Assignment 2

2 Functions of random variables

2.1 Preparation

2.1.1 Normal distribution and uniform distribution

Transform the N(u,o”)—distributed random variable X into a standard normal distributed random
variable. Transform the on [a,b] uniformly distributed random variable X such that it is uniformly
distributed on [-1/2,1/2].

2.1.2 Exponential distribution

Determine the expected value, the variance and the density function of ¥ =—2In X for >0,
when X is uniformly distributed on [0, 1]. Which other distribution has the same density function,

as the exponential distribution for ¢ =1/27?

2.1.3 Sum of random variables

Determine the expected value, the variance and the density function of Z=X+ Y, when X and Y

are two stochastically independent and on [0, 1] identically uniformly distributed random variables.

2.1.4 Product of random variables

Calculate the expected value, the variance and the density function of Z = XY, when X and Y are

two stochastically independent and on [0, 1] identically uniformly distributed random variables.

2.1.5 y*-distribution

Determine the expected value, the variance and the density of

Zzz; Xiz’

where X,(i=1,2,3,4) are four stochastically independent, standard normally distributed random
variables. How could one create a random variable from two stochastically independent exponen-
tially distributed random variables that possess the same distribution as Z? Calculate the density of

Z through convolution of the density of an exponential distribution.



2.1.6 Normal distribution from uniform distribution
Calculate the bivariate density f,, (»,,y,) of

Y, ={2InX, sin(2zX,) and Y, =./-2InX, cos(27X,)

where X| and X, are stochastically independent and on [0, 1] identically uniformly distributed ran-

dom variables.



2.2 Exercises with MATLAB

2.2.1 Standard normal distribution

Load datl 3 containing the random sequences x and y of two bivariate normal distributed ran-
dom variables. Transform the random samples such that they obey a standard normal distribution.
Make sure that your transformation is correct by showing the theoretical and the via density

estimated density of the transformed random sequence x in a diagram.

2.2.2 Exponential distribution

Load the on [0, 1] uniformly distributed random sequence from datl 1 and transform it as ex-
plained in Section 2.1.2 with « =1/2. Calculate the sample mean and sample variance of the trans-
formed sequence and compare the results with the theoretical values from Section 2.1.2. Show the
in Section 2.1.2 calculated and via dens ity estimated density function of the transformed random

sequence in a figure.

2.2.3 Sum of random numbers

Generate two on [0, 1] uniformly distributed random sequences of the length 1000 after setting the
initial seed to 0. Save both random sequences in dat2 1. Then add the two sequences element-
by-element. Calculate the sample mean and sample variance of the sum and compare the results
with the theoretical values from Section 2.1.3. Display the in Section 2.1.3 calculated and via den-

sity estimated density function in a diagram.

2.2.4 Product of random numbers

Multiply both on [0, 1] uniformly distributed random sequences from dat2 1 element-by-element.
Calculate the sample mean and sample variance of the product and compare the results with the
theoretical values derived in Section 2.1.4. Depict the in Section 2.1.4 calculated and viadensity

estimated density function in a figure.

2.2.5 y*-distribution

Generate four standard normal distributed random sequences of the length 1000, where before the
initial value has to be set to 0. Save the datain dat2 2. Determine the sum of squares of the four
random sequences element-by-element. Calculate the sample mean and sample variance of the sum
and compare the results with the theoretical values obtained in Section 2.1.5. Present the in Section

2.1.5 calculated and via density estimated density function in a diagram.

10



2.2.6 Normal distribution from uniform distribution

Now use again dat2 1 containing two on [0, 1] uniformly distributed random sequences. Build
y, as explained in Section 2.1.6. Calculate the sample mean and sample variance of y, and compare
the results with the theoretical values determined in Section 2.1.6. Show the in Section 2.1.6 cal-

culated and via density estimated density function in a figure.

