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5 Array Processing
5.1 Introduction
The sensors spatially sample the wave field at the locations rn
for n = 1,2,...,N. This yields a set of complex signals (complex 
envelopes or analytical signals) which we collect in the vector

We process each complex sensor output signal by a linear time 
invariant filter with complex impulse response wn(t) and sum-
ming up the outputs to obtain the complex array output signal
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or in vector notation
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In the Frequency domain we can obtain

where

If s(t) is the signal that would be received at the origin of the 
coordinate system, i.e. at r = 0, we can write

where
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1)

with

and

1) Minus sign arises because the plan wave propagates in direction of −k.
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The time delays can be expressed by

Defining direction cosines with respect to each axis, i.e.

with                        , we can write

The Fourier transform of                               leads to
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Defining

we can write

The vector a(k) incorporates all of the spatial characteristics 
of the array and is referred to the array manifold vector.

Now, the array output signal is formed by adding the sensor 
signals after they have been aligned by time shifts.
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Hence,

This processor is referred to as a delay-and-sum beamformer 
or conventional beamformer.
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In practice one adds a common delay τ in each channel so that 
the operations are physically realizable, i.e.

If ks denotes the wave vector of a plane wave of interest, i.e.

the Fourier transform of provides
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Generally, we want to find the response of the array y(t) to an 
input wave field x(t,r).

The systems theory approach of analyzing the response of a 
linear time invariant system in terms of the superposition of 
complex exponential basis functions can be extended to space-
time signals.

The basis functions are now plane waves of the form

Spatial sampling at the locations rn, n = 1,...,N provides the 
signal vector
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The plane wave response of the conventional beamformer is

where the temporal spatial processing is completely described 
by the so-called frequency-wave number response function

of the array. Replacing in b(ω,k) the wave vector by

where c is assumed to be known, we obtain the beam pattern

( ) ( ) ( ) ,T j ty t Ae ωω= W a k

( , ) ( ) ( )Tb ω ω=k W a k

( )cos cos ,sin cos ,sin ( , ),T

c c
ω ωϕ ϑ ϕ ϑ ϑ ϕ ϑ= =k ξ

( , )
( , , ) ( , ) .

c
b b ω ϕ ϑ
ω ϕ ϑ ω

=
=

k ξ
k



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 12

Example:
Supposing 

we obtain
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a) linear vertical array, i.e. xn = 0, yn = 0 for n = 1,...,N
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b) linear horizontal array, i.e. xn = 0, zn = 0 for n = 1,...,N
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c) planar array in yz-plane, i.e. xn = 0 for n = 1,...,N
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5.2 Performance Measures
To quantify the gain in signal-to-noise ratio obtained by beam-
forming the following figures of merit are of interest.

5.2.1 Array Gain

Let N(ω,φ,ϑ) denote the frequency-angular spectrum of the 
noise field and                  the beam pattern of an array of om-
nidirectional hydrophones. Then the frequency dependent 
array gain AG(ω) is defined as
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5.2.2 Directivity Index

In case that N(ω,φ,ϑ) represents the frequency-angular spec-
trum of an spatially isotropic noise field, i.e.

the array gain AG(ω) simplifies to the so-called directivity 
index DI(ω) given by
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Example:
For an         equidistantly spaced linear vertical array with

we obtain
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with

has been exploited.
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5.3 Conventional Beamforming
Now, we consider the case that x(t,rn), n = 1,...,N represents 
the complex envelope of the band-pass signal

where ωc denotes the carrier frequency.

We assume that the complex envelope x(t,rn) is limited to the 
frequency band

For a plane wave, that generates the signal        at the origin of 
the coordinate system,             becomes

{ }( , ) Re ( , ) , 1, ,cj t
n nx t x t e n Nω= =r r



2 .B bω π≤ =

( , )nx t r

( )s t

{ }( )( , ) ( ) Re ( ) , 1, , .c nj t
n n nx t s t s t e n Nω ττ τ −= − = − =r 





I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 23

5.3.1 Time Domain Beamforming

Let denote the maximum travel time between any two 
elements in the array, i.e.

and let the bandwidth of the complex envelope b be small 
enough, i.e.

the approximation

is valid. Hence, we can write
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Thus, in the narrow band case, the delays can be approximated 
by phase shifts, and the conventional beamformer can be imple-
mented by a set of phase shifts instead of delays. 

This implementation commonly referred to as phased array 
beamformer is depicted below. 

1cje ω τ
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If                   is violated one can use delays in conjunction 
with phase shifters. After the introduction of 

we can state that

where      denotes in case of
 continuous signals the elementary delay within a tape delay line
 digital signals the sampling period.

Now, assuming
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the approximation

holds, and we can write

The combined use of delays and phase shifters, as visualized 
in the following figure, represents a beamformer implementa-
tion that is typically employed in sonar applications.
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However, if  is close to the Nyquist rate, e.g. complex 
sampling with  and therefore

more sophisticated interpolation techniques are required for 
reconstructing the signal s(t) in each channel, satisfactorily. 

2 3 2 3 1,S S SbT f T= ⋅ = 

1
1( ) cjs t e ω ττ −−  1( ) ( )s t s tτ− ≅

QD

QD

QD
1

1( ) cjs t e ω ττ −−

2
2( ) cjs t e ω ττ −−

( ) c Nj
Ns t e ω ττ −−

1 sl T−

2 sl T−

N sl T−

2
2( ) cjs t e ω ττ −− 

( ) c Nj
Ns t e ω ττ −− 

1cje ω τ

2cje ω τ

c Nje ω τ

1 1( , ) ( )x t s t τ= −r 

2 2( , ) ( )x t s t τ= −r 

( , ) ( )N Nx t s t τ= −r 

 

2( ) ( )s t s tτ− ≅

( ) ( )Ns t s tτ− ≅



( ) ( )y t s t=⊕ ⊗

1 N

Sf
3 2Sf b=
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Example:
We suppose an array of  n = 1,…, N receivers, where 

denotes the signal measured with the n-th receiver and where

represents the signal of interest/target which for
a) passive sonar and far-field active sonar applications is 

supposed to be measured at a reference location, e.g. at the 
origin of the coordinate system,

b) near-field active sonar applications is given by the transmit-
ted signal which has been initiated at t = 0.

