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4 Sonar Signal Processing
4.1 Introduction
The following diagram summarizes the components usually 
employed in Sonar systems for sound transmission.

Waveform Generator
 CW (continuous waveforms), e.g. sinusoidal pulse with 

rectangular or Gaussian envelope
 FM (frequency modulated) waveforms, e.g. 
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linear FM (LFM), hyperbolic FM (HFM) and Doppler 
sensitive FM (DFM)

Array Shading
 Amplitude shading for side-lobe suppression
 Complex shading (amplitude shading and phase shifting / time 

delays) for main-lobe steering, shaping and broadening 

Power Amplifier / Impedance Matching
 Switching amplifiers to achieve high source levels
 Linear amplifiers if moderate source levels are sufficient but 

an enhanced coherence of consecutive pulses is required, e.g. 
as in synthetic aperture sonar SAS applications

 Impedance matching networks that supplies an optimal 
coupling of the amplifiers to the transducers
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The receiver electronic measuring and information processing 
chain consists of the following components.

Signal Conditioning
 Preamplifier and Band-Pass Filter
 Automatic Gain Control (AGC) and/or (Adaptive) Time 

variable Gain ((A)TVG)
 Quadrature Demodulation (analog or digitally) 
 Anti-aliasing Filter and Analog-to-Digital Conversion with    

16 up to 24 bits.

1
2

N

O

O

O

Receiver
Array

N N LSignal
Processing

Signal
Conditioning

Information
Processing



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 5

Signal Processing
 Matched Filtering / Pulse Compression
 Conventional motion compensated near and far field beam-

forming in time or frequency domain
 Synthetic aperture beamforming including micro-navigation 

and auto-focusing 
 High resolution source localization techniques (MVDR, 

MUSIC, ESPRIT, etc.) 

Information Processing
 Image Formation (range and azimuth decimation/interpolation)
 Image Fusion (multi-ping and/or multi-aspect mode)
 Computer aided Target detection/classification (semi-automatic 

Operator support) and Autonomous Target Recognition (ATR) 
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4.2 Matched Filtering
4.2.1 Matched Filtering for Band-Pass Signals 

A typical Transmission/Reception Scenario is depicted below,
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where
denotes the transmitted band-pass signal
with for                and                              

, i.e. finite signal energy,

denotes the received echo signal
with , where a ≠ 0 models the
propagation and reflection losses and 
represents the travel time 

denotes a wide sense stationary noise process
with                               , where and  
describe the ambient noise and receiver noise 
respectively.

( )s t
[0, ]t T∉

2 2 ( )s s t dt= < ∞∫ 

( ) 0s t =

( ) ( ) ( )a rn t n t n t= +  

( )es t
( ) ( )es t a s t τ= − 

2 cτ = r

( )n t
( )an t ( )rn t



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 8

Now, we want to determine the impulse response         of a 
stable receiver filter, i.e. 

such that the output signal

possesses a maximum signal-to-noise ratio at t = τ. Thus

has to be maximized, where

( ) ( ) ( ) ( ) ( ) ( ) ( )ey t h t x t t dt h t s t t dt h t n t t dt′ ′ ′ ′ ′ ′ ′ ′ ′= − = − + −∫ ∫ ∫  

   

( )
( ) ( )

2
2 2
, ,

2 22

( ) ( ) ( ) ( )
( )

E ( )E ( ) ( ) h

e e h e h

nh

h t s t dt s s
h

nh t n t dt

τ τ τ
γ

σττ

′ ′ ′−
= = =

′ ′ ′−

∫
∫ 

 








 










( ) ,h t dt < ∞∫ 

( )h t



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 9

and

The second order moment (correlation) function of the zero 
mean wide sense stationary process           can be written as
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Applying the Wiener-Khintchine Theorem the power spectral 
density function of           is given by
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The variance (power) of            can now be described in terms 
of the power spectral density function             as follows.

Since         is supposed to exhibit a constant power spectral 
density level

within the frequency band of interest, we finally obtain
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Exploiting Parseval’s Formula, i.e.

we have to maximize
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Application of the Cauchy-Schwarz inequality

tells us, that the maximum is achieved for

Thus, the impulse response of the optimum receiver filter is 
matched to the transmitter signal. The optimum receiver filter 
is therefore called matched filter. 

Finally, the maximum signal-to-noise ratio is given by
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For c = 1 the matched filter output can be expressed by 

where          denotes the cross-correlation function.

