A Rigorous View of Mode Confusion

Jan Bredereke

University of Bremen

Mode Confusion

- a kind of automation surprise
- in shared-control systems
- humans use a mental model of the technical system
 - can get out of sync

Mode Confusion

- a kind of automation surprise
- in shared-control systems
- humans use a mental model of the technical system
 can get out of sync
- examples:
 - Airbus A320 in Mulhouse airshow, 1988
 - Airbus A320 near Strasbourg, 1992

What Exactly is a Mode Confusion?

- literature??
- our work:
 - 1. a definition
 - 2. causes
 - 3. what to do

Basic Idea of a Definition

 "The user must not be surprised" (with respect to safety)

Basic Idea of a Definition

- "The user must not be surprised" (with respect to safety)
- mental model: specification reality: implementation

Basic Idea of a Definition

- "The user must not be surprised" (with respect to safety)
- mental model: specification reality: implementation
- formally: a refinement relationship in an abstracted description

Automonous Wheelchair "Rolland"

- joystick-to-motor line wiretapped
- ring of sonar sensors
- safety module
- driving assistant
 - turning on the spot skillobstacle avoidance skill

0...

Ŵ

Where are the Modes?

• modes of wheelchair: find in its software?

Where are the Modes?

- modes of wheelchair: find in its software?
- black-box view!
 - $\circ\,$ user can see wheelchair behaviour only
 - $\circ\,$ relevant events are environment events
 - ▷ "joystick pushed forward"
 - ▷ "motor starts to move"
- requirements level
 - formalism: CSP, . . .

Relating Mental Model and Reality

- user must perceive reality through his senses
 o environment events ≠ mental events !
 o "wall gets close" ≠ "see that wall gets close"
- formally: function over behaviours:
 SENSE: environment events → mental events

Relating Mental Model and Reality

- user must perceive reality through his senses
 o environment events ≠ mental events !
 o "wall gets close" ≠ "see that wall gets close"
- formally: function over behaviours:
 SENSE: environment events → mental events
- rigorous specification/implementation relation:

MMOD \sqsubseteq_F SENSE(REQ)

• CSP, failure refinement. See paper.

Two Refinement Relations

• abstraction to safety-relevant part

Rigorous Definitions

Definition 1 (Potential future behaviour)

A potential future behaviour is a set of "failures".

(failure = trace + set of refusals)

Definition 2 (mode)

A mode of the perceived reality ${\rm SENSE}_{\rm SAFE}({\rm REQ}_{\rm SAFE})$ is a potential future behaviour.

- A mode of the mental model $\rm MMOD_{SAFE}$
- is a potential future behaviour.

Rigorous Definitions [2]

Definition 3 (mode confusion)

A mode confusion between the perceived reality $\mathrm{SENSE}_{\mathrm{SAFE}}(\mathrm{REQ}_{\mathrm{SAFE}})$ and the mental model $\mathrm{MMOD}_{\mathrm{SAFE}}$ occurs if and only if

the perceived reality is not a failure refinement of the mental model, i.e., iff

$\mathrm{MMOD}_{\mathrm{SAFE}} \not\subseteq_F \mathrm{SENSE}_{\mathrm{SAFE}}(\mathrm{REQ}_{\mathrm{SAFE}})$

Application to Autonomous Wheelchair "Rolland"

- extracted mental model by user interview
- got requirements
 by reverse engineering C++ code
- both specifications written in CSP
 1200 lines of CSP
- model-checking refinement
 commercial tool FDR

Ŵ

Wheelchair: Obstacle Avoidance Skill

- re-inforces user command to either
 pass left (through doorway)
 pass right (turn away from door)
- steers back after avoidance complete
- implicit mode transitions

W

Mode Confusion Found while Modelling Wheelchair

- unexpectedly hidden obstacle
 - danger in forward curve:
 - ▷ back of wheelchair swerves out
 - ▷ may hit obstacle behind user's head

Mode Confusion Found while Modelling Wheelchair

• unexpectedly hidden obstacle

- danger in forward curve:
 - ▷ back of wheelchair swerves out
 - ▷ may hit obstacle behind user's head
- $\circ\,$ automation prevents accident
 - \triangleright changes direction/speed
- $\circ\,$ user doesn't notice event
 - \rightarrow wheelchair and mental model behave differently

Mode Confusions Found by Model-Checking Wheelchair

• user's senses work at different speeds

- vision, tactile, motion-detection
- perceive reaction before cause
- is general problem

• wrong mental model of "halt" routine

- \circ speed command = 0 cm/s \rightarrow steering angle = "straight"
- is relevant: "can you do this narrow curve?"

Mode Confusions Found by Model-Checking Wheelchair [2]

- wrong abstraction in user's mental model of old joystick position
 - $\circ\,$ wheelchair steers back when obstacle passed
 - \circ except if joystick moved
 - \circ did not work in abstracted mental model
- (found above known problem, too)
- (proved that no further mode confusion exists)

14

Classification of Mode Confusion Problems

• derived from rigorous definitions:

Classification of Mode Confusion Problems

- derived from rigorous definitions:
- classification:
 - \circ 1. incorrect observation by the user
 - \circ 2. incorrect knowledge of the user
 - \circ 3. incorrect abstraction by the user

Classification of Mode Confusion Problems

- derived from rigorous definitions:
- classification:
 - \circ 1. incorrect observation by the user
 - 2. incorrect knowledge of the user
 - \circ 3. incorrect abstraction by the user
- classification is by cause
- leads to recommendations for avoiding mode confusions $\circ \rightarrow$ details in paper

SENSE refinement MMOD abstraction A_R abstraction A_M SENSE(REQ) refinement MMOD

Summary

- rigorous definitions of "mode" and "mode confusion"
 - mental model/reality like specification/implementation
 - rigorous modelling approach
 - ▷ black-box view
 - \triangleright precise interfaces
- new classification by cause
- solutions:
 - recommendations for design
 - foundation for detection by model checking
 - ▷ successful practical application

Thank you.

17

Recommendations for Avoiding Mode Confusions [1]

• correct observation by the user:

- check: can user physically observe all relevant events?
- o check: are user's senses sufficiently precise?
- \circ solution: add feedback event
- check: do all relevant events become concious?
 > psychology!

Recommendations for Avoiding Mode Confusions [2]

• correct knowledge of the user:

- document requirements rigorously
 - ▷ training material complete
 - \triangleright also learnable
- avoid non-determinism in requirements (complexity!)
- check: do imprecise sensors introduce non-determinism?
- \circ solution for non-determinism: add feedback event

Recommendations for Avoiding Mode Confusions [3]

- correct abstraction by the user:
 - o psychology!
 - document explicitly what is safety-relevant

Future Work

• try out recommendations

 $\circ \rightarrow$ psychology experts for non-technical ones

• more application domains beyond aviation and robotics

21

Failure

Definition 4 (Failure of a process P) is a pair (s, X) of a trace s ($s \in traces(P)$) and a "refusal" set X of events. The events in X may be blocked by Pafter the execution of s.

Failure Refinement

Definition 5 (Failure Refinement)

Process P refines process S in the failures model, written $S \sqsubseteq_F P$, iff $traces(P) \subseteq traces(S)$ and also $failures(P) \subseteq failures(S)$.

Description Without Internal State

- refer to history of events only
- example:
 - $\circ\,$ wheelchair has approached a wall
 - $\circ\,$ wheelchair has not moved back yet
 - $\circ \rightarrow$ wheelchair must not move forward
- formalism: CSP, ...

Getting an Explicit Mental Model

according to Rushby [1]:

- from training material
- from user interviews
- by user observation