{ } , ,( ) Re ( ) with ( ) ( ) ( )cj t
n n n I n Q nx t x t e x t x t jx tω= = +

{ }( ) Re ( ) with ( ) ( ) ( )cj t
I Qs t s t e s t s t js tω= = +
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In a noiseless case the signal at the n-th receiver is given by

Hence, a reconstruction of s(t) using xn(t) is provided by

Considering s(t) at time instances , we can write

where

{ }( )( ) ( ) Re ( ) ( ) ( ) .c n c nj t j
n n n n nx t s t s t e x t s t eω τ ω ττ τ τ− −= − = − ⇒ = − 

andn n n n n Sl l l l Tτ τ= + = − 



( ), ,( ) ( ) ( ) ( ) .c n c nj j
n n I n n Q n ns t x t e x t j x t eω τ ω ττ τ τ= + = + + +

( ), ,

( ) ( ) ( )

( ) ( ) ,

c n c n

c n

j j
S n S n n n S n

j
I n n S n Q n n S n

s lT x lT e x l T e

x l T jx l T e

ω τ ω τ

ω τ

τ τ

τ τ

= + = +

= + + +



 

St lT=

with ( 1) and .n S n n S nl T l T lτ≤ < + ∈  
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Since for           only the sample values are available the

have to be approximately determined by interpolation. After 
restricting our self to the linear interpolation approach

where                  , the beamformer output signal can be ex-
pressed by 

( )
( )

, , ,

, , ,

( ) (1 ) ( ) ( 1)

( ) (1 ) ( ) ( 1) ,
I n n S n n I n n S n I n n S

Q n n S n n Q n n S n Q n n S

x l T x l T x l T

x l T x l T x l T

τ α α

τ α α

+ ≅ − + +

+ ≅ − + +





, ,( ) ( ) ( )n n S n I n n S n Q n n S nx l T x l T jx l Tτ τ τ+ = + + +  
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( ) }

, ,
1

, ,

1( ) (1 ) ( ) ( 1)

(1 ) ( ) ( 1) .c n

N

S n I n n S n I n n S
n

j
n Q n n S n Q n n S

y lT x l T x l T
N

j x l T x l T e ω τ

α α

α α
=

 = − + + + 

 + − + + 

∑

n n STα τ= 

( )n n Sx l T( )nx t
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5.3.2 Frequency Domain Beamformer

Fast convolution
Let xl and hl (l = 0,...,L−1) be a finite input sequence and a 
finite discrete time impulse response of a filter, respectively. 
Exploiting that the discrete Fourier transform (DFT) of a cir-
cular convolution can be expressed by

( ) ( ){ } [ ]

[ ]

( ){ } ( ){ } ( )

1

0

1

0

DFT DFT

DFT

DFT DFT ,

L

k l l i iL
i

L

i l i L
i

i i k k

Y y x h

x h

x h X H

−

−
=

−

−
=

  = =   
  
  =   
  

= =

∑

∑
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where

the linear convolution can be efficiently carried out via the fast 
Fourier transform (FFT) after suitable truncation/zero padding.

, 0, , 1 and with , ,j j j j LL
l k L u u u u j+ = − = = ∀ ∈   

 

Memory
2)

lh

1)
lx kX

kH

3)
lykY⊗

1) 2) 3)0, , 1, 0, , 1, 1, , 1l L l L l L L= − = − = − − 

  

FFT
( -Point)L

FFT
( -Point)L

IFFT
( -Point)L
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max 1 2 3max{ , , } 6L L L L= =

1, 1, 1lh L =

2, 2, 3lh L =

3, 3, 6lh L =

1,lx

2,lx

3,lx

1,ly

2,ly

3,ly

32L = max 1, , 1l L L= − −
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IFFT (L-point)

3)( )Sy lT

...FFT (L-point)

2 2je ω τ 1 2Lje ω τ−

2,0a 2,1a 2, 1Ma −

...1 2je ω τ

FFT (L-point)

1 1je ω τ 1 1Lje ω τ−

1,0a 1,1a 1, 1Ma −

...0 1je ω τ

FFT (L-point)

1 Nje ω τ 1L Nje ω τ−

,0Na ,1Na , 1N Ma −

...0 Nje ω τ

Σ ΣΣ

1)
1 1( ) ( , )S Sx lT x lT= r 1)( ) ( , )N S S Nx lT x lT= r1)

2 2( ) ( , )S Sx lT x lT= r

...

2)

1) 2) 3)
1
max( ) /0, , 1, /  for 0, , 1, , , 1,n Sk S c n N

Tl L k L k L l Lτω ω ω
≤ ≤

 = − = + = − = −   
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The following items often prevent a direct application of the 
FFT based convolution.

 Long Data sets, e.g. if long ping periods (active sonar) or long 
integration times (passive sonar) are of interest   

 Motion Compensation during Beamforming, e.g. new motion   
data are typically every 20 ms available

 Dynamic wave front curvature compensation, e.g. required for 
imaging sonars in near-field applications

Consequently, a linear convolution scheme based on sequen-
ces of Fourier transformed data sets is required. 

A suitable approach is provided by exploiting the overlap-save 
or the overlap-add method as visualized below.
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1,lx

2,lx

3,lx

1,ly

2,ly

3,ly
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Overlap-Save Method / Processing of x1,l to get y1,l

1,lx

1,1,lx

1,2,lx

1,3,lx

1,1,ly

1,2,ly

1,3,ly

1,ly



overlap-save domain



overlap-save
domain

×

×
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Overlap-Save Method / Processing of x2,l to get y2,l



overlap-save domain



overlap-save
domain

2,lx

2,1,lx

2,2,lx

2,3,lx

2,1,ly

2,2,ly

2,3,ly

2,ly

×

×
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Overlap-Save Method / Processing of x3,l to get y3,l



overlap-save domain



overlap-save
domain

3,lx

3,1,lx

3,2,lx

3,3,lx
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3,2,ly
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×

×
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1,lx

2,lx

3,lx

1,ly

2,ly

3,ly
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Overlap-Add Method / Processing of x1,l to get y1,l

1,lx

1,1,lx

1,2,lx

1,3,lx

1,1,ly

1,2,ly

1,3,ly

1,ly



zero
padding



zero
padding
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domain
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Overlap-Add Method / Processing of x2,l to get y2,l

2,lx

2,1,lx

2,2,lx

2,3,lx

2,1,ly

2,2,ly

2,3,ly

2,ly



zero
padding



zero
padding



zero
padding



overlap-add domain



overlap-add 
domain
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Overlap-Add Method / Processing of x3,l to get y3,l



zero
padding



zero
padding



zero
padding

3,lx

3,1,lx

3,2,lx

3,3,lx

3,1,ly

3,2,ly

3,3,ly

3,ly



overlap-add domain



overlap-add 
domain
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5.4 Introduction to high resolution methods
5.4.1 Narrowband snapshot model

In the following a time-domain model appropriate for narrow-
band waveforms is developed. First, a wave field generated by a 
single plane wave is considered. Spatial sampling of this wave 
field by an array of sensors provides the complex signals

Since the wave field is supposed to be narrowband, i.e. 

we can approximately write

( )( , ) ( ) , , 1, , .nj t T
n n n s nx t s t e n Nω ττ τ ω−= − = − =r k r 

( ) ( ), 1, , ,ns t s t n Nτ≅ − ∀ = 

( )( , ) ( ) , 1, ,
T
s nj t

nx t s t e n Nω +≅ =k rr 
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and in vector notation

where

Let x(t) be a zero-mean vector valued stochastic process, i.e. 

then, its matrix valued covariance function defined by

provides for τ = 0 
2 2(0) E ( ) ( ) ( ) ( ) ( ).H H

s s s s ss t σ= = =xx xxc c a k a k a k a k

( )1( ) ( , ), , ( , ) ( ) ( ),T j t
N st x t x t s t e ω= =x r r a k

( )1( ) exp( ), , exp( ) .
TT T

s s s Nj j=a k k r k r

( )( ) E ( ) ( )Ht tτ τ= −xxc x x

( )E ( )t =x 0
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Now, M narrowband sources are assumed. Each source is 
emitting a plane-wave with envelope and wave vector 
km for  m = 1,...,M. 

