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2 Sound Propagation Modeling

Sound propagation in the ocean is mathematically formulated
by the wave equation, whose parameters and boundary con-
ditions are descriptive of the ocean environment. As summa-
rized 1n the figure below, there are a variety of different tech-
niques available for solving the wave equation (numerically)
for evaluating sound propagation 1n the sea.

Abbreviations
FE: Finite Element PE:  Parabolic Equation
FD: Finite Difference FFP: Fast Field Program
NM: Normal Mode RT:  Ray Tracing
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2.1 The Wave Equation

The wave equation in an 1deal fluid can be derived from hy-
drodynamics and the adiabatic relation between pressure and
density.

The following figure 1s used to derive the wave equation by
exploiting the equation for conservation of mass, the Euler’s
equation and the adiabatic equation of state.

xL

\

pg(x, ) p g(x + dx, 1)
> A

v(x,1) > » v(x +dx,1)

X x +dx
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For deriving the following equations we define the total pres-
sure and the total density as follows.

p,=p,+tp and p, =p +p,
where p o Po> D> Py Po and p denote the total pressure, static

pressure, change in pressure, total density, static density and
change in density, respectively.

Continuity Equation

Employing the figure above the equation for the conservation
of mass can be expressed by
op,

P, (x+dx,t)Av(x +dx,t) — p,(x,t) Av(x,t) = —Adx

g ot
Resultant mass stream N
density variation
J

-
Mass variation
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and with
P, (x+dx,)v(x +dx,t) — p, (x,1)v(x,1) B o(p,v)

dx o
reformulated to obtain the so-called continuity equation
dp,y)  9p,  Op

o ot ot

Euler’s Equation

Using the figure above Newton’s 2" law can be written as

dv
x,))A—p (x+dx,t A Adx—
py(x,0)A=p,( )A=p, g
Total Force, F —— T

m

and by exploiting
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ov ov dv 8\/ ov dx 8\/ 8\/
dv=—dt+—dx, 1.c. = —
ot Ox dt ot 8x dt 6t 8x
and
pg(‘xﬁt)_pg(‘x_l_dx’t) :_pg(x_l_dx?t)_pg(‘x?t) :_6pg
dx dx OXx

we obtain Euler’s equation

_5pg__@_p:p (8\/ ij

Ox Ox
Adiabatic Equation of State

P, ) Op 10°p
pg:po[_gj :po g ,0+— 2g p2+...
Po op, 2 0p,

pg:p()

pg:po
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where x denotes the adiabatic exponent.

For convenience we define
2 _ P, _ - Po Py _ P
op, Po \ Lo Po

Pg=Po Pg=Po
which turns out later to be the squared sound speed in an 1deal
fluid. For

C

pLp, and p<Kp,
the adiabatic equation of state becomes approximately

P, = Dy +c’p, i.e. p=cip.
Since the time scale of oceanographic changes is much longer
than the time scale of the acoustical propagation, we suppose
that the material properties p, and c” are independent of time.
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Taking the partial derivative of the continuity equation with
respect to ¢ and of Euler’s equation with respect to x provides

0 (8(ng)] 0 /8(ng)j:_azp

, p=p/c’

ol o ) ax| o or

O /ﬁpg 0 oV 1 0°p
= VIT | Pe = | T 2 22
ox\ ot Ox ot c” Ot

_8219_8( Gv}r@( V@j
o oe\2 ot ) o\ P o

respectively. For lower particle velocities v as well as
pLp, and p<Kp,

and

the terms
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o ( 9p, a( avj
v| and —| p,v—
ox\ ot ox\" % oOx

can be neglected. Thus, the former equations simplify to
2 2
8( 8\/):_1819 and _adp @( avj

x\Fat) o o> ox\' o
and provide by equating the 1dimensional linear wave equation
0’ p 1 o’ p
ot o

which can be extended by straightforward argumentation to
the 3-dimensional case given by

2 2 2 2
Ap=t 9P i A= OO

+ .
¢’ ot ox* oy’ oz
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Helmholtz Equation
Suppose harmonic pressure oscillation, 1.e.
p(x,y,z,t)= P(x,y,z)exp(jor),
we obtain
AP+k’P=0 with k=w/c=27/A.
If P possesses spherical symmetry, i.e. P 1s only depending on
R, the Laplacian in spherical coordinates simplifies to

o> 20
=+ :
OR~ ROR
Hence, the spherical wave solution of the Helmholtz equation is
Aexp(—jkR)
R
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where x, y, and z¢ are the coordinates of an omnidirectional
point source (pulsating sphere of small radius).

