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4 Sonar Signal Processing
4.1 Introduction

The following diagram summarizes the components usually
employed in Sonar systems for sound transmission.

K 2
1 K . Transmitter
Array

K <M, typical K = M/2

Waveform Generator

=  CW (continuous waveforms), e.g. sinusoidal pulse with
rectangular or Gaussian envelope

= FM (frequency modulated) waveforms, e.g.
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linear FM (LFM), hyperbolic FM (HFM) and Doppler
sensitive FM (DFM)

Array Shading
*  Amplitude shading for side-lobe suppression

= Complex shading (amplitude shading and phase shifting / time
delays) for main-lobe steering, shaping and broadening

Power Amplifier / Impedance Matching
= Switching amplifiers to achieve high source levels

*= Linear amplifiers if moderate source levels are sufficient but
an enhanced coherence of consecutive pulses is required, e.g.
as 1n synthetic aperture sonar SAS applications

* Impedance matching networks that supplies an optimal
coupling of the amplifiers to the transducers
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The receiver electronic measuring and information processing
chain consists of the following components.

Receiver
Array

(1

2

N

Signal Conditioning

Preamplifier and Band-Pass Filter

Automatic Gain Control (AGC) and/or (Adaptive) Time
variable Gain ((A)TVQG)

Quadrature Demodulation (analog or digitally)

Anti-aliasing Filter and Analog-to-Digital Conversion with
16 up to 24 bits.
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Signal Processing

Matched Filtering / Pulse Compression

Conventional motion compensated near and far field beam-
forming in time or frequency domain

Synthetic aperture beamforming including micro-navigation
and auto-focusing

High resolution source localization techniques (MVDR,
MUSIC, ESPRIT, etc.)

Information Processing

Image Formation (range and azimuth decimation/interpolation)
Image Fusion (multi-ping and/or multi-aspect mode)

Computer aided Target detection/classification (semi-automatic
Operator support) and Autonomous Target Recognition (ATR)
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4.2 Matched Filtering
4.2.1 Matched Filtering for Band-Pass Signals

A typical Transmission/Reception Scenario 1s depicted below,

\ e\ I—--T-

r 5(0)

Transmitter Array

ii(t)

H(0)=3,(1)+ 71, (1) +7i, (1)

Receiver Array

— J(1)
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where

s(¢)  denotes the transmitted band-pass signal
with s(¢)=0 for ¢¢[0,7] and
||§||2= J"S”Z (t)dt < o, 1.e. finite signal energy,

s,(t) denotes the received echo signal
with §,(f) =as(t—7), where a # 0 models the
propagation and reflection losses and 7 =2 |r| / c
represents the travel time

n(t) denotes a wide sense stationary noise process
with 7#(t)=n_ (¢)+n.(¢), where n,(¢) and n (¢)
describe the ambient noise and receiver noise
respectively.
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Now, we want to determine the impulse response h (¢) ofa
stable receiver filter, 1.e.

| ‘ﬁ(t)‘dt < oo,
such that the output signal
P(t) = j h(t)3(t—t") dt' = j h(t)s, (t—1")di' + j h(t)i(t—t") dt’
possesses a maximum signal-to-noise ratio at ¢ = 7. Thus
([hs@-nar)  #2.0  20)
E( [ Az -1 dt’)2 CE(R@) o

has to be maximized, where

7(h) =
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§.(0)= j h(t)5, (r—t')dt' =a j h(t)5(—t") dt’
and 3
i(r)= j h(t)i(r—t)dt.
The second order moment (correlation) function of the zero
mean wide sense stationary process 72.(7) can be written as

1y (0) =B (7, (1 +7)7i (1))

=E([A@yit+z—t)dt' [y —1")dr")

= [[2@"YRG"YE (7t + 7 —)yi(e —1")) de'de”

= ([ a("Ya("yr,.(c =1 + ") di'dt".
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Applying the Wiener-Khintchine Theorem the power spectral
density function of 7.(7) 1s given by

Rﬁhﬁ}; (w) = .

£ (0)e'“dr

j hEYAE") . (r =t +1") e ' d'dt"d T

];(t')il(t") (I r(t—t'+t") e—ja)rdz_) "

[ 2(YR("Y R, (@) dr'dr"
R () j h(t"e ™ dt'- j h(t"y e’ dt"

=R _(0)H(0)H" (0) = \H(a))\ R ().
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The variance (power) of 7.(7) can now be described in terms
of the power spectral density function R.. (@) as follows.

—E(7; (1)) =7, , (0 ):i R, (®)da
1
27z R~~(a)) dw

Since 7(?) is supposed to exhibit a constant power spectral
density level

R..(w)=N,/2

within the frequency band of interest, we finally obtain
1 ~ 2
2 p— ~2 p— 0 ——
ol =E(i(1)=N,/2 — [|A (@) do.
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Exploiting Parseval’s Formula, 1.e.