The resulting wave field is measured by an array of sensors, 
where the vector of the senor signals can be expressed by 

with

( )
1

1
1

( )
( ) ( ) ( ) ( ), , ( )

( )

( ) ,

M
j t j t

m m M
m

M

j t

s t
t s t e e

s t

t e

ω ω

ω

=

 
 = =
 
 

=

∑x a k a k a k

As

 

( ) ( )1 1( ), , ( ) and ( ) ( ), , ( ) .T
M Mt s t s t= =A a k a k s 

( )ms t
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Thus, the covariance matrix of the signal vector x(t) becomes

If the M sources are supposed to be uncorrelated, i.e.

since 

we can write

( ) ( )( )
( ) ( )

E ( ) ( ) E ( ) ( )

E ( ) ( ) E ( ) ( ) .

HH

H H H H H

t t t t

t t t t

= =

= = =

xx

ss

c x x As As

As s A A s s A Ac A

( ) ( )1

2 2E ( ) ( ) diag , ,
M

H
s st t σ σ= =ssc s s 

2

1
( ) ( ).

m

M
H H

s m m
m
σ

=

= =∑xx ssc Ac A a k a k

( )2 2E ( ) and E ( ) ( ) 0, ,
m

H
m s m ns t s t s t m nσ= = ≠
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Generalization of the pervious results to the case of  M uncor-
related sources imbedded in uncorrelated additive noise gives

for the signal vector and

for the corresponding covariance matrix.

Furthermore, supposing the noise to be spatially white, e.g. if 
isotropic ambient noise is impinging on a equidistantly 

( )
1

( ) ( ) ( ) ( ) ( ) ( )
M

j t j t
m m

m
t s t t e t t eω ω

=

 = + = + 
 
∑x a k u As u

( ) ( )

2

1
( ) ( )

with E ( ) and E ( ) ( )

m

M
H H

s m m
m

Ht t t

σ
=

= + = +

= =

∑xx ss uu uu

uu

c Ac A c a k a k c

u 0 c u u

2λ
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spaced line array, we obtain

where       denotes the noise power (variance) in the frequency 
band of interest                                 for each channel. 

Moreover, if the components of s(t) and u(t) have flat spectra, 
i.e. are nearly white over B, then

Thus,                              represents a sequence of uncorrelated, 
zero-mean complex random vectors whose covariance matrix 
is given by cxx as expressed above.

2 2 2

1
( ) ( ) ,

m

M
H H

s m m
m

σ σ σ
=

= + = +∑xx ss u uc Ac A I a k a k I

( )( ) E ( ) ( ) for 1 and 0.H
S S SlT t t lT T b l= − ≅ = ≠xxc x x 0

2σ u

( ), 0,1,= SlT lx

[ 2, 2]B Bω ω− +



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 50

Finally, if  satisfies the aforementioned properties, the 
covariance matrix cxx can be consistently estimated by

5.4.2 Classical Beamformer

The classical beamformer is defined by the criterion

1

0

1ˆ ( ) ( ).
L

H
S S

l
lT lT

L

−

=

= ∑xxc x x

1 1

ˆ( ) ( ) ( )
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H
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N N

p q pq
p q

q

a a c∗

= =

=

=∑∑
xxk a k c a k

k k

( )SlTx

( ) ( )1 , 1, ,
ˆ ˆwith ( ) ( ), , ( ) and .T

N pq p q N
a a c

=
= =xxa k k k c
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The following reformulations show, that the classical beamfor-
mer criterion can be interpreted as an non-parametric estimate 
of the wave number spectrum Cxx(k) of the wave field x(t,r). 

1 1

1

1 1 0

1

0 1 1

1 1
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0 0
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where

has been exploited. As X(k,l ) represents the spatial-discrete 
Fourier transform of each snapshot, 

can be considered as the corresponding periodogram in the 
wave number domain. 

Hence, averaging over periodograms of consecutive snapshots 
provides the wave number spectrum estimate 

1 1
( ) and ( , ) ( , ) ( )

T T T
n n n

N N
j j j

n S n n S
n n

a e X l x lT e x lT e− −
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1 1
2

0 0

1 ˆˆ( ) ( ) ( ) ( , ) ( , ) ( ).
L L

H
CB

l l
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For a given k = ω/c the classical beamformer criterion can be 
expressed as a function of azimuth φ and elevation ϑ by

with

Finally, the directions of arrivals (DOAs) of the plan waves of 
interest are indicated by the locations of the peaks in the classi-
cal beamformer diagram, i.e. in the versus azimuth φ and ele-
vation ϑ visualized classical beamformer criterion.

( ) ( ) ( )( )
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1
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T
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Estimate updating: (covariance matrix)
Growing window

Sliding window of length L

Exponential smoothing
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1ˆ ˆ ˆ( ) ( ) with (0) (0)

1
G G H G H

l l s sl lT lT
l −= + =
+xx xx xxc c x x c x x

, , 1

,0

ˆ ˆ(1 ) ( ) ( )

ˆwith (0) (0) and 0 1

E E H
l l s s

E H

lT lTβ β

β
−= − +

= < <
xx xx

xx

c c x x

c x x

( )
, ,

, , 1

ˆ ˆ for else
1ˆ ˆ (( ) ) (( ) ) ( ) ( )

S G
l l

S S H H
l l s s s s

l L

L l L T l L T lT lT
L −

= <

= − − − +

xx xx

xx xx

c c

c c x x x x
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1 2 3
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1 2 3
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= −

Simulation Results of Classical Beamforming
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Remarks: Classical Beamforming

Assets
 Number of sources has not to be known
 Computationally fairly simple
 Robust against model mismatches

Drawbacks
 Rather poor resolving power
 Narrowband / generalization to broadband not straight forward
 Estimates signal + noise power only
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The DOA resolving power of the classical beamformer is ra-
ther limited. Therefore, a variety of advanced methods have 
been developed for enhancing the resolution capabilities. 

In the following, we briefly focus on methods that produce 
diagrams that are comparable to those of the classical beam-
former, however, that should have sharper peaks at points in-
dicating sources. Any such diagram computed from an esti-
mate of the covariance matrix cxx is called a high-resolution 
diagram or a peak estimator.