Another simple and important solution 1s provided by the
plane wave

P(x,y,z) = Aexp(—j(kxx+kyy -I—kzz)),
where &, k, and k_are the wave numbers that satisfy
kK =K'k=kl+k, +k, k=w/c=27/A.
The wave vector Kk can also be expressed by
k =(k,,k,,k,)" =k(cospcosd,sinpcosb,sin Q)T,
where ¢ and 6 denote the azimuth and elevation, respectively.
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2.2 Homogeneous Waveguide

Suppose the medium within infinitely extended boundaries 1s
homogeneous.

r =0 air Tr '
2, I/ e Receciver
water
column
z, ¢ Source ¢ = 1480 m/s
p=1glem?
D
) sediment

For the given point source coordinates (0, z) the pressure shall
be determined at an arbitrary receiver location (7, z,).
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2.2.1 Image Source Approach

L The wave field within a homogeneous
Image | ieel_ waveguide can be interpreted as the
Surface o T~
0 \\\ \\\\\\Loz e Air r
S =~ : Rl
D
= 803\ 4 R2
2Dz, |~ Ly, // Ly, Sediment
Image 7 . : : :
Bottom -~ superposition of infinitely many spheri-
cal waves that are reflected at the boun-
Dtz daries.
Z'v
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As a first approximation, the sound pressure in the waveguide
can be determined by superimposing the four contributions
indicated in the figure above, 1.¢.

e—jkLm e—jkLoz
P(VR,ZR,Q)):A(C())( +Rl(0029w) +
01 02
e—jkL03 e—jkL04
+R,(6,;,0) ——+ R, (60,,,0)R,(0,,,®) j
LO3 L04
: [ 2
with Ly, =52 +(z, — 25)*, and

LOQ:\/rR2+(zS+zR)2, Oy, =arctan ((zg +z,)/1z),
Ly,= \/VR2 +(2D -z, —z,)’, Oy =arctan ((2D —zg —z,) /1y ),
L= \/rR2 +(2D+z,—z,) Oy =arctan (2D +zg —z,)/ 17 )-
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Continuation of the 1image source technique in multiples m =
1,2,... of groups of four contributions provides

00 " - e_JkLml
P(ry,2,,0) = A(a))Z[RI 0. )R} (O, ., ®)
m=0 ml
m+1 m m m+1
+ Rl (9m2 b a))R2 (6m2 o a)) L— + Rl (6m3 > a))RZ (em?) > a)) L
m2 m3

L

m4

+1 +1 e_jkLm4
+R"™ (@, ,,0)R (6 ,,0)

with

L, =R +Q2Dm—zs+2,)}, L, =\r2+Q2D(m+1)—z4—z,)*,

L, :\/’”R2 +(2Dm+z,+z,)’, L, :\/rR2 +(2D(m+1)+z,—z,)
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and

0,,=arctan ((2Dm—z3+2,)[ry),  6,5=arctan((2D(m+1)—z5—2z,) /1y ),
0,,=arctan ((2Dm+zg+2z,) /1y ), ¢9m4:arctan((2D(m+1)+ZS—ZR )/ 7 )

Taking into account that the reflection coefficients at the ocean
surface and bottom can be approximated by

R ~—1 water-air-interface

R~1 water-hard bottom-interface

the calculation of the sound pressure simplifies to

0 e—ikLm1 e—ikLm2 e—ikLm3 e—ikLm4
P(r,z,0) = A(w) ) (-1)" - + -
m=0 Lml Lm2 Lm3 Lm4
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Assignment 6:

Develop a Matlab program for determining P(7,z,w) for the
following parameters.