Hence, the matched filtering process can be interpreted as the 
correlation of the input signal         with the expected (trans-
mitted) signal       .

The point target response of the receiver is defined by
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Applying the matched filter, we obtain

Consequently, the point target response is determined by the 
autocorrelation function of the transmitter signal if matched 
filtering is employed.

Example: (CW-Pulse)
Signal waveform:
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Signal energy:

Matched Filter:

Hence, the point target response can be expressed by

where the substitution                   with               has been used.
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After exploiting the identity 

the point target response becomes

where d(t) denotes the triangular function
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The first term can be neglected for                  such that the 
second term with its triangular envelope remains.
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The Fourier transform of         and            are given by

and
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The power spectral density function of the matched filtered 
white noise can be expressed by

where       

have been exploited. 

Hence, the power spectral density
function of the output noise is pro-
portional to the Fourier transformed
point target response, i.e. it posses-
ses the same shape.
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4.2.2 Quadrature Demodulation  

Complex Envelope
The real band-pass signal         can be expressed by

where ωc and s(t) denote the carrier frequency and the com-
plex envelope respectively.

The complex envelope is given by

with A(t) and φ(t) representing an over time varying
 amplitude (amplitude modulation)
 phase (phase modulation).   
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Analytical Signal
Alternatively, the real signal        can be described by

where          is called the analytic signal of        .

The analytic signal is defined by

where              denotes the Hilbert transform. 

The Hilbert transform can be interpreted as filtering operation 
employing the non causal impulse response
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where

The Fourier transform of          is given by

Furthermore, on can show that the real and imaginary part of 
the analytic signal are related by
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For narrow band signals and sufficiently large ωc the complex 
envelope and the analytic signal are approximately related by 

For band limited signals with                 we can conclude

which implies 

in the frequency domain.
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Inphase and Quadrature Components
The real and imaginary part of the complex envelope

are called quadrature components, where         and          de-
note the inphase and quadrature component respectively.

The corresponding real band-pass signal can be expressed by 
the inphase and quadrature components as follows.
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If         is a real band-pass signal its inphase and quadrature 
components can be obtained by quadrature demodulation, i.e.

and

where LP denotes the system operator of a low pass filter.
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Quadrature demodulator
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( ) ( ) ( ) ( ) ( ) ( )I LP I LPs t h u t d S H Uτ τ τ ω ω ω= − −• =∫  
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ω

( )QjS ω

ω

( )IS ω

ω

( ) ( ) ( )I QS S jSω ω ω= +
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Complex Envelope of the noise process
The noise         is supposed to be a wide sense stationary 
stochastic band-pass process.  

A band-pass process can be expressed by

where n(t ) denotes the complex envelope.

The second order moment (correlation) function of         can 
be written in terms of the complex envelope as

{ } ( )1( ) Re ( ) ( ) ( ) ,
2

c c cj t j t j tn t n t e n t e n t eω ω ω−∗= = +

( )n t

( )n t

( ) ( ){
( )}

( ) ( )1( ) E ( ) ( ) E ( ) ( )
4

( ) ( )

c c
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j t j t
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τ τ τ τ+ − +∗
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Since         is assumed to be wide sense stationary, we can 
conclude that the equations

must hold, that the second order moment (correlation) func-
tion of the complex envelope possesses the property      

( ) ( )E ( ) ( ) 0 and E ( ) ( ) 0n t n t n t n tτ τ∗ ∗+ = + =

( )
( ){ } ( ){ }

( ) E ( ) ( )

E ( ) ( ) E ( ) ( ) ( )

nn

nn
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n t n t n t n t r

τ τ

τ τ τ

∗

∗ ∗
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= +

= + = + = −
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( ) ( ) }

(2 )

(2 )

1 E ( ) ( ) E ( ) ( )
4

E ( ) ( ) E ( ) ( ) .

c c
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j t j

j j t

n t n t e n t n t e

n t n t e n t n t e

ω τ ω τ

ω τ ω τ

τ τ

τ τ

+ ∗

− − +∗ ∗ ∗

= + + +

+ + + +

( )n t
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and that consequently, the second order moment (correlation) 
function of         can be simplified to

The power spectral density function of        , defined by the 
Fourier transform of           , can be written as

where                                                          has been exploited.  

( ) ( ){ }
( )

)1( ) E ( ) ( ) E ( ) ( )
4
1 ( ) ( ) .
4

c c
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Finally, substituting the complex envelope of the noise, i.e. 
, in                                 the following re-

sults can be obtained.