2 | ~
do=—
27

~

2
h dt =

we have to maximize

( j h(t)s( t)dt) ||S|| (j h(t)s( t)dt)

7(h) =
e N2 s
Ll (I h(0)3(0dr)
No/2 il 1P

with §(f) = 5(~¢) and |5 =|I$
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Application of the Cauchy-Schwarz inequality
2
[ 1o f od| < [|A0f e[| L0f d

tells us, that the maximum 1is achieved for

h, (t)=c5(t) = c5(-1).

Thus, the impulse response of the optimum receiver filter is
matched to the transmitter signal. The optimum receiver filter
1s therefore called matched filter.

Finally, the maximum signal-to-noise ratio is given by

77(]',; )=Cl2 ”"S:”2 .
TN
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For ¢ = 1 the matched filter output can be expressed by
§(0) = [ By () R =1yl = [§(~) Kt 1)

= [2@+1")5¢") dt" = r.. (1),

where 7. (¢) denotes the cross-correlation function.

Hence, the matched filtering process can be interpreted as the
correlation of the input signal x(z) with the expected (trans-
mitted) signal 5(¢).

The point target response of the receiver 1s defined by

p(t)=h(t)*5(t) = j h(t)5(t—t")dt'.
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Applying the matched filter, we obtain
Pop (6) = b, (1) %5(2) = 5(=1) %5(2)
= [S(=V3(t =1 at' = [§(+M5(EN dt" = 1 (0).

Consequently, the point target response 1s determined by the
autocorrelation function of the transmitter signal 1f matched
filtering 1s employed.

Example: (CW-Pulse)

Signal waveform: (

1 |t <T/2
§(t) =recty,(t)cos(m,t) with rect,,()=41/2 |t|=T/2
0 [f|>T/2
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Signal energy: -
5" = [ @ar= | ”Cosz(zwct) dt =T/2
Matched Filter: s

h,,, (1) = §(~1) = 5 (1)
Hence, the point target response can be expressed by
Doy ()= Iy, () ¥ 5(1) = 5(=1)¥5(1) = 15 (1)

= | rect,, (¢')rect,, (¢ +1) cos(w,t’) cos (o.(t'+1))dt

= [rect,, (1"~ t/2)rect,, (" +1/2)-
cos(w,(t"—t/2))cos(w, (t"+1/2))dt",

where the substitution ¢'=¢"—¢/2 with dt'=dt" has been used.
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After exploiting the 1dentity
2cosxcos y =(cos(x+ y)+cos(x—y))

the point target response becomes

f|<T: p,.(1)= J- (cos(2a,t")+cos(w,t))dt"/2

—d (1)

d(?)
—d(t)

=sin(2w,d(?))/2w,) +d(t) cos(w,1)
{|>T: p, (=0,
where d(t) denotes the triangular function

d(1)=(T-|t])/2.
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The first term can be neglected for @, > 1/T such that the
second term with its triangular envelope remains.

§(2) Pop (1) =’”gg@)&

[ I |

oy
N Ao
TV

—T/2 T/2 ¢ \/ \/ \/ ¢
\/
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The Fourier transform of s(¢) and p, (¢) are given by

S(w) :g{si(g(w—@)j+si(g(w+a)c))}

(0) = R (0) =

and

with  si(x) =sin(x)/x.

opt

S(w)} P, ()]

n n ﬂ n

AL V e AAroa—s o Wb W
A

- )

C c
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The power spectral density function of the matched filtered
white noise can be expressed by

(@) =], (@) R, (@)= N,/2|S@)[ P, (),

where

H,,(0)=S(w) and R, (®)=N,/2
have been exploited.

Rﬁ~ﬁ~ (w) 1
Hence, the power spectral density ” n
function of the output noise 1s pro-
portional to the Fourier transformed
point target response, 1.€. 1t posses-
ses the same shape. NIV AR .
_a)c a)c @
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4.2.2 Quadrature Demodulation

Complex Envelope
The real band-pass signal s(¢) can be expressed by

§(1)=Re{s(e™™'},

where o, and s(¢) denote the carrier frequency and the com-
plex envelope respectively.

The complex envelope 1s given by
s(t) = A(t) e’V
with A(¢) and (%) representing an over time varying

= amplitude (amplitude modulation)

= phase (phase modulation).
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Analytical Signal
Alternatively, the real signal s(¢) can be described by
§(t)=Re{s, (1)},

where s_(¢) 1s called the analytic signal of §(z).
The analytic signal 1s defined by

5. (6)=5()+ j5(t) with 5()=H {5(2)} = : j $() dr,
T

[—7T

where H { } denotes the Hilbert transform.

The Hilbert transform can be interpreted as filtering operation
employing the non causal impulse response

h(t)=— w1th H(w)= f{ lt}:—jsgn(w),
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| for w >0
sgn(w)=<0 for @=0.
-1 forw<O

The Fourier transform of s, (7) 1s given by
S (@) = S(0)+ j H(@)S(o)
25(w) for >0

= S(®)+sgn(®)S(®)=15(0)  for w=0.
0 for w <0

\

Furthermore, on can show that the real and imaginary part of
the analytic signal are related by

Im{S+(t)} : IRG{S+(T)} dr.