11



Assignment 3

3 Least-squares estimation

3.1 Preparation

3.1.1 Polynomial model
The signal model is given by
Y, =a,+ax +ax +.+ax’ +7,.
Let the observations (x;,y,) i=1,2,...,N be given. Derive the LS-Estimate for the unknown pa-
rameters g, i=0,1,...,p and the estimate for the variance of the noise. How large has the number

N of observations to be at least? Express with regard to a MATLAB implementation the problem

in vector notation.

3.1.2 Power model and exponential model

The power model is given by

Linearize the model assuming a > 0, x, > 0 and Z, > 0. Why are the measuring errors assumed to be
multiplicative? Estimate the parameters a and b as well as the variance of the measurement error
after linearization. How large has to be the number N of observations at least? The exponential

model is defined by
Y=a-b"-Z,.

Carry out all the tasks mentioned above also for this model.

3.1.3 Sine model
The amplitude a and phase b of the sine model
Y =asin(x, +b)+Z,

are unknown. Linearize the sine model. Estimate the parameters a and b as well as the variance of

the measurement error after linearization. How large has to be the number N of observations at least?

3.1.4 Nonlinear LS-Approach to a circle

A number of data points (x;,y,) i=1,2,...,N are given in the xy-plane. Fit to them a circle with

unknown radius » and unknown centre (x,, y,). The model for the observation is given by

12



VG =3+ (=2 = =r 4z,
where r; indicates the distance between the i-th measurement point (x;, y;) and the centre (x,, y,)
and z, indicates the error of the radius. Express the sum of squares of measurement errors g(x,, y,, 1)
and derive the necessary condition for their minimization. Is the resulting equation system solvable

in an analytic way? Give reasons for your answer. Point out a method for solving the equation
system numerically.

3.1.5 Linear LS-Approach to a circle

Supposed the centre (%,,y,) of the circle from Section 3.1.4 is approximately known. Then it is

possible to develop the function 7,(x,,y,) into a Taylor series in place (X,,,) . The approximation

’/;‘(xmyo) = \/(xi _xo)2 +(y,- _yo)2

2~ 06 (X%, 1) NCACT ) =
zr;'(xoayo)"i'% (xo_xo)+¢ (yo_yo)
Yoo g0 Yoo g
O =
zr;'(xoayo) 0 (o o)_ % . (yo yo)
1%y, V) 1(%y, V)
provides a new model for the error
-~ X, —X V=V -
z,=h—r=rX,y)————— . (xXg—Xp)— Y~y (Vo= Y) T

(0’ ()) (0’ 0)

that is now linear in x,, and y,,.

Formulate the minimization criterion for the linearized model. Determine the LS-Estimates
(Xy,¥,) and 7 from (x;,y,) i=1,2,...,N. The LS-Estimates obtained are only as good as the initial
guess of the centre (%, ,). One can improve the estimates if the procedure mentioned above is

repeated after replacing (%,, 7,) by (%,,),). Furthermore, state two different stopping criteria for

this iterative procedure.

13



3.2 Exercises with MATLAB

3.2.1 Generating data
Now data for four different signal models have to be created. Generate therefore an on [0, 1] uni-
formly distributed random sequence x1 and a standard normal distributed random sequence z1,
each with a length of 100 values. Set in both cases first the initial seed to 0. Type now these com-
mands in MATLAB in the following order:

x=x1*5+2; z=z1*sqgrt (0.004); xyl=
x=x1*4*pi; z=z1*sqrt(0.05); xy2=

exp (1l+x*0.6+z) ];

X
X 2*sin(x+1)+z];
X
X

x=x1*5; z=z1; Xy3= -0.6*x."3+0.9*x."24+3*x+4.5+z2];
x=x1*5; z=z1*sqrt (0.004),; xyi4= exp (0.3+1og(x)*0.5+2z) 1;
x=x1*2*pi; z=z1*0.5+6; xy=[z.*cos(x)+4 z.*sin(x)+2];

save dat3 1 xyl xy2 xy3 xy4
save dat3 2 xy

3.2.2 Model assignment
Load dat3 1 that includes the four 100 x 2 matrices xy1, xy2, xy3 and xy4. The two column

vectors of each matrix correspond to the observations x; and y, of a particular signal model. Show
each dataset x;, y, in a diagram and assign to each matrix a model.

