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2 Sound Propagation Modeling
Sound propagation in the ocean is mathematically formulated 
by the wave equation, whose parameters and boundary con-
ditions are descriptive of the ocean environment. As summa-
rized in the figure below, there are a variety of different tech-
niques available for solving the wave equation (numerically) 
for evaluating sound propagation in the sea.

Abbreviations
FE: Finite Element PE: Parabolic Equation
FD: Finite Difference FFP: Fast Field Program
NM: Normal Mode RT: Ray Tracing
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2.1 The Wave Equation
The wave equation in an ideal fluid can be derived from hy-
drodynamics and the adiabatic relation between pressure and 
density. 
The following figure is used to derive the wave equation by 
exploiting the equation for conservation of mass, the Euler’s 
equation and the adiabatic equation of state. 

x

pg(x,t)

v(x,t)

x

x + dx

pg(x + dx,t)

v(x + dx,t)
A
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For deriving the following equations we define the total pres-
sure and the total density as follows. 

where pg, p0, p, ρg, ρ0 and ρ denote the total pressure, static 
pressure, change in pressure, total density, static density and 
change in density, respectively.

Continuity Equation
Employing the figure above the equation for the conservation 
of mass can be expressed by

0 0and ,g gp p p ρ ρ ρ= + = +

Resultant mass stream density variation

Mass variation

( , ) ( , ) ( , ) ( , ) g
g gx dx t Av x dx t x t Av x t Adx

t
ρ

ρ ρ
∂

+ + − = −
∂
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and with

reformulated to obtain the so-called continuity equation

Euler’s Equation
Using the figure above Newton’s 2nd law can be written as

and by exploiting 



Total Force, 

( , ) ( , )g g g
V

F am

dvp x t A p x dx t A Adx
dt

ρ− + =




( , ) ( , ) ( , ) ( , ) ( )g g gx dx t v x dx t x t v x t v
dx x

ρ ρ ρ+ + − ∂
=

∂

( )
.g gv

x t t
ρ ρ ρ∂ ∂ ∂

= − = −
∂ ∂ ∂
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and

we obtain Euler’s equation

Adiabatic Equation of State

, i.e.v v dv v v dx v vdv dt dx v
t x dt t x dt t x
∂ ∂ ∂ ∂ ∂ ∂

= + = + = +
∂ ∂ ∂ ∂ ∂ ∂

( , ) ( , ) ( , ) ( , )g g g g gp x t p x dx t p x dx t p x t p
dx dx x

− + + − ∂
= − = −

∂

.g
g

p p v vv
x x t x

ρ
∂ ∂ ∂ ∂ − = − = + ∂ ∂ ∂ ∂ 

0 0

2
2

0 0 2
0

1
2

g g

g g g
g

g g

p p
p p p

κ

ρ ρ ρ ρ

ρ
ρ ρ

ρ ρ ρ
= =

∂ ∂ 
= = + + +  ∂ ∂ 
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where κ denotes the adiabatic exponent.
For convenience we define

which turns out later to be the squared sound speed in an ideal 
fluid. For

the adiabatic equation of state becomes approximately

Since the time scale of oceanographic changes is much longer 
than the time scale of the acoustical propagation, we suppose 
that the material properties ρ0 and c2 are independent of time.

0 0

1
2 0 0

0 0 0
g g

g g

g

p p pc
κ

ρ ρ ρ ρ

ρ
κ κ

ρ ρ ρ ρ

−

= =

∂  
= = = ∂  

2 2
0 , i.e. .gp p c p cρ ρ≅ + ≅

0 0andp p ρ ρ 
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Taking the partial derivative of the continuity equation with 
respect to t and of Euler’s equation with respect to x provides 

and

respectively. For lower particle velocities v as well as

the terms

2

2 g g
p v vv

x x t x x
ρ ρ∂ ∂ ∂ ∂ ∂   − = +   ∂ ∂ ∂ ∂ ∂   

2
2

2

2

2 2

( ) ( )
,

1

g g

g
g

v v
p c

t x x t t

v pv
x t x t c t

ρ ρ ρ ρ

ρ
ρ

∂ ∂   ∂ ∂ ∂
= = − =   ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂ ∂ = + = −   ∂ ∂ ∂ ∂ ∂  

0 0andp p ρ ρ 
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can be neglected. Thus, the former equations simplify to

and provide by equating the 1dimensional linear wave equation

which can be extended by straightforward argumentation to 
the 3-dimensional case given by 