( )nnR ω


cω− cω ωω

( )nnR ω

2B2B−

( )E ( ) ( ) 0n t n tτ+ =( ) ( ) ( )I Qn t n t jn t= +
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I I Q Q

I Q Q I
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τ τ τ

τ τ
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I I Q Q

I Q Q I I Q I Q

n n n n
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r r
r r r r

τ τ
τ τ τ

⇒ =
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Signal Energy and Noise Power before and after 
Quadrature Demodulation
Now, we would like to investigate whether the signal energy 
to noise power ratio is altered by quadrature demodulation.  
Before quadrature demodulation the signal energy and noise 
power are given by

and

respectively.

2 22 2

0

1 1( ) ( ) ( )
2

s s t dt S d S dω ω ω ω
π π

∞ ∞ ∞

−∞ −∞

= = =∫ ∫ ∫ 

 

2

0

1 1(0) ( ) ( ) ,
2n nn nn nnr R d R dσ ω ω ω ω
π π

∞ ∞

−∞

= = =∫ ∫   



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 35

After quadrature demodulation we can derive

for the signal energy and 

for the noise power.

Consequently, the quadrature demodulation does not change 
the signal energy to noise power ratio.

2 2

0

1 2(0) ( ) ( ) 2
2n nn nn nn nr R d R dσ ω ω ω ω σ
π π

∞ ∞
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Implementation Variants of Quadrature Demodulation
1) Analog Quadrature Demodulation

2) Digital Quadrature Demodulation

LP

( )x t
2cos( )ctω

( )Ix t

2sin( )ctω−
( )Qx t⊗

⊗ ADC

LP ADC

( )I Sx nT

( )Q Sx nT

1S Sf T b= >

LP

( )x t
2cos( )c SnTω ′

2sin( )c SnTω ′−

⊗

⊗

LP

max1 2S Sf T f′ ′= >

ADC

( )I Sx nT ′

( )Sx nT ′

( )I Sx nT

( )Q Sx nT

1S Sf T b= >

( )Q Sx nT ′
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3) Digital Quadrature Demodulation with Band-Pass Sampling,  
Hilbert transform, complex mixing and down sampling

a)

b)

( )x t

HT

ADC

3
4( )

1 2

c S

S S

f k f

f T b

′= +

′ ′= >
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1
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S S
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=
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4) Digital Quadrature Demodulation with Band-Pass Sampling,  
Real mixing, interpolation and down sampling

a) Interpola-
tion Filter

( )x t ADC

1
4( )

1 2

c S

S S

f k f

f T b

′= +

′ ′= >
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Digital Quadrature Demodulation with Band-Pass Sampling,           
Real mixing, interpolation and down sampling (Cont.)

b)

( ) ( ) cos( ) ( )sin( )

3 3( )cos 2 ( )sin 2
2 2

( )cos ( )sin
2 2

S I S c S Q S c S

I S Q S

I S Q S
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ω ω

π ππ π
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4.2.3 Matched Filtering after Quadrature Demodulation

The transmitted and received echo signal are described by 

and

with τ = 2r/c denoting the travel time for a point target located 
in a distance r. 

The complex envelop of the echo signal obtained by quadra-
ture demodulation is given by 

with

{ }( ) Re ( ) cj ts t s t e ω=

{ } { }( )( ) Re ( ) Re ( )c cj t j t
e es t s t e a s t eω ω ττ −= = −

2( ) ( ) ( )cj j kr
es t a s t e a s t eω ττ τ− −= − = −

2 .ck cω π λ= =
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Thus, the complex envelope of the echo signal differs from the 
transmitted signal in a 

 time delay τ = 2r/c
 phase shift φ = −2kr
 complex constant factor a (modeling the propagation and 

reflection conditions for a target at location r)

The received band-pass noise         is supposed to possess a 
constant spectral density over the band of interest, i.e. 

