
Proceedings of SafeComp 2002, c© Springer Verlag 1

A Rigorous View of Mode Confusion

Jan Bredereke and Axel Lankenau

Universität Bremen, FB 3 · P.O. box 330 440 · D-28334 Bremen · Germany
{brederek,alone}@tzi.de · www.tzi.de/{˜brederek,˜alone} · Fax: +49-421-218-3054

Abstract. Not only in aviation psychology, mode confusion is recog-
nised as a significant safety concern. The notion is used intuitively in
the pertinent literature, but with surprisingly different meanings. We
present a rigorous way of modelling the human and the machine in a
shared-control system. This enables us to propose a precise definition of
“mode” and “mode confusion”. In our modelling approach, we extend
the commonly used distinction between the machine and the user’s men-
tal model of it by explicitly separating these and their safety-relevant
abstractions. Furthermore, we show that distinguishing three different
interfaces during the design phase reduces the potential for mode confu-
sion. A result is a new classification of mode confusions by cause, leading
to a number of design recommendations for shared-control systems which
help to avoid mode confusion problems. A further result is a foundation
for detecting mode confusion problems by model checking.

Keywords: human factors, mode confusion, shared-control system, refinement,
rigorous modelling.

1 Introduction and Motivation

Automation surprises are ubiquitous in today’s highly engineered world. We are
confronted with mode confusions in many everyday situations: When our cord-
less phone rings while it is located in its cradle, we establish the line by just
lifting the handset — and inadvertently cut it when we press the “receiver but-
ton” as usual with the intention to start speaking. We get annoyed if we once
again overwrite some text in the word processor because we had hit the “Ins”-
key before (and thereby left the insert mode!) without noticing. The American
Federal Aviation Administration (FAA) considers mode confusion to be a signif-
icant safety concern in modern aircraft. So, it’s all around — but what exactly
is a mode, what defines a mode confusion situation and how can we detect and
avoid automation surprises?

As long as we have no rigorous definition, we should regard a mode confusion
as one kind of an automation surprise. It refers to a situation in which a tech-
nical system can behave differently from the user’s expectation. Whereas mode
confusions in typical human-computer interactions, such as the word processor
example mentioned above, are “only” annoying, they become dangerous if we
consider safety-critical systems.

2 Proceedings of SafeComp 2002, c© Springer Verlag

Today, many safety-critical systems are so-called embedded shared-control
systems. These are interdependently controlled by an automation component
and a user. Examples are modern aircraft, automobiles, but also intelligent
wheelchairs. We focus on such shared-control systems in this paper and call
the entirety of technical components technical system and the human operator
user. Note that we have to take a black-box stand, i. e. we can only work with
the behaviour of the technical system observable at its interfaces: since we want
to solve the user’s problems, we have to take his or her point of view, which does
not allow access to internal information of the system.

As Rushby points out [1], in cognitive science it is generally agreed upon that
humans use so-called mental models when they interact with (automated) tech-
nical systems. Since there are at least two completely different interpretations of
the notion “mental model” in the pertinent literature, it is important to clarify
that we refer to the one introduced by Norman [2]: A mental model represents
the user’s knowledge about a technical system, it consists of a näıve theory of
the system’s behaviour. According to Rushby [1], an explicit description of a
mental model can be derived, e. g., in form of a state machine representation,
from training material, from user interviews, or by user observation.

We briefly recapitulate the pertinent state of the art here. It remains sur-
prisingly unclear what a mode as such is. While some relevant publications give
no [3, 4] or only an implicit definition [5, 6] of the notions “mode” and “mode
confusion”, there are others that present an explicit informal definition [7–10].
Doherty [11] presents a formal framework for interactive systems and also gives
an informal definition of “mode error”. Wright and colleagues give explicit but
example driven definitions of the notions “error of omission” and “error of com-
mission” by using CSP to specify user tasks [12].