T I—7
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For narrow band signals and sufficiently large w_ the complex
envelope and the analytic signal are approximately related by

s(H)e’™ =5 (1).
For band limited signals with B/2 < @, we can conclude
s(t) e’ =5 (1)
which implies
S, (@)= F{s,(} = F{s@t)e™"}
28(@)=2F{5(1t)} forw>0
0 for <0

-s(0-0)-]

in the frequency domain.
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Inphase and Quadrature Components

The real and imaginary part of the complex envelope

s(t) =s,(t)+ jSQ(t)
are called quadrature components, where s,(¢) and s, (¢) de-
note the inphase and quadrature component respectively.

The corresponding real band-pass signal can be expressed by
the inphase and quadrature components as follows.

§(1)=Re{s(t) ™'}

=Re {(S LD+ js, (t)) (cos(w,t)+j sin(a)ct))}
=s,(t)cos(w,t)—s,(¢)sin(w,?)
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If 5(¢) 1s a real band-pass signal its inphase and quadrature
components can be obtained by quadrature demodulation, 1.e.

s, (1) =LP{25(t) cos(w,1)}
=LP {S (B)2cos(aw,t)cos(w,t) —s,(t)2sin(w,?) cos(a)ct)}
=LP{s, (1)(1+cos2w,t))—s,(1)sin2w,t)|

and
so(t)=LP {—2§ (1) sin(a)ct)}

= LP{-s,(t)2cos(@,t)sin(w,t) + s, (t)2sin(ew,1)sin(w,t)|
=LP{-s,(1)sin2@,) + 5, () (1-cos2w,) )|,

where LP denotes the system operator of a low pass filter.
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Quadrature demodulator

—<>‘<}“(” ['tp —s0
2cos(w.t)

R 1p s,

\[12 sin(w.t)
u(t)=2s(t)cos(w.t)

=5(1) ™ +e7) oo U(w)=S(0-0)+S(0w+a,)

Jjv(t)=—j2s(¢)sin(w,t)
=5(t) (e’ —e/*") oo jV(w)=S(w+w,)-S(w-w,)

5(0)
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S(w)}

>

U(w)

-2

JV ()
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® ~

s;(0)= | b, (Du(t-7)dr o-e S, (0)=H,,(0)U(0)

Jso() = [, (0) ju(t=7)dT o-e jS,(@) = H (@) jV ()

S, ()

JSo(@) 1

4

S(w)=S,(0)+ jS, (@) |
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Complex Envelope of the noise process

The noise n(¢) 1s supposed to be a wide sense stationary
stochastic band-pass process.

A band-pass process can be expressed by
| 1 | |
n()=Reint)e’™ | =—(n@)e’™ +n"(t)e '),
(1) =Re{n(n) e’} = (n(r) (e ™)
where n(z) denotes the complex envelope.

The second order moment (correlation) function of 7(#) can
be written in terms of the complex envelope as

() =E (a(+0)a(0)) :iE {(”(1 +7) e’ " 1 n" (t+1r) e /) )

(n@y e +n* (1) e )} =
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=B (+0)n() e+ E (o)’ (1) e

+E(n" (t+0)n(t) ) e/ +E(n" (t+7)n" (1)) e—f‘%@f”)} .

Since 7(¢) 1s assumed to be wide sense stationary, we can
conclude that the equations

E(n(t+7)n(t))=0 and E(n'(t+7)n"())=0

must hold, that the second order moment (correlation) func-
tion of the complex envelope possesses the property

r,(T)=E (n(t + T)n*(t))
(B (w4 om0)] = (E(nom t+0)} =7 (o)
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and that consequently, the second order moment (correlation)
function of 7(¢) can be simplified to

i (7) = %{E (”(Hf)n*(f)) e’ +E (n (t+r)n(t)) e‘f“’c”}
|

= (nn (@ s ()e),

The power spectral density function of 7n(z), defined by the
Fourier transform of 7..(7), can be written as

Ry (@)= F 150} = (R, (0= 0) + R, (-0~ )
1

:Z(Rnn(a)—a)c)+Rnn(—0)—a)c))’

where r (7)=r, (-7)o— R _(w)=R (®) has been exploited.
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R (@)
R _(w) 1
nn
1 " ' 1 1 '
T T » T T >
-B/2 | B/2 o =) @, @

Finally, substituting the complex envelope of the noise, 1.¢.
n(t)=n,(t)+ jn,(t),in E (n(t + f)n(t)) =( the following re-
sults can be obtained.