The high-resolution diagrams provide DOA parameter esti-
mates. They generally do not allow the estimation of the sound 
power versus azimuth and elevation, especially the respective 
signal and noise power distribution.
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5.4.3 High-Resolution Diagrams

Many of the known high resolution peak estimators can be 
motivated by certain properties of the covariance matrix

of the vector valued array output 

Here, css is the covariance matrix of the source signals 

which is not necessarily diagonal, A is an N × M matrix with

is the noise power and I denotes the identity matrix. 

( )1( ) ( ), , ( ) .T
Nt x t x t=x 

( ) ( )1 1 1( ), , ( ) ( , ), , ( , ) ,M M Mϕ ϑ ϕ ϑ= =A a k a k a a 
 

2σu

2H σ= +xx ss uc Ac A I

( )1( ) ( ), , ( ) T
Mt s t s t=s 
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We assume M < N and both, css and A are of full rank M,  i.e. 
the signals are not fully coherent, and the array is suitably de-
signed for the wave vectors k resp. angles (φ,ϑ) of interest.

Now, let be the eigenvalues and  the corres-
ponding orthonormal eigenvectors of the nonnegative definite, 
Hermitian matrix cxx, i.e.

where Then we can state that

and that because of the corresponding eigenvectors 

are orthogonal to the column vectors of

, 1, , ,n n n n Nλ= =xxc v v 

2
1M Nλ λ σ+ = = = u

1, , Nλ λ 1, , Nv v

1 spanning the only noise subspace), , (M N+v v

1M Mλ λ +>

1 2 .Nλ λ λ≥ ≥ ≥
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which are often called steering vectors. 

Furthermore, the eigenvectors (spanning the signal 
subspace) can be represented as linear combinations of the 
steering vectors and vice versa.

Proof sketch:

Hence,              is a Hermitian positive semidefinite matrix 
that possesses the eigenvalue/eigenvector decomposition

which by means of the following decomposition

( ) ( )1 1 1( ), , ( ) ( , ), , ( , )M M Mϕ ϑ ϕ ϑ= =A a k a k a a 
 

rank( ) , rank( ) rank( )HM M M N= = ⇒ = <ss ssA c Ac A
H

ssAc A

1diag( , , ,0, ,0)H H
Mµ µ=ssAc A V V 

1, , Mv v
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can be simplified to

Substitution in cxx provides

and subsequently the eigenvalue/eigenvector decomposition

by obvious deductive reasoning.
Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 61

1
1

diag( , , ) .
M

H H H
s M s m m m

m
µ µ µ

=

= =∑ssAc A V V v v

2

1

M
H

m m m
m

µ σ
=

= +∑xx uc v v I

2

2

1, ,
with .

1, ,
i

i i i i

i M
i M N

µ σ
λ λ

σ

 + == = 
= +

u
xx

u

c v v




( ) 1 1, ( , , , , , ),
s n

s n M M N+= =
V V

V V V v v v v 

 



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Furthermore,

define the signal and 
only noise subspace,
respectively, with             .

The properties of the covariance matrix cxx can be exploited to 
construct high-resolution diagrams if the estimate       possesses 
approximately the same properties. 

Let                                                         denote the eigenvalues 
and corresponding eigenvectors of      , i.e.
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ˆxxc
1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆand , , ,N Nλ λ λ≥ ≥ ≥ v v v 

ˆxxc

span( ) span( )
span( )

s s

n n

S
S
= =
=

A V
V

s nS S⊥

3x

1x

2x

2v
1v

2( )ϕa

1( )ϕa

( )ϕa

sS

ϕ↑

3x
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then under certain regularity conditions on can show, that the 
eigenvalues and eigenvectors of cxx can be consistently esti-
mated by the eigenvalues and eigenvectors of the sample co-
variance matrix, i.e.

Exploiting the eigenvalue decomposition of      , the classical 
beamformer can be written as

ˆ ˆand for 1, , .n n n nL L n Nλ λ→∞ →∞→ → =v v 

2

1
2

1

ˆˆ ˆ( ) ( ) ( ) ( )

ˆˆ ˆ( , ) ( , ) ( , ) ( , ) .

N
H H

CB n n
n

N
H H

CB n n
n

q

q

λ

ϕ ϑ ϕ ϑ ϕ ϑ λ ϕ ϑ
=

=

= =

= =

∑

∑

xx

xx

k a k c a k v a k

a c a v a  

ˆxxc

1

0 1

1 ˆˆ ˆ ˆ( ) ( ) ,
L N

H H
S S n n n

l n
lT lT

L
λ

−

= =

= =∑ ∑xxc x x v v
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Example:
For a single source embedded in spatially white noise the 
covariance matrix of the receiver outputs is given by

Multiplication of cxx by a(ks) from the right provides

Comparison with the eigenvalue/eigenvector decomposition 
mentioned on pp. 59-61 we can assert that 

and that the remaining eigenvectors can be selected such that 
the                          are forming an orthonormal basis.

2 2( ) ( ) with ( ) ( ) .H H
s s s s s Nσ σ= + =xx uc a k a k I a k a k

( )2 2 2 2( ) ( ) ( ) ( ) ( ) ( ).H
s s s s s s s sNσ σ σ σ= + = +xx u uc a k a k a k a k a k a k

2 2 2
1 2 1, ( )s N sN Nλ σ σ λ λ σ= + > = = = =u u v a k

, 1, ,n n N=v 
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From the well known result

and the fact that                          , we can deduce 

Hence, the classical beamformer provides for a single source 
embedded in spatial white noise the consistent estimate 

1 1
: 1 : 1

max and arg max
N N

H Hλ
∈ = ∈ =

= =xx xx
z z z z

z c z v z c z




1
( ) ( ) ( ) ( )max and arg max .

H H

sN N
λ = =xx xx

k k

a k c a k a k c a kk

2

1

ˆ ˆarg max ( ) arg max ( ) ( )

ˆ ˆarg max ( )

H
s CB

N
H

n n sL
n

q

λ →∞
=

= =

= →∑

xx
k k

k

k k a k c a k

v a k k

1 ( )s N=v a k
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Mathematical Supplement
Constraint Optimization / Equality Constraints
Find the optimum of                 subject to               , where

Let                    be a solution of the constraint optimization 
problem then a certain            exists such that

Proof sketch:

defines a (n−1)-dimensional surface in          . Let

and 

( )y f= x

0 ( )D f∈x

( ) 0h =x
( ) and ( ) 0, ( ).nD f h D f∈ ⊂ ∇ ≠ ∀ ∈x x x

α ∈

0 0( ) ( ) .f hα∇ + ∇ =x x 0

, , i.e. ( ) ( ) 0M M h h∈ +∆ ∈ = + ∆ =x x x x x x

{ }( ) : ( ) 0M D f h= ∈ =x x
( ) D f
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be the Taylor expansion around x, then, due to

we can conclude that

is normal to the surface.