(Note: For the model assignment you can exploit the fact that log g(x) behaves in case of the
power model like a logarithmic function while log g(x) depends in case of the exponential model

only linearly on x.)

3.2.3 LS-Estimation of different models

Estimate each of the parameters a, b and the variance of the measurement errors o, of the linear-
ized models, i.e., of the exponential model, the power model and the sine model. Therefore, write
a function LSE that is able to deal with these three models and with a polynomial model of arbitrary

order.

3.2.4 Estimating the order of a polynomial

Estimate the order p of the polynomial model. Therefore, you have to depict the estimated variance
versus the model order p = 1,2,...,10. Consider the order that provides the smallest variance as the

correct order. Estimate for that order the parameters a, fori = 1,2,...p.

3.2.5 Comparison of observations and estimated model

For each of the models estimated above show the observations of the model (x,,y,) i=1,2,....N

and the corresponding reconstructed model curve (x;,g(x;)) i=1,2,...,N in one figure.

14



3.2.6 LS-adjustment to a circle: estimating the centre
Load dat3 2 containing a 100 x 2 matrix that represent the coordinates of 100 measurement

points in the xy-plane. Take a look at the measurement points and guess from them the coordinates

of the centre location.

3.2.7 LS-Fit to a circle: iteration

Carry out a LS-Estimation as shown in Section 3.1.5. Use the estimated centre as an improved
initial value and repeat the LS-Estimation as long as ||()E0 (k), y,(k))—(X,(k=1),y,(k —1))|| <107
is fulfilled, where (%,(k),7,(k)) denotes the k-th LS-Estimate of the centre. Write a function
LSE circle that carries out the iteration. Depict the reconstructed circle and the measurement

points in a diagram.

3.2.8 LS-Fit to a circle: convergence

Does this method converge, if the initial guess of the circle centre is very poor? Try it by giving
your function LSE circle intentionally a very poor initial estimate of the centre location. Ex-

plain your observation.

15



Assignment 4

4 Parameter estimation, AR(p)-processes

4.1 Preparation

4.1.1 Discrete white noise

Specify the constant component, the covariance function and the spectral density of discrete white

noise.

4.1.2 Generation of AR(p)-processes
Make oneself familiar with the MATLAB-function £i11ter. The function £i1ter is used for the

generation of an AR(p)-process. Which values have to be entered for the filter coefficient vector

b? Which value has to be assigned to the first element g, of the filter coefficient vector a?

4.1.3 LS-Estimation

How can one determine the least squares estimates of the parameters a,,a,,...,a p;aé for the given

observations x; i =1,2,...,N? How large has to be the number of observations N ?

4.1.4 Levinson-Durbin-Algorithm

Which particular property of the coefficient matrix of the following Yule-Walker-Equation system

Cyy (0) oD o ew(p-D Y[ @ Cye (1)
w®  cn©® o en(p-2) | a| | e
Cx (=D cy(p=2) - Cyx (0) a, Cyx (P)

permits the application of the Levinson-Durbin-Algorithm? Is the Levinson-Durbin-Algorithm be
suited for solving the equation system of the LS-Estimation procedure? Give reasons for your an-
swer. Which advantage offers the Levinson-Durbin-Algorithm with respect to the model order es-

timation? How can the model order be estimated?

16



4.2 Exercises with MATLAB

4.2.1 Sample covariance function

Write a function covfct for determining the sample and the modified sample covariance function.
To calculate both sample covariance functions take the first 200 random numbers from dat1l 1.
Display the results and explain the differences between the functions. What indicates that a sequence
of random numbers can be interpreted as a realisation of discrete white noise?