2 2

2 2 2
1 andg g

v p p v
x t c t x x t

ρ ρ∂ ∂ ∂ ∂ ∂ ∂   = − − =   ∂ ∂ ∂ ∂ ∂ ∂   

andg
g

vv v
x t x x

ρ
ρ

∂ ∂ ∂ ∂ 
   ∂ ∂ ∂ ∂  

2 2

2 2 2
1p p

x c t
∂ ∂

=
∂ ∂

2 2 2 2

2 2 2 2 2
1 with .pp
c t x y z

∂ ∂ ∂ ∂
∆ = ∆ = + +

∂ ∂ ∂ ∂
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Helmholtz Equation
Suppose harmonic pressure oscillation, i.e. 

we obtain

If P possesses spherical symmetry, i.e. P is only depending on 
R, the Laplacian in spherical coordinates simplifies to

Hence, the spherical wave solution of the Helmholtz equation is 

2 0 with 2 .P k P k cω π λ∆ + = = =

( , , , ) ( , , ) exp( ),p x y z t P x y z j tω=

2

2
2 .

R R R
∂ ∂

∆ = +
∂ ∂

2 2 2exp( )( ) with ( ) ( ) ( ) ,S S S
A jkRP R R x x y y z z

R
−

= = − + − + −
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where xS, yS and zS are the coordinates of an omnidirectional 
point source (pulsating sphere of small radius).

Another simple and important solution is provided by the 
plane wave

where kx, ky and kz are the wave numbers that satisfy

The wave vector k can also be expressed by

where φ and θ denote the azimuth and elevation, respectively.

2 2 2 2 , 2 .T
x y zk k k k k cω π λ= = + + = =k k

( )( , , ) exp ( ) ,x y zP x y z A j k x k y k z= − + +

( )( , , ) cos cos ,sin cos ,sin ,TT
x y zk k k k ϕ θ ϕ θ θ= =k
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2.2 Homogeneous Waveguide
Suppose the medium within infinitely extended boundaries is 
homogeneous.

For the given point source coordinates (0,zS) the pressure shall 
be determined at an arbitrary receiver location (rR, zR).

∞

water 
column
c = 1480 m/s
ρ = 1 g/cm3

air

z

r

D

Rr

Rz

Sz Source

Receiver

0Sr =
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Chapter 2 / Sound Propagation Modeling / Prof. Dr.-Ing. Dieter Kraus



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

14

2.2.1 Image Source Approach

The wave field within a homogeneous 
waveguide can be interpreted as the 

superposition of infinitely many spheri-
cal waves that are reflected at the boun-
daries.

0

•

D

2D + zS

2D− zS

rrR

z

zR

zS

− zS

L01

L02

L03 L04

θ04θ03

θ02

Sediment

Air
R1

R2

Image
Surface

Image
Bottom

Chapter 2 / Sound Propagation Modeling / Prof. Dr.-Ing. Dieter Kraus



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

15

As a first approximation, the sound pressure in the waveguide 
can be determined by superimposing the four contributions 
indicated in the figure above, i.e.

01 02

03 04

1 02
01 02

2 03 1 04 2 04
03 04

e e( , , ) ( ) ( , )

e e( , ) ( , ) ( , )

j k L j k L

R R

j k L j k L

P r z A R
L L

R R R
L L

ω ω θ ω

θ ω θ ω θ ω

− −

− −


= + +




+ + 


( )
( )
( )

2 2
01

2 2
02 02

2 2
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2 2
04 04

with ( ) , and

( ) , arctan ( ) ,

(2 ) , arctan (2 ) ,

(2 ) arctan (2 ) .

R R S

R S R S R R

R S R S R R

R S R S R R

L r z z
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L r D z z D z z r

L r D z z D z z r

θ

θ
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= + −
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Continuation of the image source technique in multiples m = 
1,2,… of groups of four contributions provides

with

1

2 3

4

1 1 2 1
0 1

1 1
1 2 2 2 1 3 2 3

2 3

1 1
1 4 2 4

4

e( , , ) ( ) ( , ) ( , )

e e( , ) ( , ) ( , ) ( , )

e( , ) ( , )

m

m m

m

j k L
m m

R R m m
m m

j k L j k L
m m m m

m m m m
m m

j k L
m m

m m
m

P r z A R R
L

R R R R
L L
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L

ω ω θ ω θ ω
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θ ω θ ω

−∞
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−
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and