Hence, the spectral density of the quadrature demodulated 
noise, i.e. the complex envelop n(t), is determined by 

0R ( ) 2 for 2.nn cN Bω ω ω= ± ≤


( )n t

0R ( ) 2 for 2.nn N Bω ω= ≤
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Now, we want to determine the impulse response h(t) of a 
complex valued stable receiver filter, i.e. 

such that for the input signal 

the output signal 

possesses a maximum signal-to-noise ratio at t = τ. Thus,

( ) ( ) ( ) ( ) ( ) ( ) ( )ey t h t x t t dt h t s t t dt h t n t t dt′ ′ ′ ′ ′ ′ ′ ′ ′= − = − + −∫ ∫ ∫

2 2 2
, ,

2 2 2

( ) ( ) ( ) ( )
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E ( )E ( ) ( ) h

e e h e h
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h t s t dt s s
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τ τ τ
γ

σττ

′ ′ ′−
= = =

′ ′ ′−

∫
∫

( ) ,h t dt < ∞∫

( ) ( ) ( )ex t s t n t= +
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has to be maximized, where  

and                                         

Using Parseval’s Formula the variance (power) of nh(t) can be 
expressed by

( ) ( ) ( ) .hn h t n t dtτ τ′ ′ ′= −∫

2
, ( ) ( ) ( ) ( ) ( )j kr

e h es h t s t dt a e h t s t dtτ τ −′ ′ ′ ′ ′ ′= − = −∫ ∫
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Hence, γ(h) can be write as

By means of the Cauchy Schwarz inequality 

2 2
2 2

2
2 2 2

00

2
2

2
2 2

0

2 2

( ) ( ) ( ) ( )
( )

22

ˆ( ) ( )

2 ˆ
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j kra e h t s t dt h t s t dts
h a

NN h h s

h t s t dts
a

N h s

s t s t s s

γ
−

∗

∗

− −
= =

=

= − =

∫ ∫
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1 2 1 2( ) ( ) ( ) ( )f t f t dt f t dt f t dt∗ ≤ ⋅∫ ∫ ∫
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one can now prove, that γ(h) takes its maximum for

where, c denotes an arbitrary complex constant ≠ 0. The 
maximum signal-to-noise ratio is given by

If denotes the complex envelope of            the two 
alternative approaches

 real filtering with            followed by quadrature demodulation
 quadrature demodulation followed by complex filtering with 

are equivalent. 

ˆ( ) ( ) ( ),opth t cs t cs t∗= = −

2
2

0

( ) .
2opt

s
h a

N
γ =

( )opth t

( )opth t

( )opth t

( )opth t
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The complex filtering of quadrature demodulated signals can 
be implemented by real devices as depicted below.

LP

( )s t

2cos( )ctω

2sin( )ctω−

⊗

⊗
BP⊕

( )Iy t

( )Qy t

hI

−hQ

hQ

hI

LP

( )n t

complex 
matched 

filter

( )x t

( )Ix t

( )Qx t ⊕

⊕
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4.3 Range Resolution of a Sonar System
A point target generates in the absence of noise the determinis-
tic signal

at the output of the receiver, where p(t) denotes the point target 
response, r the distance of the point target and q(r) incorporates 
the range dependent echo amplitude and phase shift φ = −2kr.

For distributed or extended targets, we introduce the common 
reflectivity distribution        . 

Thus, due to the linearity, the output signal of the receiver 
filter is given by

( ) ( ) ( ) with 2y t q r p t r cτ τ= − =

( )a r
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i.e. the superimposition of the echoes originated along the 
target extend by backscattering.

Substitution of                 in the convolution above provides

where

Thus,       can be understood as a reconstruction of a(t) which 
is one of the main objectives of a sonar/radar imaging system.

ˆ( ) ( ) ( ) ( 2 ) ,a t a r q r p t r c dr= −∫ 

2τcr =

ˆ( ) ( ) ( ) ,a t a p t dτ τ τ= −∫

( ) .
2 2 2
c c ca a qτ ττ    =    

   


)(ˆ ta
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A perfect reconstruction can only be achieved for

The notion range resolution shall describe a measure how far 
targets that provide equally strong echoes have to be separated 
in range to be distinguishable in the received signal.

There does not exist a unique definition for the range resolu-
tion measure.