E(n(t+7)n(t))=E(n,(t+7)n, (1)) - E(ny(t + )ny (1)) +
j{E(nl(t-I_T)nQ(t))"' E(nQ(t+r)n[(t))} =

(r) =
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Signal Energy and Noise Power before and after
Quadrature Demodulation

Now, we would like to investigate whether the signal energy
to noise power ratio 1s altered by quadrature demodulation.
Before quadrature demodulation the signal energy and noise
power are given by

5] = T §(t)dt = i]]g(a))rda) - %I‘S(w)rdw

—00

and
2 1 ¢ 17
o; =1;(0) =— Rﬁﬁ(w)dw:_jRﬁﬁ(w)dwa
27 . T
respectively.
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After quadrature demodulation we can derive

. |
s = | |s(t)|2dtzg [15(e)] deo

1 %~ P 2 15 P I
:E-([PS(&))‘ da)=;_([‘5(0))‘ do =23

for the signal energy and
o =r (0)=—— [ R (@)do= ijﬁﬁ(w)dw = 20"
Q 0
for the noise power.

Consequently, the quadrature demodulation does not change
the signal energy to noise power ratio.
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Implementation Variants of Quadrature Demodulation

1) Analog Quadrature Demodulation

0

QP il F
2cos(w.t)

—2sin(@,t)
_-é@_ LP >

ADC

— x,(nT)

Js=1Ty>b

ADC

— x,(nTy)

2) Digital Quadrature Demodulation

~

fs =VTE> 2

X(t) —

ADC

LP

N (nTS')'<:) > x,(nT)

x(nTy)

i 2cos(aw,nTy)

1
fs=1T;>b

! —2sin(w,nTy)

LP

xg(nTS)’( : ) > xQ(nTS)

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus

36



INSTITUTE OF

2 WATERACOUSTICS,

5/ SONAR ENGINEERING AND
i SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

3) Digital Quadrature Demodulation with Band-Pass Sampling,
Hilbert transform, complex mixing and down sampling

a) N *1(1T5) exp(—jzn/2)
f.o=(G+k)fy u
~ . x,(nT,)+
1) —| ADC Ty :’.@:’.@_:: s
x(1) x(nT}) ) jx,(nT,)
fo=1T{>2b - s =T
IS =fs/2>0
b) N 22(nT5) exp(jzn/2)
fo=G+h) [ u
~ . x,(nT,)+
t) —| ADC T; :’.@.::@_:: s
0 o T )
fS'ZI/TS'>2b R ¢ =1/T,
IS =fs[2>0
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4) Digital Quadrature Demodulation with Band-Pass Sampling,
Real mixing, interpolation and down sampling

A\ 4

x,(nTS,) @_’ x,(nT,)

fszl/Tszfs,,/2>b

a) Interpola-
fc = (% + k) fS' tion Filter
~ x(nT; cos(zn/2)
x(t) —{ ADC (1) , /
!mn(ﬂn/2)
Js = 1/ Tg>2b Interpola-
tion Filter

— x,(nTy)

xQ(nTS')

x(nTy) = x,(nTy)cos(w,nTy)—x,(nTy)sin(w,nTy)

(2721( + %) nj —x,(nTg)sin ((27[1( + %) nj

=x,(nTy)cos

=x,(nTy)cos

7T
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Digital Quadrature Demodulation with Band-Pass Sampling,
Real mixing, interpolation and down sampling (Cont.)

b) nterpola- xl(nTS,)‘/'\ -
=GR ot () x(nTy)
(1) —| ADC U5 ;i:zs(”/”z/ )2) fo=T, = f1/25b
n
fs =T >2b .(%E) nterpola- .
/ {‘icfn Ilgih{er xQ(nTSr)'@_’ xQ(nTS)

x(nTy) = x,(nTs)cos(w,nTy)—x,(nTy)sin(w,nTy)

=x,(nTy)cos ((27{1{ + 377[) nj —x,(nTy) sin((Zﬂk + 377[) nj

T

=—X, (nTS’)cos(gnj +x,(nTy)sin (Enj
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4.2.3 Matched Filtering after Quadrature Demodulation

The transmitted and received echo signal are described by

$(t) = Re{s(t) eij’}
and
5,(1)=Re{s ("' | =Re{as(t-7) ™|

with 7 = 2r/c denoting the travel time for a point target located
in a distance r.
The complex envelop of the echo signal obtained by quadra-
ture demodulation is given by
s(=as(t—1)e’* =as(t—1)e’*"
with
k=w [c=27]A.
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Thus, the complex envelope of the echo signal differs from the
transmitted signal in a

* time delay 7= 2r/c
= phase shift ¢ = —2kr

= complex constant factor a (modeling the propagation and
reflection conditions for a target at location r)

The received band-pass noise 7n(¢) 1s supposed to possess a
constant spectral density over the band of interest, 1.e.

R, (®)=N,/2 for lwtw|<B/2.

Hence, the spectral density of the quadrature demodulated
noise, 1.€. the complex envelop n(¢), 1s determined by

R, (®)=2N, for |w|<B/2.
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Now, we want to determine the impulse response 4(¢) of a
complex valued stable receiver filter, 1.e.