Furthermore,              is also 
orthogonal to the surface because otherwise we could increase 
the value of  by moving a short distance along the surface. 
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, ( )M h∀ ∈ ∇x x

( )( ) ( ) ( ) | |Th h h o+ ∆ = + ∆ ∇ + ∆x x x x x x

( )

| | 0

( ) | |

( ) 0
| |

T

T

h o

h ∆ →

∆ ∇ = ∆
∆

⇒ ∇ →
∆ x

x x x
x x
x

0( )f∇ x

( )f x

xGraph of ( )f

=x( ) 0h

1x

2x

y

x0( )f

xgrad ( )f
xgrad ( )h
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Example:

The Lagrange-Function can be expressed by

Hence, the necessary conditions given by  

provide the three equations that lead after the following consid-
erations to the possible extrema.

2 2 2 2
1 2 1 2 1 2 1 2 1 2( , ) 3, ( , ) 2 0, ( , )Tf x x x x h x x x x x x= + + = + − = = ∈x 

2 2 2
1 2 1 2 1 2 1 2 1 2( , , ) ( , ) ( , ) 3 ( 2).L x x f x x h x x x x x xα α α= + = + + + + −

1 1
1 2 1 2 1 2

2

2
1 2 1 2 1 2

2 0( , , ) ( , ) ( , ) 2 01

( , , ) ( , ) 2 0

x xL x x f x x h x x x

L x x h x x x x

α α α

α
α

     ∇ =∇ + ∇ = + =       
∂

= = + − =
∂
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Possible Extrema

1 2

2

1 1

2 2
2
1 1

1) 0 : 2 ,
2, 4

2) 0 : (1 ) 0 1
2 1 0 1 2

3 2 0 3 2 6 2

x x
x

x x
x x

x x

α
α

α α

= = −
= ⇒ = −

≠ + = ⇒ = −
− = ⇒ =
− = ⇒ = ± = ±

0 1,2

0 0

1 1

2 2

0 6 2,
2 1 2

Maximum: ( ) ( )
Minima: ( ) ( )

( ) ( )

f f
f f
f f

   ±= =   
   

+ ∆ ≤
+ ∆ ≥
+ ∆ ≥

x x

x x x
x x x
x x x

2x

1x

=1 2( , ) 0h x x

1 2

Level Curves 
of  ( , )f x x
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Real valued function of a complex variable / complex derivatives

Example:

Now one can proof that both 

and

provide a necessary and sufficient condition for a stationary

: ( ) ( ) ( , ) ( , )f f z f x jy f x y g z z∗→ ⇒ = + = =

 

2 2( ) ( , ) ( )( ) ( , )f z z z g z z x jy x jy x y f x y∗ ∗= = = + − = + = 

( , ) 0, where is treated as constant

( , ) 0, where  is treated as constant

g z z z
z

g z z z
z

∗
∗

∗

∗

∂
=

∂

∂
=

∂
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point of  f (z).

Real valued function of complex variables / complex gradients

2 0
2 0

( , ) 0 0, 0

( , ) 0

f x f x x
f y yf y

g z z z x jy x y
z

g z z z x jy
z

∗
∗

∗

∗

 ∂ ∂ ∂ ∂     
= = =        ∂ ∂ ∂ ∂      


∂ = = − = ⇒ = =∂ 

∂
= = + = 

∂ 





: ( ) ( ) ( , ) ( , )n Hf f f j f g→ ⇒ = + = =z x y x y z z
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Example:

Here one can also proof that both

can serve as a necessary and sufficient condition for a stationary 
point of  f (z), where zH and z are treated as constant respectively.

( ) ( , ) ( , )H H T Tf g f= = = + =z z z z z x x y y x y

( , ) and ( , )H
H Hg g∇ = ∇ =z z

z z 0 z z 0

2
2

0, 0
( , )
( , )H

H

H

f f
f f

g j
g j

∗

 ∇ ∇     
= = =       ∇ ∇        ⇒ = =

∇ = = − = 
∇ = = + = 

x x

y y

z

z

x 0
y 0

x y
z z z x y 0
z z z x y 0







I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 73

Minimum Power Distortionless Response Beamformer

The sensor outputs are weighted by a vector w to produce the 
beamformer output signal

The minimum power distortionless response (MPDR) diagram 
is derived by finding the vector w which minimizes the power 
of the beamformer output signal, i.e. 

subject to the constraint that

Thus, the MPDR beamformer ensures that a signal incident on

( ) ( ).Hy t t= w x

2E ( ) ,Hy t = xxw c w

( ) 1 resp. ( , ) 1.H H ϕ ϑ= =w a k w a
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the array from direction k resp. angle (φ,ϑ) is passed to the 
output undistorted, while simultaneously contributions due to 
noise and interfering signals arriving from other directions are 
minimized.

By introducing the Lagrange multiplier α, the linearly con-
strained minimization problem 

can be transferred to the unconstrained problem

resp.
( ) ( )( )

,
min ( ) 1 ( ) 1H H H

α
α α∗+ − + −xxw

w c w w a k a k w

( )
, ( ) 1
min

H

H

=
xx

w w a k
w c w

( ) ( )( )
,

min ( , ) 1 ( , ) 1 .H H H

α
α ϕ ϑ α ϕ ϑ∗+ − + −xxw

w c w w a a w 
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Hence, the Lagrange Function 

has to be minimized. The necessary condition

provides                           which inserted in

leads us to 

( ) ( )( , , , ) ( ) 1 ( ) 1 .H H H HL α α α α∗ ∗= + − + −xxw w w c w w a k a k w

( , , , ) ( ) ( ) ( )

( ) ( ) 0
H H H

H H HL α α α

α α

∗∇ = ∇ + ∇

= + = + =
xxw w w

xx xx

w w w c w w a k

I c w I a k c w a k

( , , , ) ( ) 1 0H HL α α
α

∗
∗

∂
= − =

∂
w w a k w

( )1 1( ) ( ) 1 0 1 ( ) ( )H Hα α− −− − = ⇒ = −xx xxa k c a k a k c a k

1 ( )α −= − xxw c a k
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and consequently to the solution for w given by

Inserting this solution into wHcxxw and replacing cxx by its 
consistent estimate       the MPDR / Capon beamformer can be 
expressed as follows.