Signal parameters
» Sinusoidal waveform
= Amplitude: 4=1,
= Frequency: f =10 Hz, 100 Hz, 1 kHz and 10 kHz

Waveguide parameters

=  Water depth: D=20m

= Source location: r¢=0m, zg=5m

= Receiver location: (7,,z,)" € [0,500]x[0, D]

= Surface/Bottom Reflection: R, =—1 (calm), R, =1 (hard bottom)
» Sound speed: ¢ = 1480 m/s

Depict the pressure distribution P(r,z,@) in colour coded two
dimensional diagrams and interpret the results.
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2.2.2 Normal Mode Approach

For cylinder symmetric sound propagation, 1.e. p = p(r,z,t), the
wave equation 1s given by

o’ p 1 8p o’p 1 0°p

or’ r 8r oz 62 ot”

Let us suppose that p can be expressed by p oc f(r)g(2)h(2).
Hence, insertion in the wave equation provides

g(z)h(t)d J g(Z)h(t) df+f(r)h(t)d g f(l”)g(z)d i

dt’
and after some manlpulatlons
1 ( v 1dij+ 1 d’g_1 1 d°h
f(r) rdr) g(z)dz>  c h(t) dt*
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For harmonic sources with /(7)) = A e/®! we obtain

1 d2f+l£+ 1 dzg__a)_z__kz
M\ dr* rdr) g(2) dz’ ¢ '

.

r-dependent term z-dependent term

For all values of » and z, the r-dependent and z-dependent term
are equal to constants. With the separation constant —k_ for the
radial and —k_ for the vertical term, the separated ordinary dif-
ferential equations are
2 2
1
S 2 jp—0 and & S

- +k’g=0 with k*=k’+k’.
dr- rdr dz

The first equation 1s a zero-order Bessel equation. Its solution
can be written in terms of a zero order Hankel function, i.e.
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H(gl)(krr) — JO(krr)+.]Y()(krr)

PO ) = 1,06 -

where
Jy, = zero-order Bessel function of the Ist kind, (besselj(...)),

Y, = zero-order Bessel function of the 2nd kind, (bessely(...)),
also known as zero-order Neumann function N,,

g = zero-order Hankel function of the 1st kind, (besselh(...)),
H(z) = zero-order Hankel function of the 2nd kind, (besselh(...)),
both are also known as zero-order Bessel function of the 3rd kind.

The asymptotic form of the Hankel function for £ » — oo is

k,r—— - k r——
H" (k r)= Le ( 4) and H\” (kr)= ]
k¥ \/
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where H" and H\” represent the converging and diverging
cylindrical wave, respectively.

The second equation represents an ordinary linear differential
equation, where g has to satisfy the boundary conditions

g(0)=0 (R=-1)
g(D)=max (R=1)

Step I: (Elementary Solution)
g(Z) — e/lz — g”(Z) — 2/262,2
g"(2)+k’g(z2)=0=> A" +k2=0= A, =1k,

With Re{exp(jk, z)} = cos(k,z) and Im{exp(jk,z)} =sin(k,z)
the set of independent solutions 1s given by {cos(kzz), sin(kzz)}.
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Thus, the general solution of the ordinary linear differential
equation can be expressed by

g(z)= Acos(k.z)+ Bsin(k_z).

Step Il: (Boundary Conditions)

2(0)=0=>4=0
g(D) = Bsin(k,D) = max = [sin(k,D)| =1

= k.D=Cm-1)x/2, m=1,2,...
The boundary conditions are satisfied for a discrete set of

values of k.. Hence, we obtain

T
k =0Q2m-1)— eigenvalues
o = ( ) 5 (eig )

and
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g (z)=B sin| (2m— l)—z (eigenfunctions)

form =1,2,... The solutions are called modes because they
describe the natural ways in which the system vibrates.

