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S  Array Processing
5.1 Introduction

The sensors spatially sample the wave field at the locations r,
forn=1,2,...,N. This yields a set of complex signals (complex
envelopes or analytical signals) which we collect in the vector

X(t) = (,(£),.-, %, () = (x(6,1),...,x(8,1,))

We process each complex sensor output signal by a linear time
invariant filter with complex impulse response w (¢) and sum-
ming up the outputs to obtain the complex array output signal

w0 =3 [ w,(t—0)x(r.x,)dr

n:1 —0o0
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or 1n vector notation

1(t) = TWT(t—z') x(r)dr with w(t) = (w,(0),...,w, (1)) .

x(z,x,) A
x(t,r,)

10 | 0
x(t,ry) Lo )
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In the Frequency domain we can obtain

Y(w)= F{y(t)) = {j w (¢ - T)X(T)dr} W (0) X(w),

where
X(w) = j x(t)e "' dt and W(w) = j w(t)e ' dt.

If s(¢) 1s the signal that would be received at the origin of the
coordinate system, 1.e. at r = 0, we can write

X(t) = (%,(£), -, %y () = (x(t1), x(t,1,), ..., X(1,1))
= (S(t —7,),8(t—17,),...,5(¢ —Tn))T ,

where

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 4



INSTITUTE OF
2 WATERACOUSTICS,
;] SONAR ENGINEERING AND
SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

. =-k'r /o "

with
r, =(x,,5,,2,) =OF,
n=1,.... N

plane wave

and

COs @ cos 9
K=k| sinpcos9 |,
sin 9

k=w/c=2r/A.

v

D Minus sign arises because the plan wave propagates in direction of —k.
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The time delays can be expressed by
7, =—(x,cospcos3+y sinpcosI+z, sind)/c.
Defining direction cosines with respect to each axis, 1.e.
G, =Cos@cosy, ¢ =sin@cosd, ¢ =sind
with §=(¢,,¢6,, £), we can write
7, =—(x,& + 1,6, +2,8)/c=-8T,[c.
The Fourier transform of x(¢,r ) =s(t—17,) leads to
X(ow,r,)= .‘: x(t,r,) e’ dt = J:S(t —7 )e '"dt
= S(w) = e’ " S(w).
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Defining
. T -y, T T
a(k) = (exp(jk'r),...,exp(jkr,))

we can write
(X, (w)) ( X(ow,r))
X(w) = : = : = S(w)a(k).
Xy(@)) \X(o,ry))

The vector a(K) incorporates all of the spatial characteristics
of the array and 1s referred to the array manifold vector.

Now, the array output signal i1s formed by adding the sensor
signals after they have been aligned by time shifts.
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x(t,r)=s(t—1)) ‘

x(t,r,) =s(t—1,)

n

xX(t,xy)=s(—7y)

s(?)
h 1/N
. s(?)
y(t) =s(t)
. s(?)

1
Hence, w, (7) :F5(t+rn), n=1,...,N.

This processor 1s referred to as a delay-and-sum beamformer

or conventional beamformer.
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In practice one adds a common delay 7 in each channel so that
the operations are physically realizable, 1.e.

-7 +720, Vn=1,...,N.

If kK denotes the wave vector of a plane wave of interest, 1.¢.

T = —lkSTrn = —lé;Tr
c

the Fourier transform of w(?) =(w1 (2),..., Wy (t))T provides

W(w) = T w(t)e’”'dt = la(—ks),

N
where
1 1
Wi (w)=—a' (-k ) =—a" (k).
(w) ¥ (-Kk;) N (k,)

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 9



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Generally, we want to find the response of the array y(¢) to an
input wave field x(z,r).

The systems theory approach of analyzing the response of a
linear time invariant system in terms of the superposition of
complex exponential basis functions can be extended to space-
time signals.

The basis functions are now plane waves of the form

.X(t r) — Aej(a)t+kTr)
0 .

Spatial sampling at the locations r,, n =1,...,N provides the
signal vector

x(t)=(x,(£),..., x, (1)) =(x(t,1),...,x(t,¥,)) = de™ a(k)
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The plane wave response of the conventional beamformer 1s

y(6)=W'(w)ak) 4e™,

where the temporal spatial processing 1s completely described
by the so-called frequency-wave number response function

b(w,k)=W' (w)a(k)
of the array. Replacing in b(w,K) the wave vector by
@

k =—(cosgcos 3,sinpcos 3,sin S)T - %0, 9),
c c

where c i1s assumed to be known, we obtain the beam pattern

b(w,9,9) =b(@,K)|

k=2t(p,9) '
C
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Example:
Supposing
1 .
W (0)=—a" (k) with k. ==& =Z¢(p,9)
N c
we obtain

b(.9.9) =~-a" (?é(qos,@)]a(%&(@,@j
=%26Xp{j§[x (&0, D~ (0,,9))
+3,(€,(0.9-¢ (9,.9))
+z,(&.(o, 19)—52(%%))]}

12
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a) linear vertical array, 1.e.x, =0,y =0forn=1,..,.N
5((0,(0,9) = ﬁZexp(]’an(sinQ—sinSS}j
c

with z, =(n—(N+1)/2)d, n=1,...,N we obtain

N N
b(a),go,g):izexp jﬂ(n—N“jd(smg—sings)
N 5 C 2

and with d = 1/2, w/c=2x/A holds

5((0,9) :%Zexp[j(n— Ngljﬂ(sinQ—sinSS)j
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b) linear horizontal array,1.e.x =0,z =0forn=1,..,N

N N
b(w,p,9) = %Zexp(jﬁyn (sin @ cos 3 —sin @, cos SS)j
n=l C

~ N
for$=9 =0 = b(w,go,O)=%Zexp(j2yn(sin¢—siﬂ¢s)j
n=1 C

with y =(n—(N+1)/2)d, n=1,...,N we obtain

- N
b(w,p,0) =LZexp jg(n— N+1jd(sin¢—singps)
N 5 c 2

and with d = 1/2, w/c=2x/A holds
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15(g0,0) :%nﬁ:exp(]’(m— Ngljﬂ(singo—sinq)s)j
¢) planar array in yz-plane, 1.e. x =0 forn=1,..,.N
I;(a),gp,.9)— Zexp{ y (sin@cos & —sine, cosH,)
+z (sin 3 —sin 193)]}

with N=KL, y, =(k—(K+1)/2)d,, k=1,...K

=(I-(L+D/2)d, [=1,..,L
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we obtain