[|n(o)|dt < oo,
such that for the input signal
x(1) =s,(¢) +n(t)

the output signal

Y(t) = j h(t)x(t—t")dt' = j h(t')s, (t—1") di' + j Wt n(t—t")dt

pOSsesses a maximum signal to- noise ratio at = 7. Thus,

Uh(t )S, Se,h(T)‘z B Se,h(z-)‘z
O Bl o
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has to be maximized, where
5,420 = [ h(t)s,(z =)t =ae ™ [ h(t)s(~t') dt’
and
n,(2) = [ Wt n(z 1) dt"

Using Parseval’s Formula the variance (power) of n,(f) can be
expressed by

o’ =Eln,(t)=r,, (0)
1

- 272. ”h”h

=2N, — j H ()| do=2N, [|h@)] dt =2N, ||

(0)dw = — j H(w)|'R,,(0)do
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Hence, y(/) can be write as

‘a e [ h(e)s(-

sl
y(h) =
2N, |4 2Ny Al llsf
:|a|2 s 2
2N,

with §°(¢) = s(~) and |s| =

By means of the Cauchy Schwarz inequality

[rwswd] <[] dr-[| fof d
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one can now prove, that y(/) takes 1ts maximum for

hop () = €5(8) = es™ (1),

where, ¢ denotes an arbitrary complex constant # 0. The
maximum signal-to-noise ratio 1s given by

1, ) =laf L ”S”

It h,,(?) denotes the complex envelope of h,,(¢) the two
alternative approaches

= real filtering with h .. (1) followed by quadrature demodulation

" quadrature demodulatlon followed by complex filtering with hopt (1)

are equivalent.
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The complex filtering of quadrature demodulated signals can
be implemented by real devices as depicted below.

complex
matched
filter
” 2cos(a)ct)l ! n
n(’ E
| QP o L g T
——P—— BP
HONED -
10
LP Y
x, (1) @y_(;)
—2sin(w,t) 1 Ny ¢

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 46



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

4.3 Range Resolution of a Sonar System

A point target generates 1n the absence of noise the determinis-
tic signal

y(@)=q(r)p(t—7) with 7=2r/c

at the output of the receiver, where p(¢) denotes the point target
response, » the distance of the point target and g(r) incorporates
the range dependent echo amplitude and phase shift ¢ = —2kr.

For distributed or extended targets, we introduce the common
reflectivity distribution a(r).

Thus, due to the linearity, the output signal of the receiver
filter 1s given by
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a(r) = [ a(r)q(r) p(t =2r/c)dr,

1.e. the superimposition of the echoes originated along the
target extend by backscattering.

Substitution of » = ¢7/2 in the convolution above provides

a(r) = [a() p(t-7)dr.

C .| CT CT
=515 )e(5)

Thus, a(z) can be understood as a reconstruction of a(¢) which
is one of the main objectives of a sonar/radar imaging system.

where
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A perfect reconstruction can only be achieved for

p(t)=o(1).

The notion range resolution shall describe a measure how far
targets that provide equally strong echoes have to be separated
in range to be distinguishable in the received signal.

There does not exist a unique definition for the range resolu-
tion measure.

1) Range resolution measures based on the duration of the
point target response.

a) 3 dB width: Ar=1¢, —¢_with

p()| =|p(t,) Al

—1pOf = ar==X
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Example:

rectangular pulse of duration 7' = triangular point
target response of support 27 (matched filter output)

2
(A2 L 20598 T
T 2 2
b) Distance to the first zero (1)t

/\V/‘\@ At /N~
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Example:

rectangular pulse of duration 7
= p(t)=0 for [f|>T = At=T = Ar=cT/2

c) Range resolution obtained with an energy equivalent

rectangular pulse

|| p||2 = energy of the point target response p(?)
= ol =|pO)f -ar = Ar=[p[ /| p(O)f

Example:
rectangular pulse of duration 7
= triangular point target response of support 27

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 51



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

ochschule
x City Universit yoprplledS eeeeeee

NN O,
:>At=j 12 g = 2j 1—— | dt
T T

T

T

3
=—T2(1—ij =§T a2l el

3 T 32 3

0

2) Resolution measure based on the separability of signals.

Two point targets generate the echo signal

a(t)=a,pt—7)+a,pt—r,),

where a, and a, as well as 7, and 7, denote the complex
amplitudes and time delays of the echoes of target 1 and 2,
respectively.
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Without any loss of generality, we suppose a, = 1.

Furthermore, assuming equally strong echoes, we have
a,=¢e’?, |a2| =1.
Since ¢ 1s unknown, the worst case approach
/ / i / 2
f(t') =max|p(t' ~z)+¢” p(t'~1,),

has to be considered. After substituting
t'=t+1,
we obtain

g(t)=f(t+7,)=max|p(t)+e” p(t—1)

where 7 =7, —1, denotes the echo separation in time.

b
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Now by increasing ¢ from 0 towards infinity, we can
observe that g(¢) builds up two maxima for 7 > At.

Hence, Af can be used as a resolution measure.