1) Range resolution measures based on the duration of the 
point target response.
a) 3 dB width:  Δt = t+ − t− with 

( ) ( ).p t tδ=

2 2 21( ) ( ) (0)
2 2

c tp t p t p r− +

∆
= = ⇒ ∆ =
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Example:
rectangular pulse of duration T triangular point 
target response of support 2T (matched filter output)

b) Distance to the first zero

22 11 0.59
2 2

t cr T
T
∆ ⇒ − = ⇒ ∆ ≅ 

 

( )p t

t∆t−∆
t

⇒
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Example:
rectangular pulse of duration T

c) Range resolution obtained with an energy equivalent 
rectangular pulse

Example:
rectangular pulse of duration T

triangular point target response of support 2T

( ) 0 for 2p t t T t T r cT⇒ = ≥ ⇒ ∆ = ⇒ ∆ =

2

2 2 2 2

= energy of the point target response ( )

(0) (0)

p p t

p p t t p p⇒ = ⋅∆ ⇒ ∆ =

⇒
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2) Resolution measure based on the separability of signals.
Two point targets generate the echo signal

where a1 and a2 as well as τ1 and τ2 denote the complex 
amplitudes and time delays of the echoes of target 1 and 2, 
respectively.

2 2

- 0

3

0

1  2 1

2 2 21
3 3 3 2 3

T T

T

T

t tt dt dt
T T

t cT cTT T r
T

   ⇒ ∆ = − = −   
  

 = − − = ⇒ ∆ = = 
 

∫ ∫

1 1 2 2ˆ( ) ( ) ( ),a t a p t a p tτ τ= − + −
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Without any loss of generality, we suppose a1 = 1.

Furthermore, assuming equally strong echoes, we have

Since φ is unknown, the worst case approach

has to be considered. After substituting

we obtain

where τ = τ2 − τ1 denotes the echo separation in time.

2 2,     1.ja e aϕ= =

2

1 2( ) max ( ) ( )jf t p t e p tϕ

ϕ
τ τ′ ′ ′= − + −

1,t t τ′ = +

1( ) ( ) max ( ) ( ) ,jg t f t p t e p tϕ

ϕ
τ τ= + = + −
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Now by increasing τ from 0 towards infinity, we can 
observe that g(t) builds up two maxima for τ > Δt.

Hence, Δt can be used as a resolution measure. 

Example:
rectangular pulse of duration T

( )( ) 1   for   

( ) ( ) ( )

p t t T t T

g t p t p t τ

⇒ = − ≤

= + − t

t

t( )g t

( )p t

( )p t τ−

tτ < ∆

tτ = ∆

tτ > ∆
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4.4 Doppler Effect
Moving sonar platforms as well as moving targets change the  
frequency of the received echo signal due to the Doppler effect.
The geometry of the sonar and target motion is described in the 
figure below.

, ,transmitted sonar frequency received sonar frequency
frequency at target cos ,    cos

S T S R

T S S S T T T

f f
f v vα α

= =
= = =v v 

Sv
Tv

Tr

Tα
Sα
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The frequency of the signal one would measure with a hydro-
phone placed on the target is given by 

A sound wave of this frequency is emitted/reflected by the 
moving target and is received by the moving sonar platform. 

Hence, the frequency of the received signal is determined by

( )( )
( )( )

, ,

2

, , 2

1 ( )( )
1 ( )( )

1 1 1 ( ) .
1 1 1 ( )

S S T S
S R T T S T

T T S T

T S T S T S
S T S T

S T T S T S

v c c v c v c vf f f f
v c c v c v c v

v c v c v v c v v cf f
v c v c v v c v v c

+ + − +
= = =

+ + − +

− + − − −
= =

− + + − −

   

   

 

   

     

, ,
1 .
1

T T
T S T S T

S S

v c c vf f f
v c c v

− −
= =

− −
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After supposing                , we obtain

where

denotes the relative radial speed between the sonar platform 
and the target.

Remark: For Radar (electromagnetic waves) holds

, , , ,
1 ( ) 1 ,
1 ( ) 1

T S r r
S R S T S T S T

T S r r

v v c v c c vf f f f
v v c v c c v

− − − −
≈ = =

+ − + +
 

 

2
T Sv v c 


r T Sv v v= − 

, , ,
r r

T R T R R R T
r r

c v c vf f f f
c v c v
− −

= ⇒ =
+ +

, ,transmitted radar frequency received radar frequency
frequency at target speed of light

R T R R

T

f f
f c

= =
= =
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Example:
Supposing

we obtain

For the subsequent considerations we suppose that only the 
target is moving, i.e.

10 m s, 5 m s 15 m s
1500 m s,

T S rv v v
c

= − = ⇒ = −
=
  

, ,

,

1.02020157 (exact calculation)
1.02020202 (approximative calculation)

S R S T

S T

f f
f

=
≈

7relative error 5 10 .−⇒ < ⋅

, , ,
1 .
1

T T
S R S T S T

T T

v c c vf f f
v c c v

− −
= =

+ +
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Thus, the distance between the sonar platform and the moving
target can be expressed as a function of time by

The signal received at time t was reflected by the target at time

where τ(t) denotes the two-way travel time of the signal. Con-
sequently, τ(t) is only implicitly expressed by

The signal received (real band-pass signal) is therefore

where        is the complex envelope of the transmitted signal.