E(w,w,g):%ii { [ k—(K+1)/2)d (singcos I

k=1
—sin @, cos&’s)+(l—(L+1)/2)dZ(sinQ—SinSS)}}
and with d , =d, = 1/2, w/c=2n/2 holds
- 1 K L
b(a),go,g):FZZexp{jﬂ[(k—(K+1)/2)(singpcos8

k=1 [=1

—sing, Cosgs)+(l—(L+1)/2)(sin9—sin SS)]}
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5.2 Performance Measures

To quantify the gain in signal-to-noise ratio obtained by beam-
forming the following figures of merit are of interest.

5.2.1 Array Gain

Let Mw,p,%) denote the frequency-angular spectrum of the
noise field and h(w, @, 3) the beam pattern of an array of om-
nidirectional hydrophones. Then the frequency dependent
array gain AG(w) 1s defined as

( j jﬂ/zN(w,go,S)cosgdego

AG(w)=10log,,| —
\ j—ﬂ -“—7[/2 N(a), P,

,(0,19)‘2cos19d19d(o).
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5.2.2 Directivity Index

In case that M(w, ¢,93) represents the frequency-angular spec-
trum of an spatially isotropic noise field, 1.e.

N(@,9,9) = N(o),
the array gain AG(w) simplifies to the so-called directivity
index DI(w) given by

/ j_z_[_z//zﬁ(w)cosgde¢

DI(w)=10log,,

17 N@)b(@,0.9) cos9d8dg

=10log,, (4”/jz j”:jz ~

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 18
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Example:

For an A/2 equidistantly spaced linear vertical array with

)7[(811’119 sind, )

b(p,9)=— Ze(

=b(9
we obtain
T oer/2 |— 2
DI =10log,, (472/_[_ j_ B cos Fd I a’go) =10log,,(N),
where

T j/ 2 b(9)[ cos9dgdp=2x j/ 2 b(9)[ cos9dg =

- —7/2 -/2
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Nz jﬁ(smg s1n.9) (m——jﬂ(smg sind, )

cos $d 9

Ze

— /2 n=1
272_ T2 N N . _ .
_ . ZZe](n—m)ﬁ(smg—smSS)COSlgdlg
N — /2 n=1 m=1

7/2

or L& . . . .
_ N2 Zze—](n—m)ﬂsmgs j e](n—m)7r51n.52 COSlgdLg
n=1 m=I

—-7/2
1
2r L& . | |
_ —j(n—m)msinY, ](n—m)ymd
— 2226 je u
N n=1 m=l1 |
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= 2—72- i i e—f(”—m)ﬂsin&ls ej(n_m)ml
N2 n=1 m=I j(n_m)ﬂ-_l
= 4—72- ﬁ: i e—j(n—m)ﬂsings ej(n_m)” — e‘f("—mm
N? &=~ P2(m-m)r
= ﬂiie—j(n—m)ﬁsings Sin((n —m);z') _ 477 ﬁ:l _ 4_7T
NSt (n-myr N4 N

has been exploited.
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5.3 Conventional Beamforming

Now, we consider the case that x(z,r ), n=1,...,N represents
the complex envelope of the band-pass signal

f(t.r,) =Re{x(tr,)e™ |, n=1..,N

where o, denotes the carrier frequency.

We assume that the complex envelope x(z,r ) 1s limited to the
frequency band |w|< B/2 = 7b.

For a plane wave, that generates the signal s(¢) at the origin of
the coordinate system, x(¢,r,) becomes

f(t.r,)=5§(t—7,)=Re{s(t-7,)e ™|, n=1..N.

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 22
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5.3.1 Time Domain Beamforming

Let 7 __ denote the maximum travel time between any two
elements in the array, 1.e.

I, Vom=1,.,N,
and let the bandw1dth of the complex envelope b be small

enough, 1.e.
bT <1,

max

s(t—7,)=s(?)

1s valid. Hence, we can write
x(t,r,)=Re {x(t, r)e’ ™ } =Re {S(t —7 )e %! }

the approximation

"’Re{s(t)e ]m}, n=1,...,N.
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Thus, in the narrow band case, the delays can be approximated
by phase shifts, and the conventional beamformer can be imple-
mented by a set of phase shifts instead of delays.

This implementation commonly referred to as phased array
beamformer 1s depicted below.

() =5t-1)

>

s(t—1,) e /en

xXtr,)=s(-r,)

n
»

s(t—1,)=s(1) R

i(tarzv) :SN(t_TN)‘

I/N

» QD —> eja)cr1
t—1,)e %" .
QD sU-ne e’¥"
s(t—1,)e /%™
QD ( N) ejwcTN

s(t—1,)=s() R

s(t—1,)= s(t)‘

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus
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If bT . <1 1s violated one can use delays in conjunction

max

with phase shifters. After the introduction of

- ~ 7 1
t =7, —1T, with [ = Tu g :
T, 2

we can state that

T |<T,/2,

where 7 denotes in case of

= continuous signals the elementary delay within a tape delay line

= digital signals the sampling period.

Now, assuming
bT =bT, K1

max

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 25
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the approximation

s(t—1T, -7 )=s(t—1T,)
holds, and we can write
%(t.r,) =Re{x(t,r,) e’}
= Re{s(t—ZiTS —fn)ej“"f(t_rn)}
"“Re{s(t IT)e ’“”}, n=1,...,N.