(Note: In MATLAB exists a similar function xcov. Ascertain the correctness of your func-
tion covfct by comparing the results of the experiments with covfct and xcov.)

4.2.2 Generation of AR(p)—processes

Load datl 2 that includes a realization of white noise. For the generation of an AR(p)-process
you have to filter the white noise by a recursive filter with the filter coefficients a,=0.5, a,=0.3,
a,=0.1, a,=0.7, a;=0.3. Use the MATLAB-function £ilter. Save the white noise and the
AR(p)-process for later use in dat4 1.

4.2.3 LS-Estimation

Carry out a LS-Estimation of the parameters @, i =1,2,...,5 and the variance o of the AR(p)-
process.

4.2.4 Empiric Yule-Walker-Equation

Determine the first 11 values of the sample covariance function, e.g. ¢,,(0),...,¢,, (10), using
function covfct . Estimate the parameters @, i =1,2,...,5 and o by solving the empirical Yule-
Walker-Equation via the
a) Gaussian Elimination Algorithm
b) Levison-Durbin Algorithm.
(Note: Use the MATLAB-function toeplitz to generate the coefficient matrix and read
for a) the MATLAB-help for the operator backslash and for b) use the MATLAB-function

levinson)

4.2.5 Estimation of the model order

Estimate the parameters a, i=1,2,....5 and o, as in Section 4.2.4 b), but now for the wrong
model order p =4 and p = 6. Compare the estimated parameters with those obtained in Section
4.2.4 b). Which consequences have an underestimation or an overestimation of the model order?
Estimate now for the model order £k=1,2,...,10 the variance a; , with the Levinson-Durbin Algo-
rithm. Present the result in a diagram. Draw also the values of the Akaike and Rissanen criterion
and deduce from them the model order p of the AR(p)-process.

17



Assignment 5

5 Discrete Fourier Transform

5.1 Preparation

5.1.1 FFT in MATLAB
Make oneself familiar with the MATLAB function £ft. Why do you get complex valued results

in spite of real input values?

5.1.2 Comparison of DFT and FFT
What is the difference between DFT and FFT? Do you get different results by using both Fourier

Transforms?

5.1.3 Nyquist-Criterion
Suppose we are sampling a sinusoidal signal of frequency f with the sampling frequencies f, = £,
f,=2fand f =3 f. What signals do you get?

5.1.4 Filling with zeroes
Can you improve the resolving power of the Fourier Transform for a given data length by zero
padding? Motivate your answer. Which effect does zero padding have? Is it important where you

insert zeroes?

5.1.5 Windows
The MATLAB-functions hanning, hamming, blackman and bartlett should be used for
the implementation of windows. Make oneself familiar with their functionality. Which properties

of the Fourier Transforms of windows are particularly important for applications?

5.1.6 Ideal filter

Which properties does an ideal low pass filter possess? Which impact does the choice of windows

have on the design of a transversal (FIR) low pass filter?

5.1.7 Fast convolution

The fast convolution is implemented in MATLAB by the function £ftfi1t which is based on
the Overlap-Add-Method. Make oneself familiar with their functionality. The correct data length
of Fourier Transforms is important in the use of the fast convolution. What happens, if one does

not pay attention to it?
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5.2 Exercises with MATLAB

5.2.1 Image frequencies

A sinusoidal signal x(¢) =sin(27z f¢) with the frequency f, =2 kHz is given. Sample 512 values
of the signal with the sampling frequencies” f, =10 kHz and 3 kHz . Represent the squared mag-
nitude of the Fourier Transform. Explain the phenomenon of image frequencies.

(Note: The MATLAB-function £t can be used to calculate the DFT for this and all the

following exercises.)

5.2.2 Aliasing

A rectangular signal of duration 7= 1 ms is given, i.e.