0( ) ( ) .Tr t r v t t= + 

( ) 2,t t tτ′ = −

( )( ) 2 ( ) 2 ( ) 2 .t r t c r t t cτ τ′= = −

( ) ( ){ } { }( )( ) Re ( ) with ( ) Re ( ) ,c cj t t j t
es t a s t t e s t s t eω τ ωτ −= − = 

( )s t
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Assuming now

we obtain

which after some reformulations, i.e.

and

leads us to the expression

( ) .T Tv t v const= = 

( )( )0 0
2 2( ) ( ) 2 ( ) ( )T

T T
vt r v t t r v t t

c c c
τ τ τ= + − = + −



 

( ) 0
2( ) 1 ( )T Tt v c r v t
c

τ + = + 

0 02( ) 2 ,
1

T T

T T

r v t r v tt
c v c c v

τ + +
= =

+ +
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with

The received signal can be expressed by 

0 0

0
0

( ) 2( ) ( ) 2( )

2 ( )

T T T

T T

T

T T

c v t r v t c v t rt t
c v c v

rc v t t
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τ

α τ

+ − + − −
− = =

+ +
 −

= − = − + − 
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0 0 0 0
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Thus, the complex envelope is given by

The impacts1) caused by the Doppler effect are
1) Alteration of frequency

2) Time dilatation of the complex envelope by the factor α
3) Alteration of time delay by the factor

1) ordered with respect to importance

( ) 0 ( 1)
0( ) ( ) .c cj j t

es t a s t e eω ατ ω αα τ − −= − 



( 1)
with ( 1)

c c c c dop

dop c

ω ω α ω ω α ω ω
ω α ω

= = + − = +
= −

( )1 1 Tv c− 
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The impacts can be approximately considered as follows.

1) 

Example:

( 1) 1

2 2 2 1
1

T
dop c c

T

T T T
c c c

T T T

c v
c v

v v vc
c v c c v c v c

ω α ω ω

ω ω ω

 −
= − = − + 
−

= = − = −
+ + +





  

  

2 T
dop c

v
c

ω ω⇒ ≈ −


15 m s  1 1 0.9900 1
1500 m s 1 1 1 100

T

T

v
c v c

= 
⇒ = = ≈= + +
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2) The difference between
a) can be neglected with regard to the time shift of the 

complex envelope.
b) can not be neglected with regard to the phase shift 

provided by
However, since the initial phase is usually unknown 
in practice the impact of the phase shift does not 
require additional attention. 

3) Time dilatation of the complex envelope reduces the 
performance of matched filtering (correlation). 
Its impact can be neglected if the phase shift for  fmax
satisfies

( )0exp .cjω ατ− 

0 0andτ τ
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with

Example:

After applying the three approximations, we finally can write

max
12

1 2 r

cf T T bT
v

π α π
α

− ⇒ ≈
−

 

max maximum frequency 2 pulse length
bandwidth 2 time bandwidth product.

f b T
b B bTπ

= = =
= = =

2.5 m s, 1500 m s 300
2T

T

cv c bT
v

= = ⇒ =




0 0( )
0( ) ( ) .dop cj t j

es t a s t e eω τ ω ττ − −≈ −
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4.5 Pulse Compression
The range resolution and signal energy are determined by

where c, T and P denote the sound speed, pulse length and 
transmitting power, respectively.
The power P is technically/physically limited by the capabili-
ties of the power amplifiers and the power dependent occur-
rence of cavitation at the transducers radiation surface.  
The retention of signal energy (   ) and the enhancement 
of range resolution seem to be contradicting goals. 
Therefore, how can the range resolution be enhanced without 
losing signal energy for a given maximum transmitting power?

22 and ,r cT s PT∆ ≅ =

SNR∝
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Heuristic Solution

Pulse expansion and compression, e.g. via a dispersive delay 
line, where K denotes the so-called compression factor.

T KT ′=T T K′ =

Expander

Tx
-A

rr
ay

TT ′

Compressor

R
x-

A
rr

ay

1b T K T′= = b K T=
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Transmitting energy:

Range resolution:

Time-Bandwidth-Product:

Hence, the compression factor coincides with the time band-
width product.