The combined use of delays and phase shifters, as visualized
in the following figure, represents a beamformer implementa-
tion that 1s typically employed in sonar applications.
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)E(tarl):‘g(t_fl) R

s(t—1,)e/n

i(t,r,)=5(t-1,)

[

L

s(t-1,) e /v

H(tx,)=5(t-1,)

s(t—1,) e

JOT

QD » T,
s(t—t1,)e ™ [

QD ——{ T,
s(t—1,)e /"

QD —— I\T,

L

s(t—7y) e /P

s(t— fL) =5(¢)

s(t— fz) =5(¢)

s(t— fi\’) =s(1)
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/N

However, if f, 1s close to the Nyquist rate, e.g. complex

sampling with f;, =3/2b and therefore

bT, =2f,/3-T, =2/3 L 1,

more sophisticated interpolation techniques are required for
reconstructing the signal s(¢) in each channel, satisfactorily.

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus
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Example:

We suppose an array of n=1,..., N receivers, where
%,(1) =Re{x, (1)} with x,(1)=x,,,(0)+ jx,, ()
denotes the signal measured with the n-th receiver and where
§(1)=Re{s(t)e™'} with s(1)=s,(0)+ js, (1)

represents the signal of interest/target which for

a) passive sonar and far-field active sonar applications is
supposed to be measured at a reference location, e.g. at the
origin of the coordinate system,

b) near-field active sonar applications is given by the transmit-
ted signal which has been nitiated at # = 0.
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In a noiseless case the signal at the n-th receiver is given by
X (t)=5(—-7,)=Re {S(t —7 )e/ %! } = x ()=s(t—1,)e ',

Hence, a reconstruction of s(¢) using x (¢) 1s provided by

Ja)CTI’l

s(t)=x,(t+1,)e"" =(x,,(t+7,)+ jx,,(t+7,))e

Considering s(#) at time instances ¢ =/[T,, we can write
SUTy) = 3, (1T +7,) €% = x,(,T; +7,) ¢
= (2, (T +F)+ jxy, (LT, +£,)) e,
where

Z'n—iTS

n

| =1+[ and 7,

with [ T. <7 <(l +1T, and [ €Z.
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Since for x,(¢) only the sample values x (/ T) are available the
x,Ts+7,)=x,,6Ts+7,)+ jx,,(,T+7,)

have to be approximately determined by interpolation. After
restricting our self to the linear interpolation approach

x],n (lnTS + z’:n) = (1 _an)xl,n (lnTS) + an xl,n ((ln + 1)TS)
xQ,n (lnTS T fn) = (1 _an)xQ,n (lnTS) + a, xQ,n ((ln + I)Ts)a

where o, =7 /T, the beamformer output signal can be ex-
pressed by

N

y(lTS>=%;{}1—an> T+, x,, (0, +DT) ]+

+jl-a)x,, T +a, x,, (1, +DT) }ef“

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus
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5.3.2 Frequency Domain Beamformer

Fast convolution

Letx, and £, (/ =0,...,L—1) be a finite input sequence and a
finite discrete time impulse response of a filter, respectively.

Exploiting that the discrete Fourier transform (DFT) of a cir-
cular convolution can be expressed by

(Yk):DFT{(yl)}:DFT;(LZi[x,l j}
= DFT- /Lix 7] j}

e T~ (1)

N\ f
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where
Lk=0,....,L-1 and i, =|u, | with &

Vjel,

]+L9

the linear convolution can be efficiently carried out via the fast
Fourier transform (FFT) after suitable truncation/zero padding.

Fast Convolution
e (LiFPFoTint) H, Memory
IFFT |,
Y, (L-Point) Y
| FFT I
x) | (L-Point) X,

br=o0,..L-1, ?1=0,...,.L-1, YI=L—-1,...,L—1
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FFT-Beamformer
x,(ITy) = x(IT;,x,) V x,(ITy) = x(IT,,x,) " x, (ITy) = x(IT,,r,) "V
FFT (L-point) FFT (L-point) e FFT (L-point)
I I I I I I I I I
2) onfl 0’171 ij 171 (OITZ szfz JCUL 172 onTN wer K ij 178]2)

? @@@ @ @@

IFFT (L-point)

Iy(lTs) Y
D7=0,...,L-1, =wgklL+o, for k=0,...,L-1, ¥ I=[max(z,)/ Ty ... L1,
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The following items often prevent a direct application of the
FFT based convolution.

= Long Data sets, e.g. if long ping periods (active sonar) or long
integration times (passive sonar) are of interest

= Motion Compensation during Beamforming, e.g. new motion
data are typically every 20 ms available

= Dynamic wave front curvature compensation, e.g. required for
imaging sonars in near-field applications

Consequently, a linear convolution scheme based on sequen-
ces of Fourier transformed data sets 1s required.

A suitable approach 1s provided by exploiting the overlap-save
or the overlap-add method as visualized below.
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5.4 Introduction to high resolution methods

5.4.1 Narrowband snapshot model

In the following a time-domain model appropriate for narrow-
band waveforms 1s developed. First, a wave field generated by a
single plane wave 1s considered. Spatial sampling of this wave
field by an array of sensors provides the complex signals

x(t,r)=s(t—-7,)e’"™ ¢ = —kfrn/a), n=1,...,N.
Since the wave field i1s supposed to be narrowband, 1.e.
s(ty=zs(t—-r7,), Vn=1,...,N,
we can approximately write

x(t,r,) = s(t) e/ =1 N
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and 1n vector notation
x(7) = (x(t,rl), e x(t,rN))T =s(t)e’" a(k)),
where
a(k,) = (exp(/k'T,),....exp(jkr,)) .

Let x(¢) be a zero-mean vector valued stochastic process, 1.e.

E(x(t)) =

then, its matrix valued covariance function defined by
¢, (1) =E(x()x" (1-17))
provides for =0

¢, =¢, (0)=E|s(t)| a(k,)a”(k,) = o a(k,)a"(k,).
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Now, M narrowband sources are assumed. Each source is

emitting a plane-wave with envelope s,_(7) and wave vector
k for m=1,..,M.