1 0<t<T
x(t) =
0 else

Sample 512 values of the signal with the sampling frequencies f, =4 kHz and 16 kHz . Represent
the squared magnitude of the Fourier Transform. Explain the impact of the sampling frequency on

the aliasing effect by using the results obtained.

5.2.3 Filling with zeroes
Take the first 32 samples for f, =10 kHz from Section 5.2.1 and represent the squared magnitude

of the Fourier Transform. Fill your data set with 480 zeroes and repeat the experiment now. Which
effect does the zero padding of the data set have? Compare the result with that of Section 5.2.1.
What can you say about the impact of the correct data length (without filled zeroes) on the resolving

power of the Fourier Transform?

5.2.4 Leakage effect

Use the first 33 values for f, =10 kHz from Section 5.2.1 and represent the squared magnitude of

the Fourier Transform. How does the leakage effect make itself noticeable? Execute the Fourier
Transform with another number of samples once more. When does the leakage effect make itself

noticeable?

5.2.5 Effect of windows

Represent the following windows

Rectangle-window:
w =1, 0<n<N-1
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Bartlett-window:

2n , OSnSN_l
N-1 2
Y = 2 N-1
Ly <n<N-1
N-1 2

Hann-window

Hamming-window

w =0,54—0,46c0s| ZZL ). 0<n<N-I
N-1

Blackman-window
W =0,42—cos| 20 140,08c0s| L) 0<n<N-I
2\ N-1 N-1

in the time domain for n=1,...,51. Use the relevant MATLAB function.

Calculate the logarithmic amplitude responses 20log,, (|W(Q)| / max|W(Q)|) using the FFT
of length L = 1024 and depict them in diagrams. Determine the frequencies of the —3dB limits and
the suppression of the highest sidelobe of the amplitude response. Discuss the results.

(Note: Depict always the time function and the corresponding amplitude response in one
figure. For this reason, use the MATLAB function subplot.)

5.2.6 Transversal (FIR) low pass filter

The impulse response of an ideal low pass filter is given by

_ 1 f iQn _ 1 “ —jQa _jOn _Qc :
h"_ﬁ_-[rH(Q)ej dQ_E_;[_ej e’ "dQ = ~ si(Q (n—a)),

where Q). denotes the cutoff frequency. Because only a finite number of filter-coefficient can be
processed in a computer, the impulse response is truncated to the finite length N. For & =(N —1)/2
we get a causal low pass filter with linear phase and the property &, =h,_, .

Use the first 51 values of the impulse response with the cutoff frequency Q_ =1 as filter
coefficient. Represent every tapered impulse response /, = w, A, and its amplitude response (in

dB) in a common figure. Determine the suppression of the highest side lobe and the bandwidth of
the low pass filter at —3 dB und —20 dB level. Discuss the results.

(Note: A scaled version of function si(x) = (sin x)/x is called sinc in MATLAB. You
should see the MATLAB-help to sinc before you use it.)
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5.2.7 Fast convolution

Write a function firfilt for a direct implementation of a transversal (FIR) filter. Create the

rectangular signals

n

1 ifn=0,1,..,100
0 elsewhere

and
1 ifrn=0,1,..,900
" {0 elsewhere '
Execute the filtering both directly with its function £irfilt and with help of MATLAB function
fftfilt, which implements the overlap-add-method. For that, an FFT-length of 256 for £ft-
fi1t should be used. Compare the results and the CPU-Processing time for the arithmetic oper-

ations of both approaches.
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Assignment 6

6 Spectral Analysis

6.1 Preparation

6.1.1 Representation of the spectrum

Familiarise oneself with the MATLAB-functions freqgz and periodogram.

6.1.2 Periodogram

Why does one use the Periodogram and not the Fourier-transform of a signal for spectrum estima-

tion? Is the Periodogram itself suited to provide a reasonable estimate of the spectrum?