The range resolution is determined by the bandwidth

PTs =2

2 2
c T cr T

K
′∆ ≅ =

1 for rect pulse
for expanded pulse

bT
K


= 


.
2 2
c cr T

b
′∆ ≅ =
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4.5.1 Interconnection of power spectrum, point target 
response and range resolution

The range resolution is given by

where Δt indicates the time extent of the point target response

which is equivalent to the autocorrelation function.

For the autocorrelation function holds

2,r c t∆ = ∆

( )

( ) ( ) ( ) ( ) ( ) ( )
opt

ss
h t

p t r t s t s d s s t d
τ

τ τ τ τ τ τ∗ ∗

−

= = + = − +∫ ∫


{ }2 21 1( ) ( ) ( ) .
2

j t
ssr t S S e dωω ω ω

π

∞
−

−∞

= = ∫F
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Example:
A signal with power spectrum

possesses the point target response 

Furthermore, approximately holds

and for large b more precisely 

2
( , )( ) 1 ( )b bS π πω ω−=

distance 
to first zero

sin( ) 1 1( ) si( ) 0 .ss ss
btr t b b bt r t

bt b b
π π

π
 = = ⇒ = ⇒ ∆ = 
 

3
(0)1 1 1

2 2 2
ss

ss ss dB
rr r t

b b b
   − = + ≅ ⇒ ∆ ≅   
   

3 0.88 .dBt b∆ ≅
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Remarks:
 The point target response/autocorrelation function is com-

pletely determined by the power spectrum of the signal.
 The bandwidth of the signal determines the range resolution.

4.5.2 Ambiguity function

The ambiguity function is defined by

It can be interpreted as the output of a matched filter designed 
for a Doppler frequency shift  f0 if a signal with Doppler fre-
quency shift  f0 + ν is received.

* 2( , ) : ( ) ( ) .j ts t s t e dtπνχ τ ν τ
∞

−∞

= −∫
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Thus, can be understood as the point target response 
in the Range/Doppler domain.

* 2

* ( ) 2

* ( 2 )
2
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2

( , ) ( ) ( )

            ( ) ( )
2 2

1            ( ) ( )
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1            ( ) ( )
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∞ ∞ ∞
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−∞ −∞ −∞
∞ ∞ ∞
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∫ ∫ ∫
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∞ ∞
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Ambiguity-Function of particular waveforms

a) Rectangular pulse

with              Hence, the ambiguity function is given by

( 2, 2)
1( ) 1 ( )T Ts t t
T −=

2 1.s =

( )

* 2( , ) ( ) ( )

sin ( )
1 for 

           .( )
0 elsewhere

j t

j

s t s t e dt

T
e T

T T

πν

πντ

χ τ ν τ

πν ττ
τ

πν τ

∞

−∞

= −

 − 
− ≤  = −  




∫



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 74

Ambiguity function of a rectangular pulse
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b) LFM pulse with rectangular envelope

with                

In this case the ambiguity function can be expressed by

( )2
( 2, 2)

1( ) 1 ( ) expT Ts t t j kt
T

π−=

( )

* 2( , ) ( ) ( )

sin ( )( )
1 for 

( )( )
0 elsewhere

j t

j

s t s t e dt

k T
e T

T k T

πν

πντ

χ τ ν τ

π τ ν ττ
τ

π τ ν τ

∞

−∞

= −

 + − 
− ≤  = + −  




∫

.k b T=
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Ambiguity function of a LFM pulse with rectangular envelope
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c) LFM pulse with Gaussian envelope

where σ (standard deviation) and the effective pulse dura-
tion T are related by 

and where k determines the slope of the LFM with
After some manipulations, we obtain

2
2

224

1( ) exp ,
2
ts t j ktπ
σπσ

 
= − + 

 

.k b T=

( )

* 2

2 2 2 2

( , ) ( ) ( )

exp (4 ) ( ) .

j t

j

s t s t e dt

e k

πν

πντ

χ τ ν τ

τ σ π σ τ ν

∞

−∞

= −

= − − +

∫

2T π σ=
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Ambiguity function of a LFM pulse with Gaussian envelope
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Assignment 8:

1) Show, that the ambiguity function of an LFM pulse with 
rectangular envelope can be expressed as given on p. 75. 