Interestingly, the way of modelling often seems to be influenced significantly
by the tool that is meant to perform the final analysis. Degani and colleagues
use State Charts to model separately the technical system and the user’s men-
tal model [13]. Then, they build the composition of both models and search for
certain states (so-called “illegal” and “blocking” states) which indicate mode
confusion potential. Butler et al. use the theorem prover PVS to examine the
flight guidance system of a civil aircraft for mode confusion situations [4]. They
do not consider the mental model of the pilot as an independent entity in their
analysis. Leveson and her group specify the black-box behaviour of the system
in the language SpecTRM-RL that is both well readable by humans and pro-
cessible by computers [10, 14, 15]. In [10], they give a categorisation of different
kinds of modes and a classification of mode confusion situations. Rushby and
his colleagues employ the Murφ model-checking tool [16, 5, 3]. Technical system
and mental model are coded together as a single set of so-called Murφ rules.
Lüttgen and Carreño examine the three state-exploration tools Murφ, SMV,
and Spin with respect to their suitability in the search for mode confusion po-
tential [17]. Buth [9] and Lankenau [18] clearly separate the technical system
and the user’s mental model in their CSP specification of the well-known MD-
88-“kill-the-capture” scenario and in a service-robotics example, respectively.

Proceedings of SafeComp 2002, c© Springer Verlag 3

The support of this clear separation is one reason why Buth’s comparison be-
tween the tool Murφ and the CSP tool FDR favours the latter [9, pages 209-211].
Almost all publications refer to aviation examples when examining a case study:
an MD-88 [19, 7, 10, 16, 9], an Airbus A320 [3, 6], or a Boeing 737 [5].

Rushby proposes a procedure to develop automated systems which pays at-
tention to the mode confusion problem [1]. The main part of his method is the
integration and iteration of a model-checking based consistency check and the
mental model reduction process introduced by [20, 3].

Hourizi and Johnson [6, 21] generally doubt that avoiding mode confusions
alone helps to reduce the number of plane crashes caused by automation sur-
prises. They claim that the underlying problem is not mode confusion but what
they call a “knowledge gap”, i. e. the user’s insufficient perception prevents him
or her from tracking the system’s mode.

As far as we are aware, there is no publication so far that defines “mode”
and “mode confusion” rigorously. Therefore, our paper clarifies these notions.
Section 2 introduces to the domain of our case study, which later serves as
a running example. Section 3 and 4 present a suitable system modelling ap-
proach and clarify different world views, which enables us to present rigorous
definitions in Sect. 5. Section 6 works out the value of such definitions, which
comprises a foundation for the automated detection of mode confusion problems
and a classification of mode confusion problems by cause, which in turn leads to
recommendations for avoiding mode confusion problems. A summary and ideas
for future work conclude the paper.

2 Case Study Wheelchair

Our case study has a service robotics background: we examine the cooperative
obstacle avoidance behaviour of our wheelchair robot. The Bremen Autonomous
Wheelchair “Rolland” is a shared-control service robot which realizes intelligent
and safe transport for handicapped and elderly people [22, 23]. The vehicle is a
commercial off-the-shelf power wheelchair. It has been equipped with a control
PC, a ring of sonar sensors, and a laser range finder. Rolland is jointly controlled
by its user and by the software. Depending on the active operation mode, either
the user or the automation is in charge of driving the wheelchair.

3 Precise Modelling

Before we can discuss mode confusion problems, some remarks on modelling a
technical system in general are necessary. The user of a running technical system
has a strict black-box view. Since we want to solve the user’s problems, we must
take the same black-box point of view. This statement appears to be obvious,
but has far-reaching consequences for the notion of mode. The user has no way
of observing the current internal state, or mode, of the technical system.

Nevertheless, it is possible to describe a technical system in an entirely black-
box view. Our software engineering approach is inspired by the work of Parnas
[24, 25], even though we start out with events instead of variables, as he does.