1
21

1
1

1
21

1
1

1 ˆ ˆ( ) ( )
ˆ( ) ( )

1 ˆ ˆ( , ) ( , )
ˆ( , ) ( , )

N
H

C n nH
n

N
H

C n nH
n

q

q

λ

ϕ ϑ λ ϕ ϑ
ϕ ϑ ϕ ϑ

−
−

−
=

−
−

−
=

 = =  
 

 = =  
 

∑

∑

xx

xx

k v a k
a k c a k

v a
a c a



 

ˆxxc

1 1

1 1

( ) ( , )resp. .
( ) ( ) ( , ) ( , )H H

ϕ ϑ
ϕ ϑ ϕ ϑ

− −

− −= =xx xx

xx xx

c a k c aw w
a k c a k a c a
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Estimate updating: (inverse covariance matrix)

Assuming that        is invertible, which implies that l ≥ N is re-
quired, and exploiting the Matrix Inversion Lemma 

one can derive the computational efficient recursion

( ), , 1

, ,

, ,

ˆ ˆ ( ) ( )

ˆ ˆ1 , ( 1) for
with

ˆ ˆ(1 ), 1 for

H
l l s s

G
l l

E
l l

lT lT

l l l

η γ

γ η

γ β β η β

−= +

 = = + =


= − = − =

xx xx

xx xx

xx xx

c c x x

c c

c c

1 1 1 1 1 1 1( ) ( )− − − − − − −+ = − +A BCD A A B C DA B DA

1 1
, 1 , 11 1

, , 1 1
, 1

ˆ ˆ( ) ( )1ˆ ˆ .
ˆ1 ( ) ( )

H
l s s l

l l H
s l s

lT lT
lT lTη γ

− −
− −− −

− −
−

 
= −  + 

xx xx
xx xx

xx

c x x c
c c

x c x

,ˆ lxxc
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Simulation Results of MPDR / Capon Beamforming
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Remarks: MPDR / Capon Beamforming

Assets
 Number of sources must not be known
 Moderate computational effort (efficient inversion)
 Fair resolving power 

Drawbacks
 Narrowband / generalization to broadband not straight forward
 Estimates signal + noise power only
 Matrix inversion may cause problems 
 Peak finding can be difficult
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In case that the noise covariance matrix is known the mini-
mum variance distortionless response (MVDR) beamformer 
can be derived by finding the vector w that minimizes the 
noise power, i.e. 

subject to the constraint

Analogous to the MPDR the solution

can be derived for the MVDR. 

2
E ( ) ,H Ht = uuw u w c w

( ) 1 resp. ( , ) 1.H H ϕ ϑ= =w a k w a

1 1

1 1

( ) ( , )resp.
( ) ( ) ( , ) ( , )H H

ϕ ϑ
ϕ ϑ ϕ ϑ

− −

− −= =uu uu

uu uu

c a k c aw w
a k c a k a c a
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Now, if the noise covariance matrix is given by

the application of the Matrix Inversion Lemma 

provides the inverse noise covariance matrix

where        and kI,j denote the covariance matrix and the wave
number vectors of the interference and       the noise variance.   

( )2
,1 ,, ( ), , ( )

I I

H
I I I I I Jσ= + =uu s s uc A c A I A a k a k

1 1 1 1 1 1 1( ) ( )− − − − − − −+ = − +A BCD A A B C DA B DA

( )

1
1 1

2 2 2 2

12 1
2

1 1 1 1

1 ,

I I

I I

H H
I I I I

H H
I I I I

σ σ σ σ

σ
σ

−

− −

−−

 
= − + 

 

 = − +  

uu s s
u u u u

u s s
u

c I A c A A A

I A c A A A

I Is sc
2σu
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Example: (a single interference)

For                                              we can approximately write

where the Hermitian and idempotent matrices 

( )( )
2 2

11 2 2
2

( ) ( )
1 ( ) ( )

I

I

H
I I

H
I IN

σ σ

σ σ
σ

−−

= +

⇒ = − +

uu s u

uu u s
u

c a k a k I

c I a k a k

2 2 ( ) ( )
I

H
I I Nσ σ =u s a k a k

( )( ) ( )11
2 2 2

1 1 1( ) ( ) ( ) ( ) ,H H
I I I I I Iσ σ σ

−− ⊥= − = − =uu
u u u

c I a k a k a k a k I P P

( ) 1
( ) ( ) ( ) ( ) ( ) ( )

and ( ) ( )

H H H
I I I I I I I

H
I I I I

N

N

−

⊥

= =

= − = −

P a k a k a k a k a k a k

P I P I a k a k
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denote projection matrices, that project a N-dimensional vec-
tor onto the 1-dimensional interference and (N−1)-dimensio-
nal only noise subspace respectively. Finally, we obtain

1

1

1

1

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) .
( ) ( ) ( ) ( ) ( ) ( )

I
H H

I
H

I INI
H H H

I I INN N

− ⊥

− ⊥= =

−−
= =

− −

uu

uu

c a k P a kw
a k c a k a k P a k

a k a k a k a ka k P a k
a k P a k a k a k a k a k

( )slTx ( , )y t k⊕ ⊗

−

1

1
( ) ( ) ( ) ( )H H

I INN − a k a k a k a k

( ), ⋅a k

1 ( ), ( ) ( )H
I IN ⋅a k a k a k
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Example: (multiple uncorrelated interferences)

For                                                                         we can again 
approximately write

where the Hermitian and idempotent matrices 

( )
( )( )

,1 ,

,1 ,

2 2 2

1
1 2 2 2 2

2

diag , ,
1 diag , ,

I I J

I I J

H
I I

H H
I I I I

σ σ σ

σ σ σ σ
σ

−
−

= +

 ⇒ = − + 
 

uu s s u

uu u s u s
u

c A A I

c I A A A A





,

2 2
, ,( ) ( ) , 1, ,

I j

H
I j I j N j Jσ σ = ∀ =u s a k a k 

( )( ) ( )11
2 2 2

1 1 1 ,H H
I I I I I Iσ σ σ

−− ⊥= − = − =uu
u u u

c I A A A A I P P

( ) ( )1 1
andH H H H

I I I I I I I I I I I

− −⊥= = − = −P A A A A P I A A A A I P



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 85

denote projection matrices, that project a N-dimensional vec-
tor onto the J-dimensional interference and (N−J)-dimensio-
nal only noise subspace respectively. Finally, we obtain

Furthermore, if                      holds, i.e. the steering vectors of 

1

1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

I I
H H H

I IN

− ⊥

− ⊥

−
= = =

−
uu

uu

c a k P a k a k P a kw
a k c a k a k P a k a k P a k

( )slTx ( , )y t k⊕ ⊗

−
1

( ) ( )H
IN −a k P a k

( ), ⋅a k

( ), I ⋅a k P

H
I I N≈A A I
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lowing scheme can be applied.
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( )slTx ( , )y t k

⊕

⊗

−

1

1
( ) ( )H H

I INN − a k A A a k

( ), ⋅a k

⊕

⊕



1
,1 ,1( ), ( ) ( )H

I IN ⋅a k a k a k

1
, 1 , 1( ), ( ) ( )H

I J I JN − − ⋅a k a k a k

1
, ,( ), ( ) ( )H

I J I JN ⋅a k a k a k
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Multiple Signal Classification (MUSIC) Algorithm

The MUSIC Algorithm is motivated by the aforementioned 
properties of the covariance matrix cxx.