Pressure Amplitude [relative units]

D

m=1 m=2 m=3

;Y

The eigenvalues &, and k., are related by k* =k, +kZ,
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Considering &, and k., to be the horizontal and vertical
component of k, respectively, we can write

k. (@)=k(w)cos(a, (w)) and k ,=k(w)sin(a, (@)).
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Step IlI: (Initial Conditions)

The last step 1s to add the fundamental solutions
g(z)=Y B, sin(k,,z) = ZB sm((2m l)lzj
m=I

in such a way that the initial condltlon
g(z) = ¢(z)

is satisfied. Substituting the sum into the initial condition gives
#(2)= B, sin(k,,2)
m=I

By multiplying each side of this equation with sin(k, ,z) and
integrating from 0 to D, we obtain

D ] D 2 D

| #(2)sin(k. 2)dz = B, | “sin’ (k. ,z)dz = B, -
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due to the orthogonality property

sin(k. z)sin(k. z)dz = .
0 = = D/2 m=n

Hence, the B, are determined by

B =2 (" a(z)sin(k. 2)dz n=1.2
" _BJO ¢<Z)Sln( Z,nZ) Z n=1,-,...

which are the Fourier coefficients of ¢(z) (= uniqueness)
For a source function given by

#(z) = 0(z—z4)
we have

B==("s in(k. 2)dz ==sin(k
=7, 0z =zp)sin(k, ,2)dz = —sin(k, ,z)
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and accordingly

g (2)= %sin@,mm sin(k, , ).

Finally, for the boundary and initial condition given above the
solution of the wave equation can be expressed by

P20 =hDX. 2, ()1, (")

= Ae’” i 2 sin(k, ,z,)sin(k, ,,z) 2 e_j (k’”””r_ij

w1 D 7k, 7
4 (w jZ‘O:sin(kzysz)sin(kzamz)e_]
D m=1 kr,m
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2.3 Inhomogeneous Waveguide

If the sound speed in the water column 1s not constant the me-
dium/waveguide 1s called inhomogeneous.

However, one generally assumes that the waveguide 1s cylinder
symmetric with regard to the source location and 1s either

* range independent, i.e. the medium is horizontally stratified
such that ¢ = ¢(z) 1s only a function of depth z

or

* range dependent, i.e. the sound speed varies versus horizon-
tal range and depth such that ¢ = ¢(r,z) 1s a function of range
r and depth z.
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In the following range independent scenarios are assumed for
simplicity.

rs =0 air Ty ro 1480 1500
i ¢ (m/s)
N <*<’»"'*'"'»""”" 0 i
Recetver
Zg ¢ Source water column
p=1g/em’
D .
z | sediment 2|
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2.3.1 Ray-Tracing, zero order sound speed approximation

The sound speed profile c(z) 1s approximated by a staircase

function. 1480 1500
20 | 7 | - ¢ [m/s]
Z1 — /
c(z2) 7
Zy, T —
+ >
c(z)
T (i c(z)zc(z)
—1 \\.L\
1 \‘\
AN
I '\\
| ‘\\
TN
Z w
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» 7
51
Snell’s Law: ¢> e,
S1n En _ Cn
. — €3> €,
SIn gn+1 Cn+1
n=1....N
) ) c4< Cs
C5<¢C4
Zs =D
Sediment
zV

Chapter 2 / Sound Propagation Modeling / Prof. Dr.-Ing. Dieter Kraus 32



INSTITUTE OF
e WATERACOUSTICS,
f SONAR ENGINEERING AND
SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

The ray trace can be determined by applying Snell’s law at
cach boundary layer.

sing; _sing, __singy

.. = a = const.
G ¢, Cy

At the n-th boundary layer (0 = surface, ..., N = bottom) holds

sing, =ac,.

With
S sSin x
cosx=4/l-sin“x and tanx= ;
COS X
we obtain
ac
2 2
CoS &, :\/l—a c, and tang, = —
\/l—a C,
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such that the horizontal position and the travel time of the ray
at the /-th boundary layer can be determined by

r(l,a)= Zl:(zn -z Jtang  and T(l,a)= Z

Z —Z,_

o1 C, COS &,

respectively, where z, =z, zy, =D and [ = 1,...,N.