4 Proceedings of SafeComp 2002, c© Springer Verlag

We can observe (only) the environment of the technical system. When some-
thing relevant happens, we call this an event. When the technical system is the
control unit of an automated wheelchair, then an event may be that the user
pushes the joystick forward, that the wheelchair starts to move, or an event may
as well be that the distance between the wheelchair and a wall ahead becomes
smaller than the threshold of 70 cm.

The technical system has been constructed according to some requirements
document REQ. It contains the requirements on the technical system, which
we call SYSREQ, and those on the system’s environment NAT. However, if we
deal with an existing system for which no (more) requirements specification is
available, it might be necessary to “reverse engineer” it from the implementation.

For the wheelchair, SYSREQ should state that the event of the wheelchair
starting to move follows the event that the joystick is pushed forward. SYSREQ
should also state what happens after the event of approaching a wall. Of course,
the wheelchair should not crash into a wall in front of it, even if the joystick is
pushed forward. We can describe this entirely in terms of observable events, by
referring to the history of events until the current point of time. If the wheelchair
has approached a wall, and if it has not yet moved back, it must not move forward
further. For this description, no reference to an internal state is necessary.

In order to implement the requirements SYSREQ on a technical system,
one usually needs several assumptions about the environment of the technical
system to construct. For example, physical laws guarantee that a wheelchair will
not crash into a wall ahead unless it has approached it closer than 70 cm and
has continued to move for a certain amount of time. We call the documentation
of assumptions about the environment NAT. NAT must be true even before
the technical system is constructed. It is the implementer’s task to ensure that
SYSREQ is true provided that NAT holds.

4 Clarification of World Views

4.1 Where are the Boundaries?

The control software of a technical system cannot observe physical events di-
rectly. Instead, the technical system is designed such that sensor devices gen-
erate internal input events for the software, and the software’s output events
are translated by actuator devices into physical events, again. Neither sensors
nor actuators are perfectly precise and fast, therefore we have a distinct set of
software events. Accordingly, the requirements on the technical system and the
requirements on the software cannot be the same. For example, the wheelchair’s
ultrasonic distance sensors for the different directions can be activated in turns
only, resulting in a noticeable delay for detecting obstacles. We call the software
requirements SOF, the requirements on the input sensors IN and the require-
ments on the output actuators OUT. Figure 1 on the facing page shows the
relationships among them. An important consequence is that the software SOF
must compensate for any imperfectness of the sensors and actuators so that the

Proceedings of SafeComp 2002, c© Springer Verlag 5

events
environment

IN SOF OUT
environment

events
software
events

software
events

SYSREQ

Fig. 1. System requirements SYSREQ vs. software requirements SOF.

requirements SYSREQ are satisfied. When defining SOF, we definitely need to
take care whether we refer to the boundary of SOF or of SYSREQ.

This becomes even more important when we consider the user who coop-
erates with the technical system. He or she observes the same variables of the
environment as the technical system does. But the user observes them through
his/her own set of senses SENS. SENS has its own imperfections. For example,
a human cannot see behind his/her back. Our automated wheelchair will per-
ceive a wall behind it when moving backwards, but the user will probably not.
Therefore, we need to distinguish what actually happens in reality (specified in
REQ, i. e. the composition of SYSREQ and NAT) from the user’s mental model
MMOD of it. When making a statement about MMOD, we definitely need to
take care whether we refer to the boundary of MMOD or of REQ.

When we define the interfaces precisely, it turns out that there is an obvious
potential for a de-synchronisation of the software’s perception of reality with the
user’s perception of it. And when we analyse this phenomenon, it is important
to distinguish between the three different interfaces: environment to machine (or
to user), software to input/output devices, and mental to senses. As a result,
we are able to establish a precise relation between reality as it is perceived by
the user and his/her mental model of it. This relation will be the base of our
definition of mode confusion.

4.2 Brief Introduction to Refinement

As will be explained later, we use a kind of specification/implementation rela-
tion in the following sections. Such relations can be modelled rigorously by the
concept of refinement. There exist a number of formalisms to express refine-
ment relations. We use CSP [26] as specification language and the refinement
semantics proposed by Roscoe [27]. One reason is that there is good tool sup-
port for performing automated refinement checks of CSP specifications with the
tool FDR [27]. This section shall clarify the terminology for readers who are not
familiar with the concepts.