Example.
rectangular pulse of duration T

= p(t):(1—|t|/T) for |t|£T %&

g(t)=p(t)+p(t—z') <Al

(0 /
= DN

g(?)

v

N

[l
>
o~
Sy

-4
V
>
o~
Sy
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4.4 Doppler Effect

Moving sonar platforms as well as moving targets change the
frequency of the received echo signal due to the Doppler effect.
The geometry of the sonar and target motion 1s described in the
figure below.

fsr = transmitted sonar frequency f , =received sonar frequency

f; = frequency at target Vg = ‘V S ‘ cos, V, = ‘VT ‘ cosa;
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The frequency of the signal one would measure with a hydro-
phone placed on the target is given by

l1-v./c
fT:fS,T T/ :fS,T

1-v,/c

A sound wave of this frequency 1s emitted/reflected by the
moving target and 1s received by the moving sonar platform.

<\

T

l

C_
C_

S

Hence, the frequency of the received signal 1s determined by

L l+vg /e ety (c—v,)(c+7V,)
fS’R_fT1+\7T/c_ch+\7T fS’T(c—vS)(ch)
(1_‘7T/C)(1+‘7S/C) 1-(v, — V) C_‘7T‘7S/C2
:fs,T :f

(17 /c)(1+7,/c) ~7" 1+ =) /c—V, b5 /c*
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After supposing V.7, < ¢’, we obtain

1-(v, —v.)/c
fS,R sz,T — / :fS,T

I+ (v, - Vs )/ ¢
where

l—vr/c_ c—v,
— JS.T
1+v /c c+v,

b

V.=V, —V
denotes the relative radial speed between the sonar platform
and the target.

Remark: For Radar (electromagnetic waves) holds

fr 7 = transmitted radar frequency f, , = received radar frequency

[, =frequency at target ¢ =speed of light
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Example:

~

Supposing v, =—10m/s, v, =5m/s = v =—15m/s
¢ =1500m/s,
we obtain
fsr =1.02020157 f; . (exact calculation)

~1.02020202 f; , (approximative calculation)

— relative error < 5-107’

For the subsequent considerations we suppose that only the
target 1s moving, 1.€.

l1-v./c
fS,R:fS,Tl_H;:? fST
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Thus, the distance between the sonar platform and the moving
target can be expressed as a function of time by
r(t)=r,+v,.(2)t.

The signal received at time ¢ was reflected by the target at time
t'=t—1(t)/2,

where 7(¢) denotes the two-way travel time of the signal. Con-

sequently, 7(¢) 1s only implicitly expressed by

2(1)=2r(t")c=2r(t—7(2)/2)/c.
The signal received (real band-pass signal) 1s therefore

5,(0)=Re{as(t—7(t))e™ ™ with 5(5)=Re{s(t)e™ },

where s(7) 1s the complex envelope of the transmitted signal.
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Assuming now

v, () =V, = const.
we obtain

~

7(t) = (r + ¥, (- T(t)/2)) = —(ro +V,1) T 7(1)
C
which after some reformulations, i.e.

() (1+v, /c)= 2(ro +V,1)
c

and
2 r+v.t vy + V.t
o)== DUl _p L
cl+v,/c  c+V,

leads us to the expression
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f— r(t) = (c+\7T)t—2~(rO +Vrt) _ (c—vp)t =25,

c+V, c+v,
c—V 2r, -
=—TLlt—|=a(t-7,)
c+v, c—v,
with
c—V 2r, . 2r C 1
a=—-=", 7,=—" and 7,=—2—=7,——=7,———.
c+v, % c—v, c—v, l-v/c

The received signal can be expressed by
5,()=Relas(a(t—7,))e ™}
= Re {a s(a(t—17,))e /" el oe e/ } =Re {Se (t) e’ } .
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Thus, the complex envelope 1s given by

s(t)=as (a(t — fo)) g /o g/ al,

The impacts! caused by the Doppler effect are
1) Alteration of frequency
w=0a=0,+to(a-1)=0+0,,

with o, =(a-1o,

2) Time dilatation of the complex envelope by the factor a

3) Alteration of time delay by the factor
1/ (1 ~Vr / C)

D ordered with respect to importance
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The impacts can be approximately considered as follows.

D) @,,=(@-lo, =| —L-1|o,
c+v,
:—Z\iT a)c=—2‘7T o C~ :_2\7T o }
c+v, c ‘c+v, c “l1+v,/c
Example:
v, =15m/s —
' = L 1 _3900~1
¢ =1500m/s 1+v,/c 1+1/100
2v,
— a)dop ~ = a)c
%
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2) The difference between 7, and 7,

a) can be neglected with regard to the time shift of the
complex envelope.

b) can not be neglected with regard to the phase shift
provided by exp(—jm,at,).
However, since the initial phase 1s usually unknown

in practice the impact of the phase shift does not
require additional attention.

3) Time dilatation of the complex envelope reduces the
performance of matched filtering (correlation).