The resulting wave field 1s measured by an array of sensors,
where the vector of the senor signals can be expressed by

M s, ()
x(1) =) s, (Oak,)e™ =(ak,),....,ak,))| I [
=] Sy (0)
= As(t)e’”,
with
A =(a(k,),...,a(k,,)) and s(t)=(s,(1),...,s,(t)) .
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Thus, the covariance matrix of the signal vector x(¢) becomes
¢, =E(x()x" (1)) =E (As(t)(As(t))H)
=E(As(t)s" (A" )= AE(s(1)s" (1)) A" = Ac A"
If the M sources are supposed to be uncorrelated, 1.e.
¢, =E(s())s()") = diag(c?,....07 )
since
E|Sm (t)|2 = afm and E(Sm (1)s, (t)) =0, m#n,

we can write
M

¢, =Ac A" =) ola(k,)a" (k,).

m=1
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Generalization of the pervious results to the case of M uncor-
related sources imbedded 1n uncorrelated additive noise gives

X(1) = ism (Hak,)+u(r) |’ =(As()+u(r))e™

for the signal vector and

M
H 2 H
c.=Ac A" +¢c = Z o, alk )a"(k )+c
m=1

with E(u(r))=0 and c,, =E(u()u” (1))

for the corresponding covariance matrix.

Furthermore, supposing the noise to be spatially white, e.g. if
isotropic ambient noise is impinging on a /2 equidistantly
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spaced line array, we obtain

M
c. =Ac A" +o01= Z afma(km)aH (k, )+ol,
m=1

where o denotes the noise power (variance) in the frequency
band of interest [@w— B/2,®+ B/2] for each channel.

Moreover, if the components of s(¢) and u(z) have flat spectra,
1.e. are nearly white over B, then

¢, (ITy) =E(x(t)x" (1~1T)) = 0 for T;=1/b and 0.

Thus, x(/7;), [ =0,1,... represents a sequence of uncorrelated,
zero-mean complex random vectors whose covariance matrix
is given by ¢__ as expressed above.
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Finally, if x(/7}) satisfies the aforementioned properties, the
covariance matrix ¢ can be consistently estimated by

L—-1
¢ = le(ZTS)xH (IT,).
L%

5.4.2 Classical Beamformer

The classical beamformer 1s defined by the criterion
qes(K)=a" (k)¢ a(k)

N N
=3 > 4 k)a, k),
=1 1

with a(k) =(q,(k),...,a, (k)

q:

Vo

CXX - (Cpq )P,q=1,._,,N'
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The following reformulations show, that the classical beamfor-
mer criterion can be interpreted as an non-parametric estimate
of the wave number spectrum C_ (k) of the wave field x(z,r).

qcp(K) = a" (k) ¢, a(k) = Z Z a; (k) 4, (k) épq

p=1 g=1

al —]kT jk r, 1 < *
z € ZZ ,UTs) x, (IT)
=0

||
M=

S
I
f—
Q
LR

. T N o T
x(ITg,r,)e Y x"(IT,r,) e’ ™
=1

33

_Ll=0 p=1

lL—l 1L1
=—>» XKk,HX (k)=
A (k,/) X (k,[) L;
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where

a,(k)=e™" and X(k,/)= Zx(lTS,r)e‘fk _Zx (T e

has been exploited. As X(Kk, l ) represents the spatlal discrete
Fourier transform of each snapshot,

1
I, (k,])= =1,...,L
(K, D) =

can be considered as the corresponding periodogram in the
wave number domain.

Hence, averaging over periodograms of consecutive snapshots
provides the wave number spectrum estimate

s (R)=a" ()& a0 = DX (k,D = 31, (k)= NC, ()
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For a given k = w/c the classical beamformer criterion can be
expressed as a function of azimuth ¢ and elevation 9 by

Ges (0, 9) = 45 (KE(@, F)) = 2" (kE(p,9)) ¢ a(kE(p, D)
=a"(p,9)¢,,4(p,9)
with
i(p,9) = a(k&(9,9)) = (a, (k&(@,9)),....ay (K&(@,9)))

= (exp(jkﬁT(% A, ) e eXp(jkgT((D’ Iy ))T .

Finally, the directions of arrivals (DOAs) of the plan waves of
interest are indicated by the locations of the peaks in the classi-
cal beamformer diagram, 1.e. in the versus azimuth ¢ and ele-
vation 4 visualized classical beamformer criterion.
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Estimate updating: (covariance matrix)

Growing window

&€ = (165, +XUT)XAT)) with &, =x(0)X"(0)
Sliding window of length L

¢, =¢, for I<L else

&8 = (L& =X D)X (= DT +x(T)x"(T)

Exponential Smoothing
=(1-p)¢, Cax,im1 + BAx(IT,)x"(IT)
With ¢ o =X(0)x"(0) and 0< <1
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Level [dE]

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus

Simulation Results of Classical Beamforming
o, =-1° @, =-2° ¢, =10° o, =-71° ¢,=0° ¢, =10°
L=1000, N =15 L=1000, N =15
SNR =-10log,,(N)dB SNR =-10log,,(N)dB

Level [dE]

Bearing [deg] Bearing [deg]
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Remarks: Classical Beamforming

Assets
=  Number of sources has not to be known
= Computationally fairly simple

= Robust against model mismatches

Drawbacks

= Rather poor resolving power

INSTITUTE OF
WATERACOUSTICS,

m; SONAR ENGINEERING AND

SIGNAL THEORY

= Narrowband / generalization to broadband not straight forward

= Estimates signal + noise power only
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The DOA resolving power of the classical beamformer 1s ra-
ther limited. Therefore, a variety of advanced methods have
been developed for enhancing the resolution capabilities.

In the following, we briefly focus on methods that produce
diagrams that are comparable to those of the classical beam-
former, however, that should have sharper peaks at points in-
dicating sources. Any such diagram computed from an esti-
mate of the covariance matrix c¢__ 1s called a high-resolution
diagram or a peak estimator.

The high-resolution diagrams provide DOA parameter esti-
mates. They generally do not allow the estimation of the sound
power versus azimuth and elevation, especially the respective
signal and noise power distribution.
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5.4.3 High-Resolution Diagrams

Many of the known high resolution peak estimators can be
motivated by certain properties of the covariance matrix

¢, =Ac A" +o1
of the vector valued array output

x(t) = (%,(1),...,xy (1)) .