In CSP, the behaviour of a process P is described by the set traces(P) of
the event sequences it can perform. Since we must pay attention to what can be
done as well as to what can be not done, the traces model is not sufficient in
our domain. We have to enhance it by so-called failures.

Definition 1 (Failure). A failure of a process P is a pair (s,X) of a trace s
(s ∈ traces(P)) and a so-called refusal set X of events that may be blocked by P
after the execution of s.

6 Proceedings of SafeComp 2002, c© Springer Verlag

If an output event o is in the refusal set X of P , and if there also exists a
continuation trace s′ which performs o, then process P may decide internally
and non-deterministically whether o will be performed or not.

Definition 2 (Failure Refinement). P refines S in the failures model, written
S vF P , iff traces(P) ⊆ traces(S) and also failures(P) ⊆ failures(S).

This means that P can neither accept an event nor refuse one unless S does; S
can do at least every trace which P can do, and additionally P will refuse not
more than S does. Failure refinement allows to distinguish between external and
internal choice in processes, i.e. whether there is non-determinism. As this aspect
is relevant for our application area, we use failure refinement as the appropriate
kind of refinement relation.

4.3 Relation between Reality and the Mental Model

Our approach is based on the motto “The user must not be surprised” as an
important design goal for shared-control systems. This means that the perceived
reality must not exhibit any behaviour which cannot occur according to the
mental model. Additionally, the user must not be surprised because something
expected does not happen. When the mental model prescribes some behaviour as
necessary, reality must not refuse to perform it. These two aspects are described
by the notion of failure refinement, as defined in the previous section.

There cannot be any direct refinement relation between a description of re-
ality and the mental model, since they are defined over different sets of events
(i.e., environment/mental). We understand the user’s senses SENS as a relation
from environment events to mental events. SENS(REQ) is the user’s perception
of what happens in reality. The user is not surprised if SENS(REQ) is a failure
refinement of MMOD. As a consequence, the user’s perception of reality must
be in an implementation/specification relationship to the mental model.

Please note that an equality relation always implies a failure refinement rela-
tion, while the converse is not the case. If the user does not know how the system
will behave with regard to some aspect, but knows that he/she does not know,
then he/she will experience no surprise nevertheless. Such indifference can be
expressed mathematically by a non-deterministic internal choice in the mental
model.

4.4 Abstractions

When the user concentrates on safety, he/she performs an on-the-fly sim-
plification of his/her mental model MMOD towards the safety-relevant part
MMODSAFE. This helps him/her to analyse the current problem with the limited
mental capacity. Analogously, we perform a simplification of the requirements
document REQ to the safety-relevant part of it REQSAFE. REQSAFE can be
either an explicit, separate chapter of REQ, or we can express it implicitly by
specifying an abstraction function, i. e., by describing which aspects of REQ are

Proceedings of SafeComp 2002, c© Springer Verlag 7

black−box
detailed

description

relevant
abstraction

safety−

system designer’s view

ARabstraction

MMOD
SAFE

SENSE(REQ) MMOD

SENSE (REQ)
SAFE SAFE

AMabstraction

failure refinement

failure refinement

user’s view

Fig. 2. Relationships between the different refinement relations.

safety-relevant. We abstract REQ out of three reasons: MMODSAFE is defined
over a set of abstracted mental events, and it can be compared to another de-
scription only if it is defined over the same abstracted set; we would like to
establish the correctness of the safety-relevant part without having to investi-
gate the correctness of everything; and our model-checking tool support demands
that the descriptions are restricted to certain complexity limits.