[ts impact can be neglected if the phase shift for f_ ..
satisfies
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1
27 fom|@T -T|< 7w = bT < |— = <
a-1| |2v,
with
f.... = maximum frequency =b/2 T = pulse length
b =bandwidth = B/2rx bT = time bandwidth product.
Example:
v,=2.5m/s, ¢c=1500m/s = T K 2% =300
Vr

After applying the three approximations, we finally can write

s,(H)y=as(t—r,) g/ 7T gm0t
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4.5 Pulse Compression

The range resolution and signal energy are determined by
Ar=cT/2 and ||S||2 = PT,
where ¢, T and P denote the sound speed, pulse length and

transmitting power, respectively.

The power P is technically/physically limited by the capabili-
ties of the power amplifiers and the power dependent occur-
rence of cavitation at the transducers radiation surface.

The retention of signal energy (oc SNR) and the enhancement
of range resolution seem to be contradicting goals.

Therefore, how can the range resolution be enhanced without
losing signal energy for a given maximum transmitting power?
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Heuristic Solution

b=1/T'=K/T b=K|T

(11—
[ pwer [

U

Tx-Array
I
=

—
—
Y

l

L. RN
| cd i

Pulse expansion and compression, €.g. via a dispersive delay
line, where K denotes the so-called compression factor.
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Transmitting energy:

Range resolution:

Time-Bandwidth-Product:

Is|" =T
ArEEz:ET'
2K 2

o 1  for rect pulse
|k for expanded pulse

Hence, the compression factor coincides with the time band-

width product.

The range resolution 1s determined by the bandwidth

Copr_ C

T b
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4.5.1 Interconnection of power spectrum, point target
response and range resolution

The range resolution 1s given by
Ar =cAt/2,
where At indicates the time extent of the point target response

p(&)=r,(O) = [st+7)s"(D)dr = [s()s" (-t +7)dT

hopt (t_T)

which is equivalent to the autocorrelation function.

For the autocorrelation function holds
_ 2 1 % 2 i
n (0= F {S@) | =5~ [Is@f e do.

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 69



INSTITUTE OF
WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Example:

A signal with power spectrum

|S(0))| ( 7h,7b) (w)
possesses the point target response

- (1) =b sin(7zbt)
bt

distance
to first zero

=bsi(zbt) = r, (%j:O = At, :l.
Furthermore, approximately holds

() = e
U 2p) U 2p)" 2 BT

and for large b more precisely
At, . =0.88/b.
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Remarks:

* The point target response/autocorrelation function is com-
pletely determined by the power spectrum of the signal.

* The bandwidth of the signal determines the range resolution.

4.5.2 Ambiguity function
The ambiguity function is defined by

o0

x(z,v) = _[ s(t)s (t—1)e’*™dt.

—00

It can be interpreted as the output of a matched filter designed
for a Doppler frequency shift f, if a signal with Doppler fre-
quency shift f, + v 1s received.
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Thus, y(7,v) can be understood as the point target response
in the Range/Doppler domain.

y(r,v) = T s(t)s (t—7)e’*™dt

— ]O(J S(w)e’™ j(j S (@) e/ Z—CZ] e/ ™ dt

—00 —Q0

;o
4722'[0

j S(w) S () e’ /"™ dpydw dt

S(w)S (@) e’ S(w—o' +27v)dwdo'

I
Z

S(o' -27v)S (@) e’ do'

—00

) 4’
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Ambiguity-Function of particular waveforms

a) Rectangular pulse

|
s(t) = ﬁ 1(—T/z,T/z) (¢)

with ||s||2 = 1. Hence, the ambiguity function is given by
y(r,v)= : s(1) S*(t —7) R
ejm/r 1— |T| Sin(ﬂV(T_|T|)) for |T| <T
=3 T ) #av(T-|t)) .
0 elsewhere

.
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Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 74



INSTITUTE OF
WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

¥, HSB

b) LEM pulse with rectangular envelope

s(t) = \/— I T/zT/z)(t)eXp(j”ktz)
with |k|=b/T.
In this case the ambiguity function can be expressed by

y(t,v)= T s(t)s (t—1)e’*™dt

for |r| <T

e |r| sin(7(kz +v)(T—|7)))
) T ) rlkr+v)T—[)

0 elsewhere

.
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Ambiguity function of a LEM pulse with rectangular envelope

15 0
1
-5
05t
10
= 0
15
05
20
-1
15 )
), 25

T
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c) LFM pulse with Gaussian envelope

1 £
S(t)—mexp —262 +]7Z'kt ,

where o (standard deviation) and the effective pulse dura-
tion T are related by
I'=~\2ro

and where k£ determines the slope of the LFM with |k| =b/T.

After some manipulations, we obtain
y(rt,v)= I s(t)s (t—1)e’*™dt

=™ exp(—rz/(4c72) —nro’(kt +v)’ )
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Ambiguity function of a LM pulse with Gaussian envelope
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Assignment 8:

1) Show, that the ambiguity function of an LFM pulse with
rectangular envelope can be expressed as given on p. 75.