Here, ¢ 1s the covariance matrix of the source signals

s(t) = (5,(1),...,5,, ()

which is not necessarily diagonal, A 1s an N X M matrix with
A=(ak,),...,ak,))=(ap,9),.-. (g, 9,))

o. is the noise power and I denotes the identity matrix.
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We assume M < N and both, ¢ and A are of full rank M, 1.e.
the signals are not fully coherent, and the array 1s suitably de-
signed for the wave vectors Kk resp. angles (¢,9) of interest.

Now, let 4,,..., 4, be the eigenvalues and v,,..., v, the corres-
ponding orthonormal eigenvectors of the nonnegative definite,
Hermitian matrix ¢_, 1.e.
c.v.=Av . n=1...,N,
where A4, > A, >...> A,. Then we can state that
2

Ay == Ay =0,

and that because of 4,, > 4, , the corresponding eigenvectors
Vi.---»Vy (spanning the only noise subspace)

are orthogonal to the column vectors of
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A=(a(k,),...,ak,))=(3(p,9),....4(p,,4))
which are often called steering vectors.

Furthermore, the eigenvectors v,,...,Vv,, (spanning the signal
subspace) can be represented as linear combinations of the
steering vectors and vice versa.

Proof sketch:
rank(A) =M, rank(c, )=M = rank(Ac A")=M <N

Hence, Ac A" is a Hermitian positive semidefinite matrix
that possesses the eigenvalue/eigenvector decomposition

Ac A" =Vdiag(y,,..., 4, ,0,...,00 V"

which by means of the following decomposition
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V=(V,V,) = (Vi Vi s Vi, Vs

J/

can be simplified to
M
Ac A" =V diag(p,..., i, )V =D v, Vi
m=1

Substitution in ¢ provides

M
Co =D MV, Vi +0.1
m=1
and subsequently the eigenvalue/eigenvector decomposition
. ,ul.+cfj i=1,....M
¢V, =4V, with A4 =< :
o i=M+1,.... N

by obvious deductive reasoning.

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 61



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Furthermore, 54
S =span(A)=span(V,) “[al@)
S

S =span(V ) sV, - »
define the signal and &
only noise subspace, e a(p)

: . a(p,)
respectively, with S, 1 S . X, o

The properties of the covariance matrix ¢ can be exploited to
construct high-resolution diagrams if the estimate ¢ possesses
approximately the same properties.

Let A 24, 2...24,and v,v,,...,v, denote the eigenvalues
and corresponding eigenvectors of ¢_, 1.€.
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) 1 L-1 N o
¢, = ZZX(ITS)XH UT)=> A9V,
[=0 n=l1
then under certain regularity conditions on can show, that the
eigenvalues and eigenvectors of ¢__ can be consistently esti-

mated by the eigenvalues and eigenvectors of the sample co-
variance matrix, 1.e.

N

A >A and Vv
o0 n n

n L—

—>v, for n=1,...,N.

Exploiting the eigenvalue decomposition of ¢_, the classical
beamformer can be written as

A N n 2
gos(K) =a" (k)& ak) = D" 4,[9"a(k)
n=1
~ ~ AN~ Noa T 2
Gos (.9 =2" (0,9)&,A(p, 9 =D 4, [Va(p, 9| .
n=1
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Example:

For a single source embedded in spatially white noise the
covariance matrix of the receiver outputs is given by

¢ . =o ak, )a”(k )+o’1 with a”(k )a(k )= N.
Multiplication of ¢ by a(k,) from the right provides
c ak,)=c’a(k,)a"(k,)a(k,)+oak,)=(No? +o; )ak,).

Comparison with the eigenvalue/eigenvector decomposition
mentioned on pp. 59-61 we can assert that

A =Nol+c2>A, == =02, v,=ak,)/JN

and that the remaining eigenvectors can be selected such that
the v ,n=1,..., N are forming an orthonormal basis.
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From the well known result

A, = max z'c¢_z and v, =argmaxz’c_z

zeC: |Z| 1 zeCV: |Z| 1
and the fact that v, =a(k,) / JN, we can deduce

H H
k
A, = max (e alk) and k_ =argmax (o) eyal ).
k N K N

Hence, the classical beamformer provides for a single source
embedded in spatial white noise the consistent estimate

o\

k =argmaxq.,(k)=argmaxa” (k)¢ _a(k)
k k

V)| —k

N
= arg max Z
n=1
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Mathematical Supplement

Constraint Optimization / Equality Constraints

Find the optimum of y = f(x) subject to A(x) =0, where
xe D(f)cR" and VAa(x)#0, Vxe D(f).

Let x, € D(f) be a solution of the constraint optimization
problem then a certain € R exists such that

VF(x,)+a Vh(x,)=0.

Proof sketch:
M ={xeD(f): h(x)=0}
defines a (n—1)-dimensional surface in D(f). Let

xeM, x+Axe M, 1.e. h(X)=h(x+Ax)=0
and
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h(x+ Ax) = h(x)+ Ax' Vh(X)+o0 (| Ax|)

be the Taylor expansion around x, then, due to

Ax' Vh(x) = 0(|Ax|) I
Ax’
— th(X) Ax—0 >0

we can conclude that
Vxe M, Vh(x)

1s normal to the surface. X,

Furthermore, Vf(x,) 1s also
orthogonal to the surface because otherwise we could increase
the value of f(x) by moving a short distance along the surface.
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Example:

Fx,x,)=x"+x2+3, h(x,x,)=x/+x,—-2=0, x=(x,,x,) €R’
The Lagrange-Function can be expressed by
L('xlaxzoa):f(xlaxz)_l_ah(xl:xz):xlz +x22 +3+a(x12 +x2 _2)

Hence, the necessary conditions given by

VL) i) =2( e % ()
o

— L(x,,x,, &) = h(x,,x,)=x. +x,—-2=0
oa

provide the three equations that lead after the following consid-
erations to the possible extrema.
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1) x,=0: 2x, =—a,
X, =2, = a=-4

2) x,#0: x(I+a)=0 = a=-1
2x,-1=0 = x,=1/2
X2=3/2=0 = x =%3/2=%+J6/2

A X,

Levelcuves  Possible Extrema

of f(x,,x,)

e

\\J ] Maximum: f(x,+Ax) < f(Xx,)
Minima:  f(x, +Ax) 2> f(X,)