2)  Develop a Matlab program for determining the
 spectra of the waveforms a) – c), using the FFT
 ambiguity functions given in a) – c) in analytical form
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Invariance of the Volume under the ambiguity surface
The following calculations show that the volume under the 
ambiguity surface does not depend on the waveform. The 
volume depends only on the signal energy.

2

2 2

( , )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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d d

s t s t e s t s t e dtdt d d
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∞ ∞
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∞ ∞ ∞ ∞
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−∞ −∞ −∞ −∞
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∞ ∞

∗ ∗

−∞ −∞
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∫ ∫ ∫
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2 2 2

2 2

2
2 4 2

( , ) ( ) ( )

( ) ( )

( ) (0,0) .

d d s t s t dt dt

s t dt s t dt

s t dt s

χ τ ν τ ν
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∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞
∞ ∞

−∞ −∞

∞

−∞
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∫ ∫ ∫ ∫

∫ ∫

∫

with ,t t dt dτ τ′ ′= − = −

2 2( ) ( ) .s t s t d dtτ τ
∞ ∞

−∞ −∞

 
= − 

 
∫ ∫
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4.6 Signal Detection
In the signal detection theory for sonar applications the fol-
lowing cases are distinguished:
1) The signal is completely known.
2) The amplitude of the signal is known and the phase is 

modeled as an uniformly distributed random variable.
3) The amplitude and phase of the signal are modeled as a 

Rayleigh and an uniformly distributed random variable, 
respectively.

Furthermore, assuming white and normally distributed noise 
all cases lead to optimum detectors that mainly base on a 
matched filter approach.
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Since the detectors exploit test statistics with different statis-
tical distributional properties they clearly do not possess the 
same detection capabilities. 

For instance, a detector assuming 2) requires in comparison 
with a detector utilizing 1) an increased signal-to-noise ratio 
(SNR) of approximately 1dB. 

Nevertheless, common to these detectors is that the performance 
can be parameterized by the SNR of the matched filter output. 

The received signal can be described in discrete-time by

with
( ) ( ) ( )S e S Sx lT s lT n lT= +
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where s, se and n denote the transmitted signal, the echo signal 
and the noise, and where η and τ describe the propagation/tar-
get scattering loss and the two-way travel time, respectively. 

Supposing the noise variance       to be known, we exemplarily 
solve case 2) of the aforementioned sonar target detection pro-
blems by the following hypothesis test using the notation

( ) ( )( )
( ) ( )( )

( ) ( )( )

, , ( 1)

, , ( 1)

0 , , ( 1) with 0,1, and .

T
l S S
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l S S

T
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x lT x l K T

n lT n l K T

s s K T l K T T

= + −

= + −

= − = =   

x

n

s





 

2
nσ

( ) ( ),e S Ss lT s lTη τ= −
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Hypothesis Testing
1) Setting up of a hypothesis H0

xl does not contain the signal waveform s, i.e. 

2) Setting up of an alternative H1

xl contains the signal waveform s, i.e.

where           and φ the on [−π, π) uniformly distributed 
phase of the echo signal.

2
0 : , ( , )Kl l l nH σ=x n x 0 I

2
1 : , ( , )

with , , ,
l l l nK

j

H

e ϕ

η η σ

η η η ϕ

= +
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x s n x s I

 





0η >
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3) The statistic t (xl) of the observation xl for testing the hy-
pothesis H0 is given by the normalized magnitude of the 
matched filter output, i.e. 

where ET = sHs denotes the transmitted signal energy.

4) Determination of the probability density function of the 
statistic T = t (xl) under H0 provides the Rayleigh density
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5) Calculation of the threshold for discarding hypothesis H0. 
For a given probability of false alarm PFA the threshold κ
can be determined as follows.

6) If t(xl) > κ one decides for H1, i.e. xl contains the wave-
form s, with PFA = α. If  t(xl) ≤ κ one decides for H0, i.e. xl
does not contain the waveform s. 

7) Determination of the probability density function of the 
statistic T = t(xl) under H1 provides the Rice density
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where EE = (ηs)H(ηs) denotes the energy of the echo signal 
and where 

is the Bessel-function of the first kind and order zero.

8) Calculation of the probability of detection PD. 
For a given threshold κ the probability of detection can be 
determined by
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where Q is the so-called Marcum’s Q-function 
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9) The evaluation of the PD as a function of SNR and para-
meterized by various PFA provides the ROC-Curves de-
picted in the following figure.
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