2.3.2 Ray-Tracing, first order sound speed approximation

For any z €[0, D] Snell’s law

sing(zg)/c(zg) =sing(z)/c(z) =a

c(z)

c(z,

provides

£(z) = arcsin sin&(zy) |,
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where

sing(z)=ac(z) with a=sine(zy)/c(zq)

has been exploited.

v\i

g(z)= arcsin( <) sin g(zs)j
c(z5)

Zg

zZ Vv
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Using again the 1dentities

. 2 .
cosx=+/1-sin’x and tan x = sin x/cos x,

we obtain

cosé&(z) = \/l —sin’ e(z) = \/1 —a’c(z)’

and

tan £(z) = sin £(z)/cos £(2) = ac(z)/\1- a’c(z)’ .

Horizontal partitioning of >
the water column in thin } o
layers of thickness Az as '
indicated in the figure on
the right side leads to

0

D

z v
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N(z)

r(z,a)=r(zg,a)+ Z Aztan g(zg +nAz).
n=1

For Az — 0 the Riemann sum becomes a Riemann integral so
that we can write

r(z,a)=r(zg,a)+ i tan £(z") dz’

Zs

— I”(ZS ) Cl) + J \/1 = GZC(Z')Z

Correspondingly, the travel time
) Az

T(z,a)=T(z;,a)+ Z

' C(zg +nAz)cose(zg +nAz)

ac(z")

dz'.
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results 1n

1 dz'
c(z")cose(z2))

[ 1
=T(zy,a)+ j dz’
% c(z')\/ 1-a’c(z')’
for Az — 0. Now, supposing the velocity profile can be
approximated piecewise by linear functions, i.e.

0 r c(z i) c

T(Z,a)ZT(ZS,a)-I-j

Zs

- c(z)=c(z,)+g(z-z)

Zi

T

N R D T N
Zi1

. .
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the integrals
a(c(z)+g(z'-z))

C(Zi)+gi(Z'_Zi))2

dz'

r(z,a)=r(z, a)+j
\/1 a’
and
dz'
: (c(z)+g(7-2))1-a (c(z)+ gz~ 2))

can be solved for z €[z,,z | analytically.

T(z,a)=T(z,a)+ j

Substitution v=c(z;,)+g,(z—-2z,) with dv=g,dz leads to

c(z;)+g;,(z—z;) av 1
r(z,a)=r(z,,a)+ j dv =

c(z;) \/1—a2v2 8i
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c(z;)+g;(z—z;)

:r(zl.,a)—\/l—azzv2 /agl,

c(z;)

=r(zl.,a)+{\/l—azc(zl.)2 — 1= (c(z)+ g/(z—2,)) }/agi

The subsequent reformulation shows that rays follow circular
paths in case of linear depth dependent velocity profiles.

\/1 a’c(z,)’ \/1 a’ c(z)+gl(z z))

r(z,a)—| r(z,,a)+

as, ag;
\/ 2 )Y 2 2
l—a’c(z, 1— Y+ o(z—2
H(z,a) | (z,,a)+ G) || J1za{cz)re(z=z)
a8, ag;
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2
1—a’c(z,)’ Y+o(z—2z))
o) r(zl.,a)ﬂ ae(z) ||, () A ) L
ag; 8; a g;
\/ 2 VY 2
1-— . .
r(z,a)—| r(z,,a)+ a’c(z) + z—(zl.—c(zl)) — 21 .
ag; g; a g,

Moreover, the expression for the travel time can be similarly
derived by

c(z;)+g;(z-z;)

1 1
dv
c('[i) wl-a*v* &
U (1aiae ||

=T(z,,a)——1In =
g av

T(z,a)=T1(z;,a)+

c(z;)
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1+.1=a%c(z.)?
(2., a)+—={In J1-ae(z)
g, ac(zi)

L 1-a(c(z) + g(z'- 7))’
a(c(z,)+g(z-z))

N\

~N

—In

| a(c(zl.)+gl.(z—zl.))(1+\/l—azc(zl.)z)

=T(z,,a)+—In

8i (1+\/1—a2(c(z,-)2+gi(z—2,-))2)ac(z,-).

Since explicit expressions #(z,a), 1(z,a) are available for linear
velocity profiles, computationally efficient and satisfactory ac-
curate ray-path calculations can be carried out after piecewise
linear approximation of the actual velocity profile.
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