2) Develop a Matlab program for determining the
= spectra of the waveforms a) — ¢), using the FFT

* ambiguity functions given in a) — ¢) in analytical form
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Invariance of the Volume under the ambiguity surface

The following calculations show that the volume under the
ambiguity surface does not depend on the waveform. The
volume depends only on the signal energy.

T OO x| drdv =

—00 —00
o o0 oo oo

= [ [ [ [ s)s"@¢—n)e™'s"(t")s(t'~7)e > ™ drdt'drdv

—00 —00 —00 —00
o o0 o0

j j I s(t)s*(t—7)s"(t)s(t'—7)o(t—t")dtdt'dr

—00 —00 —00

= T Ts(t)s*(t—z')s*(t)s(t—z') dtdr

—00 —00

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 80



INSTITUTE OF
WATERACOUSTICS,
i) SONAR ENGINEERING AND

5 SIGNAL THEORY
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= Ojo s(2)[ [ T st —7) dr] dt.

After substituting
t'=t—7 with dt' =—-dr,
we obtain
| j 2 (2, V)| dedv = j s j | di'dt
— I |S(t)|2 YW dt’

:( j |S(l‘)|2 a’t] =||s||4 = x(0, 0)|2.
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4.6 Signal Detection

In the signal detection theory for sonar applications the fol-
lowing cases are distinguished:

1) The signal is completely known.

2) The amplitude of the signal 1s known and the phase 1s
modeled as an uniformly distributed random variable.

3) The amplitude and phase of the signal are modeled as a
Rayleigh and an uniformly distributed random variable,
respectively.

Furthermore, assuming white and normally distributed noise
all cases lead to optimum detectors that mainly base on a
matched filter approach.
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Since the detectors exploit test statistics with different statis-
tical distributional properties they clearly do not possess the
same detection capabilities.

For 1nstance, a detector assuming 2) requires in comparison
with a detector utilizing 1) an increased signal-to-noise ratio
(SNR) of approximately 1dB.

Nevertheless, common to these detectors 1s that the performance
can be parameterized by the SNR of the matched filter output.

The received signal can be described in discrete-time by
x(IT) =s,(Tg) +n(lTy)
with
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s,(IT;)=ns(lT; —7),

where s, s, and n denote the transmitted signal, the echo signal
and the noise, and where # and t describe the propagation/tar-
get scattering loss and the two-way travel time, respectively.

Supposing the noise variance o to be known, we exemplarily
solve case 2) of the aforementioned sonar target detection pro-
blems by the following hypothesis test using the notation

% =(¥(17).ox((+ K-DT))
n,=(n(ITy),...n((1+K-DT;))’
s=(5(0),....s(K-1Ty)) with [=0,1,... and K=|T/T; |.
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Hypothesis Testing

1) Setting up of a hypothesis H,
x, does not contain the signal waveform s, 1.e.
H,: x,=n,, x,~CN (0,01

2) Setting up of an alternative H,
X, contains the signal waveform s, 1.e.
H : x,=5s+n, x,~CN (r5s,01)

~

with n=7e¢", 7,peR,

where 77 > 0 and ¢ the on [—x, ) uniformly distributed
phase of the echo signal.
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3) The statistic #(x,) of the observation x, for testing the hy-
pothesis H,, 1s given by the normalized magnitude of the
matched filter output, 1.¢.

ST (0T )| sy,

where E .= s'’s denotes the transmitted signal energy.

H

4) Determination of the probability density function of the
statistic 7 = ¢(x,) under H, provides the Rayleigh density

2texp(—t*)  t=0

fT(leo)={O <0
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5) Calculation of the threshold for discarding hypothesis H,,.

For a given probability of false alarm P, the threshold x
can be determined as follows.

P.,=P(T>k|H,)

= 2Ttexp(—t2) dt = exp(—zcz) —> K= \/— In(Fy,)

6) If #(x,) >« one decides for H |, 1.e. X, contains the wave-
form s, with P, = a. If #(x)) <x one decides for H,,, 1.e. X,
does not contain the waveform s.

7) Determination of the probability density function of the
statistic 7 = #(X,) under H, provides the Rice density
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8)

E E
fr (¢ Hy)= 2texp(_t2 _0_5]10 (2 _l; t]a

n

where E. = (7 s)”(s) denotes the energy of the echo signal
and where

[,(x)= 1 exp(xcosF)dI
27 =

1s the Bessel-function of the first kind and order zero.

Calculation of the probability of detection P,

For a given threshold x the probability of detection can be
determined by
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P,=P(T>«|H,)

el o
S

with dzzz%zz(ﬁj and £=+2 k= J —2In(F,,),

n

A C— 8 R ey 8

)dz = 0(d, k)

where O 1s the so-called Marcum’s Q-function
Ola, B) = Iz exp(—%(zz +a’ )j[o (a Z) dz.
B
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9) The evaluation of the P, as a function of SNR and para-
meterized by various P, provides the ROC-Curves de-
picted in the following figure.

ROC-Curve
1 T T
_ad
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