J (X, +Ax) > f(x,)
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Real valued function of a complex variable / complex derivatives
fiCoR = f(2)=f(x+jy)=f(x,»)=g(z2)

Example:

f(2)=22"=g(z,2") = (x+ )x—jp)=x"+y" = f(x,)
Now one can proof that both

Oo(z,z" y
8(z,z ) =0, where z  1s treated as constant
0z
and
Og(z,z" :
g é - ) =0, where z is treated as constant
z

provide a necessary and sufficient condition for a stationary
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point of f(z2).
(6f/8x] (of fox) (2xj ) [Oj
oflov) \effoy) \2y) \0
8(2,7) =z =x—jy=0
Oz
8g(z,*z ) =z=x+jy=0
Oz
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> => x=0,y=0

J

Real valued function of complex variables / complex gradients

f:C" >R = f(2)=f(x+jy)=f(x,y)=g(z,z")
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Example:

f@)=2"2=g(z,2") =x"x+y"y = f(x.y)
Here one can also proof that both
V,2(z,z")=0 and V , g(z,z")=0
can serve as a necessary and sufficient condition for a stationary
point of f(z), where z'’ and z are treated as constant respectively.
Vi) V.f (2x) (0

V.,f Vyf 2y 0

N

- = x=0,y=0
H %
V. g(z,2")=2 =x—jy=0

VZHg(z,ZH):Z:x+jy:0

J

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 72



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Hochschule Bremen
) City University of Applied Sciences

Minimum Power Distortionless Response Beamformer

The sensor outputs are weighted by a vector w to produce the
beamformer output signal

y(®) = w"x(2).

The minimum power distortionless response (MPDR) diagram
1s derived by finding the vector w which minimizes the power
of the beamformer output signal, 1.e.

E |y(t)|2 =w'c._w,
subject to the constraint that

w’a(k)=1 resp. w'a(p,9) =1.

Thus, the MPDR beamformer ensures that a signal incident on
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the array from direction k resp. angle (¢,9) 1s passed to the
output undistorted, while simultaneously contributions due to
noise and interfering signals arriving from other directions are
minimized.

By introducing the Lagrange multiplier a, the linearly con-
strained minimization problem
min (WH cxxw)
w,w! a(k)=I

can be transferred to the unconstrained problem
min (WHCXXW +a (wHa(k) - 1) +a’ (aH(k)W - 1))

w,o

resp.
min (WHCXXW +a (WHEi(qa, 9) — 1) +a (éiH(go, 9w — 1))

w,o
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Hence, the Lagrange Function
Lw,w",a,a”)=w'e_ w+a (WHa(k) —1) +a (aH (K)w —1).
has to be minimized. The necessary condition
V . Lw,w'a,a)=(V_,we w+a(V_,w")a(k)
=Ic_w+ala(k)=c_w+aa(k)=0

provides w=—a ¢_.a(k) which inserted in
0

T(KYyw—=1=0
T (k)

leads us to
—aa” (K)cgak)-1=0 = a=-1/(a" (k)c a(k))
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and consequently to the solution for w given by
| 1~
c_ak) c_ a(p,
— — resp. W=—: (i ) :
Inserting this solution into WHCXXW and replacing ¢__by its

consistent estimate ¢ the MPDR / Capon beamformer can be
expressed as follows.

2= <k>c ‘a(k) (Z vtk j
1 Y A aH~ 20
qc(@,9) = 3 (0.9 a0 9)—(;% £ a(co,S)\j
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Estimate updating: (inverse covariance matrix)
Cos =71 (&4 s +7x(IT)x"(IT,))
=1/, n=1/(I+1) for &, ,=¢Y,

=B/(1-p), n=1-p for &, =¢,

Assuming that ¢, is invertible, which implies that / > N is re-
quired, and exploiting the Matrix Inversion Lemma
(A+BCD)'=A"'-A"'B(C"'+DA'B)'DA™
one can derive the computational efficient recursion
N O xxl 1X(ZT)X (ZT [

c.,=—|C
xx,/ 77 xx,l—l 1/7/+X (ZT)

)

with

xx,/—1

x(IT)

xxll
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Simulation Results of MPDR / Capon Beamforming

o, =-1° @, =-2° ¢, =10°
L=1000, N =15

SNR =-10log,,(N)dB

o, =-7° ¢,=0° @, =10°
L=1000, N =15
SNR =-10log,,(N)dB

Level [dE]

Level [dE]

Bearing [deg] Bearing [deg]
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Remarks: MPDR / Capon Beamforming

Assets

=  Number of sources must not be known
= Moderate computational effort (efficient inversion)

= Fair resolving power

Drawbacks
= Narrowband / generalization to broadband not straight forward
= Estimates signal + noise power only
» Matrix inversion may cause problems
= Peak finding can be difficult
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In case that the noise covariance matrix 1s known the mini-
mum variance distortionless response (MVDR) beamformer
can be derived by finding the vector w that minimizes the
noise power, 1.€.

2
E‘WHU(I)‘ =w'c w,

uu

subject to the constraint
w’a(k)=1 resp. w'a(p,9)=1.
Analogous to the MPDR the solution

-1 -1
W=— c““ag{) resp. w=—_ cuua(g?,:Q)
a” (k)e,,a(k) a’ (p,9c,a(p,9)

can be derived for the MVDR.
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Now, 1f the noise covariance matrix 1s given by
¢, =A, ¢ Al +o.1, A, =(ak,)),....ak,,))

S/8;

the application of the Matrix Inversion Lemma
(A+BCD)'=A"'-A"'B(C"'+DA'B)' DA™
provides the mverse noise covariance matrix