Let us assume that the eigenvalue/eigenvector decomposition 
of the covariance matrix 

can be consistently estimated by the eigenvalue/eigenvector 
decomposition of the sample covariance matrix 

1

0 1

1 ˆˆ ˆ ˆ( ) ( ) .
L N

H H
S S n n n

l n
lT lT

L
λ

−

= =

= =∑ ∑xxc x x v v

2

1

N
H H

n n n
n

σ λ
=

= + =∑xx ss uc Ac A I v v
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Furthermore, let the eigenvectors of the sample covariance 
matrix be arranged according to

where the columns of                   span the signal and only 
noise subspace respectively. 

Now, employing the eigenvectors of the only noise subspace 
the MUSIC wave number spectrum resp. MUSIC angular 
spectrum is defined by

( ) 1 1

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ( , , , , , ),
s n

s n M M N+= =
V V

V V V v v v v 

 

1
2

1

1 ˆ( ) ( )ˆ ˆ( ) ( )

N
H

MUSIC nH H
n Mn n

q
−

= +

 = =  
 
∑k v a k

a k V V a k

ˆ ˆand s nV V
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resp.

If instead of the eigenvectors of the only noise subspace the ei-
genvectors of the signal subspace are used, the MUSIC wave 
number spectrum resp. angular spectrum is given by

resp.
( )

1
2

1

1 ˆ( ) ( )ˆ ˆ( ) ( )

M
H

MUSIC sH H
ns s

q N
−

=

 = = − 
−  

∑k v a k
a k I V V a k

1
2

1

ˆ( , ) ( , ) .
N

H
MUSIC n

n M
q ϕ ϑ ϕ ϑ

−

= +

 =  
 
∑ v a

1
2

1

ˆ( , ) ( , ) .
M

H
MUSIC s

n
q Nϕ ϑ ϕ ϑ

−

=

 = − 
 

∑ v a
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Simulation Results of MUSIC Algorithm
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Remarks: MUSIC Algorithm

Assets
 Rather high resolving power 
 Moderate computational effort (efficient SVD)

Drawbacks
 Number of sources has to be known 
 Narrowband / difficult to generalize to broadband 
 Performance degrades severely if 

− sources are strongly correlated, e.g. due to multipath propagation
− ambient noise is not spatially white

 Does not imply signal and noise power estimates 
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Mathematical Supplement
Maximum Likelihood Estimation
Let X denote a random vector with density                            and 
observation After inserting x in                 the      
function                 is called likelihood function and

is called maximum likelihood estimate (MLE) for ψ.

If the gradient of                 with respect to ψ exists and if  
is positive for the given x, one can try to find the 

MLE by solving the likelihood equation system

( )ˆ arg max ( | ) arg max ( | ), ( | ) ln ( | )l L L l
∈Ω ∈Ω

= = =
ψ ψ

ψ x ψ x ψ x ψ xψ

ˆ ˆ( ) ( )
( | ) or ( | ) .l L

= =
∇ = ∇ =ψ ψψ ψ x ψ ψ x

ψ x 0 ψ x 0

( | )fX x ψ
( | ),f ∈ΩX x ψ ψ

( | ) ( | )l f= Xψ x x ψ

( | )fX x ψ
( | )fX x ψ

1( , , ) .T
nx x=x 
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Example: (narrowband snapshot model)
The are realizations of independently and 
identically distributed random vectors                                      , i.e.

Since the are independently and identically 
distributed the composed density function can be expressed by 

( ) ( )1 1( | ) det ( ) exp ( ) .N H
l l lf π −− −= −X xx xxx ψ c ψ x c ψ x

( ), ( )l N xxX 0 c ψ

( ) ( )
( ) ( )

1

0 1
0

1 1
0

1

( , , | ) ( | )

det ( ) exp ( )

ˆdet ( ) exp tr( ( ) ) ,

L

L l
l

LLNL H
l ll

LNL

f f

L

π

π

−

−
=

−−− −
=

−− −

=

= −

= −

∏

∑

X X

xx xx

xx xx xx

x x ψ x ψ

c ψ x c ψ x

c ψ c ψ c



( ), 0,1,l slT l= =x x 

, 0,1, , 1= −l l LX
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where

After taking the logarithm, i.e.

and skipping the constant additive term as well as the common 
factor L the log-likelihood function can be defined as

Finally, the MLE           is obtained by solving the likelihood 
equation system

ˆ ( )
ˆ( | ) .L

=
∇ =ψ xx ψ ψ x

ψ c 0

( ) ( )1
0 1 ˆln ( , , | ) ln ln det ( ) tr ( )Lf L N π −

−
 =− + + X xx xx xxx x ψ c ψ c ψ c

( ) ( )1ˆ ˆ( | ) ln det ( ) tr ( ) .L − = − + xx xx xx xxψ c c ψ c ψ c

1

0

1ˆ ( ) ( ).
L

H
S S

l
lT lT

L

−

=

= ∑xxc x x

ˆ ( )ψ x
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5.4.4 Maximum Likelihood Direction of Arrival (DOA) 
and Signal Parameter Estimation

Let                                   be realizations of  independently cir-
cular symmetric complex Gaussian distributed random vectors 
with zero mean and covariance matrix           .

Thus, the log-likelihood function can be expressed by

where

and

( ), 0, , 1slT l L= −x 

( ) ( )1ˆ ˆ( | ) ln tr ( ) ,det ( )L − = − + xx xx xxxxψ c c ψ cc ψ

( )
( )

2 2

1 1 1 1

( ) ( ) ( ) , , vec( ) ,

( ) ( , ), , ( , ) , ( , , , , )

TH T T

T
M M M M

σ σ

ϕ ϑ ϕ ϑ ϕ ϑ ϕ ϑ

= + =

= =

xx ss u ss uc ψ A ζ c A ζ I ζ c

A ζ a a ζ 
 

ψ

( )xxc ψ
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Maximization of  with respect to the signal parame-
ters provides the explicit solutions

and

where 

( ) ( ) ( )1 12ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )H H Hσ
− −

= −ss xx uc ζ A ζ A ζ A ζ c ζ I A ζ A ζ A ζ

( ) ( )2
ˆtr ( ) tr ˆ( )

( ) ,
N M N M

σ
⊥−  = =

− −
xx xx

u

I P ζ c P ζ c
ζ

1

0

1ˆ ( ) ( ).
L

H
S S

l
lT lT

L

−

=

= ∑xxc x x

( ) 1
( ) ( ) ( ) ( ) ( ) and ( ) ( )H H− ⊥= = −P ζ A ζ A ζ A ζ A ζ P ζ I P ζ

ˆ( | )L xxψ c
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denote idempotent and orthogonal projection matrices, i.e. 

that provide mappings onto the signal subspace and only noise 
subspace, respectively.