Taking into account that the reflection coefficients at the ocean 
surface and bottom can be approximated by

the calculation of the sound pressure simplifies to  

( ) ( )( )
( ) ( )( )

1 3

2 4

arctan (2 ) , arctan 2 ( 1) ,

arctan (2 ) , arctan 2 ( 1) .

m S R R m S R R

m S R R m S R R

Dm z z r D m z z r

Dm z z r D m z z r

θ θ

θ θ

= − + = + − −

= + + = + + −

1 water-air-interface
1 water-hard bottom-interface

R
R
≈ −
≈

1 2 3 4

0 1 2 3 4

e e e e( , , ) ( ) ( 1) .
m m m mi k L i k L i k L i k L

m

m m m m m

P r z A
L L L L

ω ω
− − − −∞

=
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Assignment 6:

Develop a Matlab program for determining P(r,z,ω) for the 
following parameters. 

Signal parameters
 Sinusoidal waveform
 Amplitude:  A = 1,
 Frequency:  f = 10 Hz, 100 Hz, 1 kHz and 10 kHz

Waveguide parameters
 Water depth:  D = 20 m 
 Source location:  rS = 0 m, zS = 5 m
 Receiver location:  
 Surface/Bottom Reflection:  R1 = −1 (calm), R2 = 1 (hard bottom)
 Sound speed:  c = 1480 m/s

Depict the pressure distribution P(r,z,ω) in colour coded two 
dimensional diagrams and interpret the results.
Chapter 2 / Sound Propagation Modeling / Prof. Dr.-Ing. Dieter Kraus
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2.2.2 Normal Mode Approach

For cylinder symmetric sound propagation, i.e. p = p(r,z,t), the 
wave equation is given by 

Let us suppose that p can be expressed by
Hence, insertion in the wave equation provides

and after some manipulations 

2 2 2

2 2 2 2

1 1 .p p p p
r r r z c t

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
( ) ( ) ( ).p f r g z h t∝

2 2 2

2 2 2 2

( ) ( ) ( ) ( )( ) ( ) ( ) ( )d f g z h t df d g f r g z d hg z h t f r h t
dr r dr dz c dt

+ + =

2 2 2

2 2 2 2

1 1 1 1 1 .
( ) ( ) ( )

d f df d g d h
f r dr r dr g z dz c h t dt

 
+ + = 
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For harmonic sources with h(t) = Ae jω t we obtain

For all values of r and z, the r-dependent and z-dependent term 
are equal to constants. With the separation constant         for the 
radial and         for the vertical term, the separated ordinary dif-
ferential equations are

The first equation is a zero-order Bessel equation.  Its solution 
can be written in terms of a zero order Hankel function, i.e.

2 2 2
2

2 2 2

-dependent term-dependent term

1 1 1 .
( ) ( )

zr

d f df d g k
f r dr r dr g z dz c

ω 
+ + = − = − 

 




2
zk−

2
rk−

2 2
2 2 2 2 2

2 2

1 0 and 0 with .r z r z
d f df d gk f k g k k k
dr r dr dz

+ + = + = = +
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where
J0 = zero-order Bessel function of the 1st kind, (besselj(…)),
Y0 = zero-order Bessel function of the 2nd kind, (bessely(…)),

also known as zero-order Neumann function N0,
= zero-order Hankel function of the 1st kind, (besselh(…)),
= zero-order Hankel function of the 2nd kind, (besselh(…)),

both are also known as zero-order Bessel function of the 3rd kind.

The asymptotic form of the Hankel function for is

21

(1)
0 0 0
(2)
0 0 0

( ) ( ) ( )
( )

( ) ( ) ( )
r r r

r r r

H k r J k r jY k r
f r

H k r J k r jY k r
 = +

= 
= −

(1) (2)4 4
0 0

2 2( ) and ( ) ,
r rj k r j k r

r r
r r

H k r e H k r e
k r k r

π π

π π

   − − −   
   ≅ ≅

(1)
0H
(2)
0H
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where and         represent the converging and diverging 
cylindrical wave, respectively.
The second equation represents an ordinary linear differential 
equation, where g has to satisfy the boundary conditions

Step I: (Elementary Solution)

With                                                                                          
the set of independent solutions is given by

(1)
0H (2)

0H

(0) 0 ( 1)
.