1 | | 1
1 1 H H
Cuu __21__2AI Cslsl +_2AI A[ A] —

O, O, u 0,

1 [I A (o cs‘IISI+AfA,)1A7},
O'

u

where c,, and k denote the covariance matrlx and the wave
number Vectors of the interference and 0 the noise variance.
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Example: (a single interference)

c,, =0, alk,)a"(k,)+o,1

_ 1
= cuiza—j(l—a(kl)( o./ol +N) (k,))
For o / o. «a”(k,)a(k,)=N we can approximately write
51 1
o= (T-a(k ) (a" (K a(k ) 'a" (k)| = (1-P,) = P7,

where the Hermitian and idempotent matrices
1
P, =a(k,)(a"(k,)a(k,)) a”(k,)=a(k,)a"(k,)/N
and P/ =1-P, =I-a(k,)a"(k,)/N
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denote projection matrices, that project a N-dimensional vec-
tor onto the 1-dimensional interference and (N—1)-dimensio-
nal only noise subspace respectively. Finally, we obtain

wo_ Cwak) _ Prak)
~a"(K)c,ak)  a” (k)P a(k)
ak)-Pak) _ ak)-Lack,)a"(k)ak)

T N-a"(Pak) N-La’(Ka(k,)a"(k)ak)

IT K
x( S)T (ak),) O/ %x (¢ L

1
N—%a’(k)a(k,)a” (k,)a(k)

———| H{ak).a(k,)a"(k,))
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Example: (multiple uncorrelated interferences)

=A dlag( o, GSZU)A’;I+0§I
1 -1
-1_ = . ; 2 H H
= cuu—Gj(I A](dlag( /0 yorns O /O'SU)+A]A,) A]j
For O'/GSIJ <a’(k, ak, )=N, Vj=1,...,J we can again
approximately write
1 -1 1 1
-1
cuuza_j(I_Al(AfAl) A;[):O'_E(I_PI):O'_EPIJ_,

where the Hermitian and idempotent matrices

P,=A,(A7A,) A" and P/ =1-A,(A"A,) AV =1-P,
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denote projection matrices, that project a N-dimensional vec-
tor onto the J-dimensional interference and (N—J)-dimensio-
nal only noise subspace respectively. Finally, we obtain

we_ Swa® _ Pralk) _ a(k)-Pack)
Ca(k)elak) a’(K)Pra(k) N -a’(k)Pa(k)

IT, k
X )T o (a(k),) "( - ’6{) 2 )’

y

<a(k)9 P, >

v

N -a"(k)P,a(k)

Furthermore, if A;A, ~NT holds, i.e. the steering vectors of
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the interferences are nearly orthogonal to each other, the fol-
lowing scheme can be applied.

x(IT))
—9-

— <a(k),> I :%\ y(tak):

— ﬂa(k),a(k,,l)af’(k,,l) > 1

N-+a"(k)A,Alak)
r— %<a(k)’a(kl,J—l)aH(kl,J—l) > A’é

¥ <a(k)a atk, ;) aH(kI,J) >

v
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Multiple Signal Classification (MUSIC) Algorithm

The MUSIC Algorithm is motivated by the aforementioned
properties of the covariance matrix c__.

Let us assume that the eigenvalue/eigenvector decomposition
of the covariance matrix

N
. H 2y H
c.=Ac A" +o.1= E AV V
n=l

can be consistently estimated by the eigenvalue/eigenvector
decomposition of the sample covariance matrix

A 1 L-1 N o
cxx :ZZX(ITS)XH(ITS) — Zﬂ“nvnv:['
[=0 n=1

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 87



INSTITUTE OF
s WATERACOUSTICS,
2/ SONAR ENGINEERING AND
5 SIGNAL THEORY

Hochschule Bremen
City University of Applied Sciences

Furthermore, let the eigenvectors of the sample covariance
matrix be arranged according to

V:(V Vn):(yl,...,vM ,YM+1,...,VN),

s 2
J

J/

'
A A

\Y \%

N n

where the columns of VS and Vn span the signal and only
noise subspace respectively.

Now, employing the eigenvectors of the only noise subspace
the MUSIC wave number spectrum resp. MUSIC angular
spectrum 1s defined by

1 v B

— = v a(k)2
aH (k)VnVnHa(k) n%ﬂ ! ‘

9 vusic (k) —
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resp.

-1

Va9 | .

N

9 yusic (@, F) = Z

n=M +1

If instead of the eigenvectors of the only noise subspace the ei-
genvectors of the signal subspace are used, the MUSIC wave
number spectrum resp. angular spectrum is given by

1 M
H N \VH =| N-
a (k)(I A% )a(k) o=

-1

qyusic (K)=
resp.

-1
Va9 | -

M
9yusic(@,3) =| N — Z
n=1
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Simulation Results of MUSIC Algorithm

o, =-1° @,=-2° ¢, =10° o, =-7° ¢, =0° @, =10°
L=1000, N =15 L=1000, N =15
SNR =-10log,,(N)dB SNR =-10log,,(N)dB

15

Level [dE]
Level [dE]

-20 -15 -10 -5 0 5 10 15 20

Bearing [deg] Bearing [deg]
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Remarks: MUSIC Algorithm

Assets

= Rather high resolving power
= Moderate computational effort (efficient SVD)

Drawbacks
= Number of sources has to be known
= Narrowband / difficult to generalize to broadband

= Performance degrades severely if
— sources are strongly correlated, e.g. due to multipath propagation

— ambient noise 1s not spatially white

= Does not imply signal and noise power estimates
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Mathematical Supplement
Maximum Likelihood Estimation

Let X denote a random vector with density f, (x|y), y€Q and
observation X =(x,,...,x,) . After inserting x in f, (x|y) the
function /(y|x)=f(x|y) 1s called likelithood function and

Y =arg max /(y|x) = argmax L(y|x), L(\|1|X):1n(l(\|l|x))

yel yeQ
1s called maximum likelihood estimate (MLE) for .

If the gradient of f, (x|y) with respect to y exists and 1f
Jx (x|y) 1s positive for the given x, one can try to find the
MLE by solving the likelihood equation system

vyl X)‘\u:\i:( )
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Example: (narrowband snapshot model)

The x,=x(/T}),[=0,1,... are realizations of independently and
identically distributed random vectors X, ~ CN(0,¢c, (y)),ie

fxx w)=7"" (dete (w)) exp(—x/"c(w)x, ).