We express the abstraction functions mathematically in CSP by functions
over processes. Mostly, such an abstraction function maps an entire set of events
onto a single abstracted event. For example, it is irrelevant whether the wheel-
chair’s speed is 81.5 or 82 cm/s when approaching an obstacle – all such events
with a speed parameter greater than 80 cm/s will be abstracted to a single event
with the speed parameter fast. Other transformations are hiding (or concealment
[26]) and renaming. But the formalism also allows for arbitrary transformations
of behaviours; a simple example being a certain event sequence pattern mapped
onto a new abstract event. We use the abstraction functions AR for REQ and
AM for MMOD, respectively.

The relation SENS from the environment events to the mental events must be
abstracted in an analogous way. It should have become clear by now that SENS
needs to be rather true, i. e., a bijection which does no more than some renaming
of events. If SENS is “lossy”, we are already bound to experience mode confusion
problems. For our practical work, we therefore first make sure that SENS is such
a bijection, and then merge it into REQ, even before we perform the actual
abstraction step which enables the use of the model-checking tool.

Figure 2 shows the relationships among the different descriptions. In order
that the user is not surprised with respect to safety, there must be a failure
refinement relation on the abstract level between SENSSAFE(REQSAFE) and
MMODSAFE, too.

5 A Rigorous View of Mode and of Mode Confusion

We will now present our rigorous definitions of mode and mode confusion. We
will then motivate and discuss our choices.

In the following, let REQSAFE be a safety-relevant black-box requirements
specification, let SENSSAFE be a relation between environment events and men-
tal events representing the user’s senses, and let MMODSAFE be a safety-relevant
mental model of the behaviour of REQSAFE.

8 Proceedings of SafeComp 2002, c© Springer Verlag

Definition 3 (Potential future behaviour). A potential future behaviour is
a set of failures.

Definition 4 (Mode). A mode of SENSSAFE(REQSAFE) is a potential future
behaviour. And, a mode of MMODSAFE is a potential future behaviour.

Definition 5 (Mode confusion). A mode confusion between
SENSSAFE(REQSAFE) and MMODSAFE occurs if and only if
SENSSAFE(REQSAFE) is not a failure refinement of MMODSAFE i.e., iff
MMODSAFE 6vF SENSSAFE(REQSAFE) .

After the technical system T has moved through a history of events, it is in
some “state”. Since we have to take a black-box view, we can distinguish two
“states” only if T may behave differently in the future. We describe the potential
future behaviour by a set of failures, such that we state both what T can do and
what T can refuse to do. This definition of “state” is rather different from the
intuition in a white-box view, but necessarily so.

Our next step to the notion of “mode” then is more conventional. We use
the notion of “state”, if at all, in the context of the non-abstracted descriptions.
Two states of a wheelchair are different, for example, if the steerable wheels
will be commanded to a steering angle of 30 degrees or 35 degrees, respectively,
within the next second. These states are equivalent with regard to the fact of
obstacle avoidance. Therefore, both states are mapped to the same abstracted
behaviour by the safety-relevance abstraction function. We call such a distinct
safety-relevant potential future behaviour a mode. Usually, many states of the
non-abstracted description are mapped together to such a mode. On a formal
level, both a state and a mode are a potential future behaviour. The difference
between both is that there is some important safety-relevant distinction between
any two modes, which need not be the case for two states.

We now can go on to mode confusions. The perceived reality and the user’s
mental model of it are in different modes at a certain point of time if and only
if the perceived reality and the mental model might behave differently in the
future, with respect to some safety-relevant aspect. Only if no such situation
can arise in any possible execution trace, then there is no mode confusion. This
means that the user’s safety-relevant mental model must be a specification of the
perceived reality. Expressed the other way around, the perceived reality must
be an implementation of the user’s safety-relevant mental model. This specifica-
tion/implementation relationship can be described rigorously by failure refine-
ment. If we have precise descriptions of both safety-relevant behaviours, we can
rigorously check whether a mode confusion occurs. Since model-checking tool
support exists, this check can even be automated. Please note that we referred
to the reality, as described by REQ, which not only includes the system’s re-
quirements SYSREQ but also the environment requirements NAT. This restricts
the behaviour of SYSREQ by NAT: behaviour forbidden by physical laws is not
relevant for mode confusions.