( ) max ( 1)
g R
g D R

= = −
= =

2

2 2 2
1,2

( ) ( )
( ) ( ) 0 0

z z

z z z

g z e g z e
g z k g z k jk

λ λλ

λ λ

′′= ⇒ =

′′ + = ⇒ + = ⇒ = ±

{ } { }Re exp( ) cos( ) and Im exp( ) sin( )z z z zjk z k z jk z k z= =
{ }cos( ),sin( ) .z zk z k z
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Thus, the general solution of the ordinary linear differential 
equation can be expressed by

Step II: (Boundary Conditions)

The boundary conditions are satisfied for a discrete set of 
values of kz. Hence, we obtain

and

( ) cos( ) sin( ).z zg z A k z B k z= +

(0) 0 0
( ) sin( ) max sin( ) 1

(2 1) 2, 1,2,
z z

z

g A
g D B k D k D

k D m mπ

= ⇒ =
= = ⇒ =

⇒ = − = 

, (2 1) (eigenvalues)
2z mk m

D
π

= −
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for m = 1,2,… The solutions are called modes because they 
describe the natural ways in which the system vibrates.

The eigenvalues        and        are related by

( ) sin (2 1) (eigenfunctions)
2m mg z B m z

D
π = − 

 

= = = =1 2 3 4m m m m

0

D

z

Pressure Amplitude [relative units]

2 2 2
, , .r m z mk k k= +2

,r mk 2
,z mk
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Considering        and        to be the horizontal and vertical  
component of k, respectively, we can write

Consequently, we obtain

2
,r mk 2

,z mk

( ) ( ), ,( ) ( ) cos ( ) and ( )sin ( ) .r m m z m mk k k kω ω α ω ω α ω= =

, 4

,

2( ) .
r mj k r

m
r m

f r e
k r

π

π

 − − 
 ≅

,2 1( )r rk ω e

,1 1( )r rk ω e

,1z zk e

,2z zk e

1( )ωk

1( )ωk

,2 2( )r rk ω e

,2z zk e 2( )ωk

,1 2( )r rk ω e

,1z zk e 2( )ωk

2 1( )α ω

1 1( )α ω

2 2( )α ω

1 2( )α ω
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Step III: (Initial Conditions)
The last step is to add the fundamental solutions

in such a way that the initial condition

is satisfied. Substituting the sum into the initial condition gives

By multiplying each side of this equation with sin(kz,nz) and 
integrating from 0 to D, we obtain

,
1 1

( ) sin( ) sin (2 1)
2m z m m

m m
g z B k z B m z

D
π∞ ∞

= =

 = = − 
 

∑ ∑

( ) ( )g z zφ=

,
1

( ) sin( ).m z m
m

z B k zφ
∞

=

=∑

2
, ,0 0

( )sin( ) sin ( )
2

D D

z n n z n n
Dz k z dz B k z dz Bφ = =∫ ∫
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due to the orthogonality property

Hence, the Bn are determined by 

which are the Fourier coefficients of . 
For a source function given by

we have

, ,0

0
sin( )sin( ) .

2
D

z m z n

m n
k z k z dz

D m n
≠

=  =
∫

,0

2 ( )sin( ) 1,2,...
D

n z nB z k z dz n
D

φ= =∫

( ) ( )Sz z zφ δ= −

, ,0

2 2( )sin( ) sin( )
D

n S z n z n SB z z k z dz k z
D D

δ= − =∫
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and accordingly  

Finally, for the boundary and initial condition given above the 
solution of the wave equation can be expressed by

, ,
2( ) sin( )sin( ).m z m S z mg z k z k z
D

=

,

,

1

4
, ,

1 ,

, ,4

1 ,

( , , ) ( ) ( ) ( )

2 2sin( )sin( )

sin( )sin( )8 .

r m

r m

m m
m

j k r
j t

z m S z m
m r m

j k r
j t

z m S z m

m r m

p r z t h t g z f r

Ae k z k z e
D k r

k z k z eA e
D r k

π
ω

πω

π

π

∞

=

 ∞ − − 
 

=

−  ∞+ 
 

=

=

=

=

∑

∑

∑
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2.3 Inhomogeneous Waveguide
If the sound speed in the water column is not constant the me-
dium/waveguide is called inhomogeneous. 

However, one generally assumes that the waveguide is cylinder 
symmetric with regard to the source location and is either

 range independent, i.e. the medium is horizontally stratified 
such that c = c(z) is only a function of depth z

or
 range dependent, i.e. the sound speed varies versus horizon-

tal range and depth such that c = c(r,z) is a function of range
r and depth z.
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In the following range independent scenarios are assumed for 
simplicity.