Since the X,,/=0,1,...,L—1 are independently and identically
distributed the composed density function can be expressed by

fx<xo,...,xL_l|w>=1jfx<xl|w>

=7 (dete, () “exp(- X /e (w)x, )

=™ (dete (w)) " exp(-Litr(c, (W)&,)),
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L-1
& =+ X(T,)x" (ITy).
L%
After taking the logarithm, 1.e.
In £ (Xg»--» X, [W)=—L| N'lnz+In(dete ())+tr(ca(w) )

and skipping the constant additive term as well as the common
factor L the log-likelihood function can be defined as

L(y|e,) =~ In(dete, (w))+tr(ca(w)é, ) |

Finally, the MLE (x) is obtained by solving the likelihood
equation system

V, Lyl =0

y=y(x)
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5.4.4 Maximum Likelihood Direction of Arrival (DOA)
and Signal Parameter Estimation

Let x(IT.),[=0,...,L—1 be realizations of independently cir-
cular symmetric complex Gaussian distributed random vectors
with zero mean and covariance matrix ¢_ (V).

Thus, the log-likelihood function can be expressed by
L(y|¢, )= —[ln (dete, (w))+ tr(c; ()¢, )] ,
where
(W) =AQC AT Q) +oll,  w=(L,vec(e,) ol )

A(C,) :(5(¢1791)7"'9ﬁ(¢M99M))9 = (¢19‘91>°-->¢M9‘9M)T
and
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L-1
¢ = le(ZTS)xH (IT,).
Lz

Maximization of L(y|c¢_ ) with respect to the signal parame-
ters provides the explicit solutions

¢ (©)=(A"(OAQ) A"©) (e -z ONAG)(A"QAQ))

and

tr| (I-P({))¢ tr(P(§)¢
Gf(g): I.|:( N_(]g)cxx}: r(N_(CJX;:xx),

where

P() = AQ)(A"(©AEK) A”(©) and P*(§)=1-P()
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denote idempotent and orthogonal projection matrices, 1.e.

PP =P, P QP (=P () and PEP ({)=0,

that provide mappings onto the signal subspace and only noise
subspace, respectively.

Replacing ¢ and o in L(y|¢,, ) by the corresponding expli-
cit solutions ¢ () and o (), we obtain the so-called profile
likelihood function

C ~ pH oot PL( )€,
Lp(§|cxx)=—ln det P(C)CXXP (C,)‘FP (c) I'(N_gj\; )

Maximization of L (E|¢,, ) with respect to the remaining para-
meters provides the DOA estimates
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a: argznaXLp(QGXX).

Finally, substituting in the explicit solutions ¢ (§) and o ({)
the DOA parameter vector { by its estimate { we obtain the
signal power and noise power estimates

(A" ©AG) A D -)AG(A"E AG)
and

&jztr[(l P())¢ }/(N M) =t (pr¢)e, ) /(N -M)
with P)=AQ)(A"QAD) A"@. PO =1-PQ).

respectively.
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SNR =-10log,,(N)dB
L=1000, N =15

) o=-7° ¢,=0° ¢,=10°
2) o==T7° ¢@=-2° ¢,=10°
3) o==7° @=-4° @,=10°

Pressure Sensor
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g2 1
(]
2 9 &o%mwﬂmﬁw%&@w@
,2 | -
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Remarks: Maximum Likelihood Estimation

Assets
= High resolving power / accurate DOA estimates
= Implies signal and noise power estimates
= Sources can be correlated
= Model can incorporate multipath / matched field processing

= Allows generalization to broadband case

Drawbacks
= Number of sources has to be known
= High dimensional numerical optimization required

=  Computationally expensive
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5.4.5 Maximum Likelihood DOA and Signal Parameter
Estimation using EM Algorithm

Incomplete data (measured array output):
x(IT), [=0,...,.L—-1.

Complete data (virtual array output):
T
y(T)=(y| (T),....y,, (T)) , 1=0,...,L—1,

where y, (IT)) denotes the array output if only the m-th source
would be present.

Hence,
x(IT)) =(1,,....1,)y(T,), [=0,...,L 1.

M unit matrices
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If the M sources are uncorrelated, 1.e.

M
c,, () = diag(c,, (W)),....¢, , (¥,)) and ¢, =D¢, |
m=1

the log-likelihood function for the complete data can be ex-
pressed by

L,(y|¢,,)= —[m(det ¢, (w))+tr(c,) (W)E, )]

= —f [m (dete, , (w,))+tr(c), (w,)E, )]

m=1
with
) H 2 _
¢, , (v,)=0, alp,,d,)a" (¢,3)+to,, 1, m=1..M,
where

.=(0,.9,,0,,0,.), m=1....M and y=(y,,...,y,)".
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Fori=1,...

E-step:

¢ =B (8, 164), m=1,...M,

M-step:

V' =arg \,I,naX —mf; [ln (det c, . (y, )) + tr (c;;ym (v, )Eyimym )}

or equivalently

o s - n(ase,, o)) (s, 005 ) )

Wi
for m=1,.... M
end
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EM Algorithm

* The EM Algorithm consists of an iterative sequence of
conditional expectation and maximization steps.

» Furthermore one can show, that after convergence, e.g. let

v’ —\TJHH<5 for i>1,

the resulting parameter estimate =\’ represents the ML
estimate of the incomplete data problem, 1.¢.

= arg max {_[ln(det e (W) +tr(e(w)E,, )]}

A4

Exploiting the particular structure of the matrices ¢, (v,),
m=1,...,M the following iteration scheme can be derived.
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Fori=1,.
E-step m=1,...M

—i ~i—1 ~T=1N -1, il ~ -1
€0 =y, (W - €y, (W) Ea(W)E o (W),)
-1\ -1 i1 ~ -1 |
+e, (0, (W) e e, (W ey | ()
M-step: m=1,....M

(¢!, 9 )= arg max (éiH (0,.9,)¢, , Ao, Sm))

P+
] , l
aj;mzN(N_l)[Ntr( <, )-A@.9)T , 4@, ]

61 = ((qom,@) a(@),.9,)- N6, )

end
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5.5 Synthetic Aperture Sonar (SAS) Principle

L: synthetic aperture length
D: physical aperture length,
z
D
/
D ge
lution
D .y
physical
u footprint
SAS azimut
resolution
SAS
resolution cell
X swath
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recording a two-dimensional data field l
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