Our mathematical description allows for some interesting analysis of conse-
quences. It is known in the literature that implicit mode changes may be a cause

Proceedings of SafeComp 2002, c© Springer Verlag 9

of mode confusion. In our description, an implicit mode change appears as an
“internal choice” of the system, also known as a (spontaneous) “τ transition”.
The refinement relation dictates that any such internal choice must appear in
the specification, too, which is the user’s mental model in our case. This is pos-
sible: if the user expects that the system chooses internally between different
behaviours, he/she will not be surprised, at least in principle. The problem is
that the user must keep in mind all potential behaviours resulting from such
a choice. If there is no clarifying event for a long time, the space of potential
behaviours may grow very large and impractical to handle in practice.

6 Results

Our definitions form a foundation for detecting mode confusions by model-
checking. It has opened new possibilities for a comprehensive analysis of mode
confusion problems, which we currently explore in practice.

Our clarification of world views in Sect. 4 enables us to classify mode confu-
sion problems into three classes:

1. Mode confusion problems which arise from an incorrect observation of the
technical system or its environment.

Formally, this is the case when SENS(REQ) is not a failure refinement of
MMOD, but where SENS(REQ) would be a failure refinement of MMOD,
provided the user’s senses SENS would be a perfect mapping from environ-
ment events to mental events.
The imperfections of SENS may have physical or psychological reasons: either
the sense organs are not perfect; for example eyes which cannot see behind
the back. Or an event is sensed, but is not recognised consciously; for example
because the user is distracted, or because the user currently is flooded with
too many events. (“Heard, but not listened to.”)
Please note that our notion of mode confusion problem also comprises the
“knowledge gap” discussed in the research critique by Hourizi and Johnson
[6, 21] (see Sect. 1). In our work, it appears as a mode confusion problem
arising from an incorrect observation due to psychological reasons.

2. Mode confusion problems which arise from incorrect knowledge of the human
about the technical system or its environment.

Formally, this is the case when SENS(REQ) is not a failure refinement of
MMOD, and when a perfect SENS would make no difference.

3. Mode confusion problems which arise from the incorrect abstraction of the
user’s knowledge to the safety-relevant aspects of it.

Formally, this means that SENS(REQ) is a failure refinement of MMOD,
but SENSSAFE(REQSAFE) is not a failure refinement of MMODSAFE.
Since the safety-relevant requirements abstraction function AR is correct by
definition, the user’s mental safety-relevance abstraction function AM must
be wrong in this case (compare Figure 2 above).

10 Proceedings of SafeComp 2002, c© Springer Verlag

In contrast to previous classifications of mode confusion problems, this classifi-
cation is by cause and not phenomenological, as, e.g., the one by Leveson [10].

The above causes of mode confusion problems lead directly to some recom-
mendations for avoiding them. In order to avoid an incorrect observation of the
technical system and its environment, we must check whether the user can phys-
ically observe all safety-relevant environment events, and we must check whether
the user’s senses are sufficiently precise to ensure an accurate translation of these
environment events to mental events. If this is not the case, then we must change
the system requirements. We must add an environment event controlled by the
machine and observed by the user which indicates the corresponding software
input event. This measure has been recommended by others too, of course, but
our rigorous view now indicates more clearly when it must be applied.

Avoiding an incorrect observation also comprises that we check whether psy-
chology ensures that observed safety-relevant environment events become con-
scious. Our approach points out clearly the necessity of this check. The check
itself and any measures belong to the field of psychology, in which we are not
expert.