1480 1500

c (m/s)

z

water column
ρ = 1 g/cm3

air

z

r

D

Rr

Rz

Sz Source

Receiver

0Sr =

sediment
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2.3.1 Ray-Tracing, zero order sound speed approximation 

The sound speed profile c(z) is approximated by a staircase 
function.

( )c z

[m/s]c
1z
2z

=Nz D

0z

z

15001480
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1 1
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n N
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The ray trace can be determined by applying Snell’s law at 
each boundary layer.

At the n-th boundary layer (0 = surface,…,N = bottom) holds

With

we obtain

sin .n na cε =

1 2

1 2

sinsin sin const.N

N

a
c c c

εε ε
= = = = =

2 sincos 1 sin and tan ,
cos

xx x x
x

= − =

2 2

2 2
cos 1 and tan

1
n

n n n

n

a ca c
a c

ε ε= − =
−
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such that the horizontal position and the travel time of the ray 
at the l-th boundary layer can be determined by

respectively, where z0 = zS, zN = D and l = 1,…,N.

2.3.2 Ray-Tracing, first order sound speed approximation

For any         Snell’s law

provides 

1
1

1 1
( , ) ( ) tan and ( , )

cos

l l
n n

n n n
n n n n

z zr l a z z T l a
c

ε
ε
−

−
= =

−
= − =∑ ∑

sin ( ) ( ) sin ( ) ( )S Sz c z z c z aε ε= =

( )( ) arcsin sin ( ) ,
( ) S

S

c zz z
c z

ε ε
 

=  
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where

has been exploited.

sin ( ) ( ) with sin ( ) ( )S Sz a c z a z c zε ε= =

( )( ) arcsin sin ( )
( ) S

S

c zz z
c z

ε ε
 

=  
 

( )Szε

r

Sz

z

0
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Using again the identities

we obtain

and

Horizontal partitioning of
the water column in thin 
layers of thickness Δz as 
indicated in the figure on 
the right side leads to 

2 2 2cos ( ) 1 sin ( ) 1 ( )z z a c zε ε= − = −

2cos 1 sin and tan sin cos ,x x x x x= − =

2 2tan ( ) sin ( ) cos ( ) ( ) 1 ( ) .z z z a c z a c zε ε ε= = −
0 r

Δz

D
z
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For the Riemann sum becomes a Riemann integral so 
that we can write 

Correspondingly, the travel time

( )

1
( , ) ( , ) tan ( ).

N z

S S
n

r z a r z a z z n zε
=

= + ∆ + ∆∑

2 2

( , ) ( , ) tan ( )

( )( , ) .
1 ( )

S

S

z

S
z
z

S
z

r z a r z a z dz

ac zr z a dz
a c z

ε ′ ′= +

′
′= +

′−

∫

∫

( )

1
( , ) ( , )

( ) cos ( )

N z

S
n S S

zT z a T z a
c z n z z n zε=

∆
= +

+ ∆ + ∆∑
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results in 

for  . Now, supposing the velocity profile can be 
approximated piecewise by linear functions, i.e.

2 2

1( , ) ( , )
( ) cos ( )

1( , )
( ) 1 ( )

S

S

z

S
z
z

S
z

T z a T z a dz
c z z
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c z a c z

ε
′= +

′ ′
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∫

∫

c(zi)
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zi+1

( ) ( ) ( )i i ic z c z g z z= + −

z

c0 r

D
z
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the integrals

and

can be solved for                     analytically.

Substitution                                   with                  leads to
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( )22
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The subsequent reformulation shows that rays follow circular 
paths in case of linear depth dependent velocity profiles.

( ){ }

( ) ( )
2 2

( )

22 2 2
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222 2

2
22 2 2

2 2

1 ( ) ( )1 ( )
( , ) ( , )

1 ( ) 1 ( ) ( )
( , ) ( , )

i i ii
i

i i

i i i i
i

i i

a c z g z za c z
r z a r z a

ag ag

a c z a c z g z z
r z a r z a

ag a g

  − + −−
 − + = −
 
 

  − − + −  − + =
    

Chapter 2 / Sound Propagation Modeling / Prof. Dr.-Ing. Dieter Kraus



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

41

Moreover, the expression for the travel time can be similarly 
derived by  

( )
2

22 2

2 2 2

2 22 2

2 2
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Since explicit expressions r(z,a), T(z,a) are available for linear 
velocity profiles, computationally efficient and satisfactory ac-
curate ray-path calculations can be carried out after piecewise 
linear approximation of the actual velocity profile.
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2 2
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