Replacing                  in                 by the corresponding expli-
cit solutions                          , we obtain the so-called profile 
likelihood function

Maximization of  with respect to the remaining para-
meters provides the DOA estimates 

2( ) and ( )σss uc ζ ζ

( )ˆtr ( )
ˆ ˆ( | ) ln det ( ) ( ) ( ) .H

pL
N M

⊥
⊥

  
  =− +
 −   

xx
xx xx

P ζ c
ζ c P ζ c P ζ P ζ

( ) ( ) ( ), ( ) ( ) ( ) and ( ) ( ) ,⊥ ⊥ ⊥ ⊥= = =P ζ P ζ P ζ P ζ P ζ P ζ P ζ P ζ 0

2and σss uc ˆ( | )L xxψ c

ˆ( | )pL xxζ c
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Finally, substituting in the explicit solutions                            
the DOA parameter vector                               we obtain the 
signal power and noise power estimates

and

respectively.

( ) ( ) ( )1 1
2ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )H H Hσ

− −
= −ss xx uc A ζ A ζ A ζ c I A ζ A A ζζ

( ) ( )

( )

2

1

ˆ ˆˆˆ tr ( ) ( ) tr ( )ˆ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆwith  ( ) ( ) ( ) ( ) ( ), ( ) ( ),H H

N M N Mσ ⊥

−
⊥

 = − − = − 

= = −

u xx xxI P ζ c P ζ c

P ζ A ζ A ζ A ζ A ζ P ζ I P ζ

ˆ ˆarg max ( | ).pL= xx
ζ

ζ ζ c

2( ) and ( )σss uc ζ ζ
ˆ by its estimate ζ ζ



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 99

10

1 2 3

1 1 3

1 1 3

10 log ( )dB
1000, 15

1) 7 , 0 , 10
2) 7 , 2 , 10
3) 7 , 4 , 10

SNR N
L N

ϕ ϕ ϕ
ϕ ϕ ϕ
ϕ ϕ ϕ

= −
= =

=− ° = ° = °
=− ° =− ° = °
=− ° =− ° = °

1)

2)

3)



I N S T I T U T E   O F 
W A T E R A C O U S T I C S, 

S O N A R   E N G I N E E R I N G   A N D
S I G N A L   T H E O R Y 

Chapter 5 / Array Processing / Prof. Dr.-Ing. Dieter Kraus 100

Remarks: Maximum Likelihood Estimation

Assets
 High resolving power / accurate DOA estimates
 Implies signal and noise power estimates
 Sources can be correlated
 Model can incorporate multipath / matched field processing
 Allows generalization to broadband case 

Drawbacks
 Number of sources has to be known 
 High dimensional numerical optimization required 
 Computationally expensive
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5.4.5 Maximum Likelihood DOA and Signal Parameter 
Estimation using EM Algorithm

Incomplete data (measured array output):

Complete data (virtual array output):

where denotes the array output if only the m-th source 
would be present.

Hence,

( ), 0, , 1.slT l L= −x 

( )1( ) ( ), , ( ) , 0, , 1,
TT T

s s M slT lT lT l L= = −y y y 

( )T
m slTy

( )
 unit matrices

( ) , , ( ), 0, , 1.s N N s

M

lT lT l L= = −x I I y 
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If the M sources are uncorrelated, i.e.

the log-likelihood function for the complete data can be ex-
pressed by

with

where

( ) ( )
( ) ( )

1

1

1

ˆ ˆ( | ) ln det ( ) tr ( )

ˆln det ( ) tr ( )
m m m m m m

M

m m
m

L −

−

=

 = − + 

 = − + ∑
y yy yy yy yy

y y y y y y

ψ c c ψ c ψ c

c ψ c ψ c

2 2
, 1( , , , ) , 1, , and ( , , ) .

m

T T T T
m m m s m Mm Mϕ ϑ σ σ= = =uψ ψ ψ ψ 

2 2
,( ) ( , ) ( , ) , 1, , ,

m m m

H
m s m m m m m m Mσ ϕ ϑ ϕ ϑ σ= + =y y uc ψ a a I 

( )1 1 1
1

( ) diag ( ), , ( ) and ,
M M m m

M

M
m=

= =∑yy y y y y xx y yc ψ c ψ c ψ c c
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For i = 1,…
E-step:

M-step:

or equivalently

end

( )1ˆ
ˆ ˆE | , 1, , ,im m m m

i m M−=
= =y y y y xxψ ψ

c c c 

( ) ( )1

1

ˆ arg max ln det ( ) tr ( )
m m m m m m

M
i i

m m
m

−

=

  = − +   
∑ y y y y y y

ψ
ψ c ψ c ψ c

( ) ( ){ }1ˆ arg max ln det ( ) tr ( )

for 1, ,
m m m m m m

m

i i
m m m

m M

− = − + 
=

y y y y y y
ψ

ψ c ψ c ψ c
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EM Algorithm
 The EM Algorithm consists of an iterative sequence of 

conditional expectation and maximization steps.
 Furthermore one can show, that after convergence, e.g. let

the resulting parameter estimate             represents the ML 
estimate of the incomplete data problem, i.e.

Exploiting the particular structure of the matrices                    
m = 1,…,M the following iteration scheme can be derived.

( ),
m m my yc ψ

( ) ( ){ }1ˆ ˆarg max ln det ( ) tr ( ) .− = − + xx xx xx
ψ

ψ c ψ c ψ c

1ˆ ˆ for ,i i i Iδ−− < ≥ψ ψ

ˆ ˆ I=ψ ψ
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For i = 1,…
E-step:  m = 1,…,M

M-step:  m = 1,…,M

end

1 1 1 1 1

1 1 1 1 1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

m m m m m m m m

m m m m

i i i i i
m m m

i i i i
m m

− − − − −

− − − − − −

= −

+
y y y y y y xx y y

y y xx xx xx y y

c c ψ c ψ c ψ c ψ
c ψ c ψ c c ψ c ψ

( )

( )

( )

,

2,
,

2, 2
, ,2

ˆˆ( , ) arg max ( , ) ( , )

1 ˆ ˆˆ ˆˆ tr ( , ) ( , )
( 1)

1 ˆ ˆˆ ˆˆ ˆ( , ) ( , )

m m
m m

m m m m

m m

i i H i
m m m m m m

i i i i i i i
m m m m m

i i i i i i
s m m m m m m

N
N N

N
N

ϕ ϑ
ϕ ϑ ϕ ϑ ϕ ϑ

σ ϕ ϑ ϕ ϑ

σ ϕ ϑ ϕ ϑ σ

=

 = − −

= −

y y

u y y y y

y y u

a c a

c a c a

a c a
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5.5 Synthetic Aperture Sonar (SAS) Principle

L

z

x

y

L: synthetic aperture length
D: physical aperture length

SAS
resolution cell

SAS azimut
resolution

physical
footprint

 range
 resolution

D

D

D

  u

*

Σ

range
/ time

range
/time

range
/ time

 azimuth / u

azimuth / u

 azimuth / u

 range compression

  azimuth compression

SAS image
(complex)

 range
reference function

 azimuth
reference function

   recording a two-dimensional data field

 rs(t,u)

ss(t,u)
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