Establishing a correct knowledge of the user about the technical system and
its environment can be achieved by documenting the requirements of them rig-
orously. This enables us to conceive user training material, such as a manual,
which is complete with respect to functionality. This training material must
not only be complete but also learnable. Complexity is an important learning
obstacle. Therefore, the requirements of the technical system should allow as
little non-deterministic internal choices as possible, since tracking all alternative
outcomes is complex. This generalises and justifies the recommendation by oth-
ers to eliminate “implicit mode changes” [10, 8]. Internal non-determinism may
arise not only from the software, but also from the machine’s sensor devices. If
they are imprecise, the user cannot predict the software input events. We can
eliminate both kinds of non-deterministic internal choice by the same measure
as used against an incorrect physical observation: we add an environment event
controlled by the machine which indicates the software’s choice or the input
device’s choice, respectively.

Ensuring a correct mental abstraction process is mainly a psychological ques-
tion and mostly beyond the scope of this paper. Our work leads to the basic rec-
ommendation to either write an explicit, rigorous safety-relevance requirements
document or to indicate the safety-relevant aspects clearly in the general require-
ments document. The latter is equivalent to making explicit the safety-relevance
abstraction function for the machine AR. Either measure facilitates to conceive
training material which helps the user to concentrate on safety-relevant aspects.

7 Summary and Future Work

We present a rigorous way of modelling the user and the machine in a shared-
control system. This enables us to propose precise definitions of “mode” and
“mode confusion”. In our modelling approach, we extend the commonly used

Proceedings of SafeComp 2002, c© Springer Verlag 11

distinction between the machine and the user’s mental model of it by explicitly
separating these and their safety-relevant abstractions. Furthermore, we show
that distinguishing three different interfaces during the design phase reduces
the potential for mode confusion. Our proposition that the user must not be
surprised leads directly to the conclusion that the relationship between the men-
tal model and the machine must be one of specification to implementation, in
the mathematical sense of refinement. Mode confusions can occur if and only
if this relation is not satisfied. A result of this insight is a new classification of
mode confusions by cause, leading to a number of design recommendations for
shared-control systems which help to avoid mode confusion problems.

Since tools to model-check refinement relations exist, our approach supports
the automated detection of remaining mode confusion problems. For illustration,
we presented a case study on a wheelchair robot as a running example. A detailed
version of the case study is discussed in [28].

Our work lends itself to extension into several directions. We currently work
in our case study on exploiting the new potential for detecting mode confusion
problems by model-checking. Furthermore, the recommendations for avoiding
mode confusion problems can be tried out. Experts in psychology will be able
to implement the non-technical ones of our rules by concrete measures. Finally,
we see still more application domains beyond aviation and robotics.

References

1. Rushby, J.: Modeling the human in human factors. In: Proc. of SAFECOMP 2001.
Volume 2187 of LNCS., Springer (2001) 86–91

2. Norman, D.: Some observations on mental models. In Gentner, D., Stevens, A.,
eds.: Mental Models. Lawrence Erlbaum Associates Inc., Hillsdale, NJ, USA (1983)

3. Crow, J., Javaux, D., Rushby, J.: Models and mechanized methods that integrate
human factors into automation design. In Abbott, K., Speyer, J.J., Boy, G., eds.:
Proc. of the Int’l Conf. on Human-Computer Interaction in Aeronautics: HCI-Aero
2000, Toulouse, France (2000)

4. Butler, R., Miller, S., Pott, J., Carreño, V.: A formal methods approach to the
analysis of mode confusion. In: Proc. of the 17th Digital Avionics Systems Conf.,
Bellevue, Washington, USA (1998)

5. Rushby, J.: Analyzing cockpit interfaces using formal methods. In Bowman, H., ed.:
Proc. of FM-Elsewhere. Volume 43 of Electronic Notes in Theoretical Computer
Science., Pisa, Italy, Elsevier (2000)

6. Hourizi, R., Johnson, P.: Beyond mode error: Supporting strategic knowledge
structures to enhance cockpit safety. In: Proc. of IHM-HCI 2001, Lille, France,
Springer (2001)

7. Sarter, N., Woods, D.: How in the world did we ever get into that mode? Mode
error and awareness in supervisory control. Human Factors 37 (1995) 5–19