6.1.3 Averaging of Periodograms

Which are the advantages and disadvantages of the averaging of Periodograms? Why is one al-

lowed to average Periodograms of successive data pieces of observations?

6.1.4 Trend removal

Why does a trend in the data disturb the spectrum analysis? How does a constant or linear trend
affect a direct estimation of a spectrum? Discuss in that context the Periodogram of the sum of a
trend and a noise signal without a constant component. Does a constant trend have an effect at

discrete frequency locations?

6.1.5 Smoothing of Periodograms

For which spectra is the smoothing of Periodograms not suitable? What are the advantages and

disadvantages of smoothing compared to averaging periodograms?

6.1.6 Prewhitening

Which advantages does prewhitening offer? Why does one not compute the spectrum directly from

the estimated parameters of an AR(p) process?

22



6.2 Exercise with Matlab

6.2.1 Estimation of spectra

Write a function spec, which estimates the spectrum from any data record by averaging of Peri-
odograms. The number of data pieces L and the window type employed should be freely selectable.
Estimate the spectrum of the AR(p) process from Section 4.2.2 for L = 1,2,5,10 using the rectan-
gular window in each case. Represent each time the spectrum and its estimate in a common figure.

Repeat the investigations using the Hann-window and discuss the results.

6.2.2 Estimation of transfer functions

Write a function Hw which estimates the spectrum of a stochastic signal, the cross spectrum of two
stochastic signals and from this the transfer function of the underlying system by means of averag-
ing of Periodograms. Use as input and output signal the realizations of the white noise and the
AR(p) process from Section 4.2.2, respectively. Estimate the transfer function of the recursive filter
by means of the function Hw for L = 5 using the Hann-window. Represent the estimated and theo-

retical amplitude response in one figure and discuss the result.

(Note: The theoretical amplitude response can be easily determined employing the
MATLAB function freqgz.)

6.2.3 Add Trend to an AR(p)-Process
Load the data record dat4 1, which contains the realizations of the AR(p) process generated in
Section 4.2.2. Add a trend to the data by means of x = x + linspace(0,3,1000)" and

store the resulting vector in dat6 1.

6.2.4 Trend removal
Load the datarecord dat 6 1 containing a vector x of length 1000. Represent the vector as a graph

in a figure. One recognizes that the data possess a linear trend. Determine this trend by means of
least squares estimation. Remove the trend from the data and store the data in dat 6 2.

6.2.5 Smoothing of Periodograms

Extend your function spec from Section 6.2.1 in such a way that now also a smoothing of Peri-
odograms is possible over a freely selectable number of 2m + 1 frequency bins. Make sure that the
averaging at the edges of the frequency domain only utilizes the existing Periodogram values and

that the Periodogram values at the frequencies Q2 =0 and 2 =1 are also not taken into account.
Depict the smoothed Periodograms of the trend removed data vector given in dat 6 2 for all fre-

quencies
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and m =0,2,5,10 in a diagram and discuss the results.

6.2.6 Prewhitening

In order to avoid a smoothing over spectral peaks, a prewhitening of the trend removed process stored
in dat6_2 has to be carried out first. Therefore, estimate the parameters a,: i=1,2,...,p and the
order p of the AR(p) process using the Levinson-Durbin algorithm and the MDL criterion respec-

tively. With these estimates the prewhitened process Z, can be determined by
b
z =x, + z&kxn_k )
k=1
Represent the corresponding data vectorZ in a figure and save it in dat 6 3.

6.2.7 Spectrum estimation

Compute the smoothed Periodogram of Z, stored in dat6 3 for m = 10 and depict the result in a
diagram. Now, the spectrum of the AR(p) process shall be determined using the amplitude response
of the underlying recursive filter and the smoothed Periodogram of Z, . Finally, display the squared
amplitude response of the recursive filter and the spectrum éXX (Q) in a figure, and compare the

latter with the results from Section 6.2.5.
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