8. Degani, A., Shafto, M., Kirlik, A.: Modes in human-machine systems: Constructs,
representation and classification. Int’l Journal of Aviation Psychology 9 (1999)
125–138

9. Buth, B.: Formal and Semi-Formal Methods for the Analysis of Industrial Control
Systems – Habilitation Thesis. Univ. Bremen (2001)

12 Proceedings of SafeComp 2002, c© Springer Verlag

10. Leveson, N., Pinnel, L., Sandys, S., Koga, S., Reese, J.: Analyzing software speci-
fications for mode confusion potential. In: Workshop on Human Error and System
Development, Glasgow, UK (1997)

11. Doherty, G.: A Pragmatic Approach to the Formal Specification of Interactive
Systems. PhD thesis, University of York, Dept. of Computer Science (1998)

12. Wright, P., Fields, B., Harrison, M.: Deriving human-error tolerance requirements
from tasks. In: Proc. of the 1st Int’l Conf. on Requirements Engineering, Colorado,
USA, IEEE (1994) 135–142

13. Degani, A., Heymann, M.: Pilot-autopilot interaction: A formal perspective. In
Abbott, K., Speyer, J.J., Boy, G., eds.: Proc. of the Int’l Conf. on Human-Computer
Interaction in Aeronautics: HCI–Aero 2000, Toulouse, France (2000) 157–168

14. Rodriguez, M., Zimmermann, M., Katahira, M., de Villepin, M., Ingram, B., Leve-
son, N.: Identifying mode confusion potential in software design. In: Proc. of the
Int’l Conf. on Digital Aviation Systems, Philadelphia, PA, USA (2000)

15. Zimmermann, M., Rodriguez, M., Ingram, B., Katahira, M., de Villepin, M., Leve-
son, N.: Making formal methods practical. In: Proc. of the Int’l Conf. on Digital
Aviation Systems, Philadelphia, PA, USA (2000)

16. Rushby, J., Crow, J., Palmer, E.: An automated method to detect potential mode
confusions. In: Proc. of the 18th AIAA/IEEE Digital Avionics Systems Conf., St.
Louis, Montana, USA (1999)

17. Lüttgen, G., Carreño, V.: Analyzing mode confusion via model checking. In Dams,
D., Gerth, R., Leue, S., Massink, M., eds.: SPIN’ 99. Volume 1680 of LNCS., Berlin
Heidelberg, Springer (1999) 120–135

18. Lankenau, A.: Avoiding mode confusion in service-robots. In Mokhtari, M., ed.:
Integration of Assistive Technology in the Information Age, Proc. of the 7th Int’l
Conf. on Rehabilitation Robotics, Evry, France, IOS Press (2001) 162–167

19. Palmer, E.: “Oops, it didn’t arm.” – A case study of two automation surprises. In:
Proc. of the 8th Int’l Symp. on Aviation Psychology. (1995)

20. Javaux, D.: Explaining Sarter & Woods’ classical results. The cognitive complexity
of pilot-autopilot interaction on the Boeing 737-EFIS. In: Proc. of HESSD ’98.
(1998) 62–77

21. Hourizi, R., Johnson, P.: Unmasking mode errors: A new application of task knowl-
edge principles to the knowledge gaps in cockpit design. In: Proc. of INTERACT
2001 – The 8th IFIP Conf. on Human Computer Interaction, Tokyo, Japan (2001)

22. Röfer, T., Lankenau, A.: Architecture and applications of the Bremen Autonomous
Wheelchair. Information Sciences 126 (2000) 1–20

23. Lankenau, A., Röfer, T.: The Bremen Autonomous Wheelchair – a versatile and
safe mobility assistant. IEEE Robotics and Automation Magazine, “Reinventing
the Wheelchair” 7 (2001) 29–37

24. Parnas, D.L., Madey, J.: Functional documents for computer systems. Science of
Computer Programming 25 (1995) 41–61

25. van Schouwen, A.J., Parnas, D.L., Madey, J.: Documentation of requirements for
computer systems. In: IEEE Int’l. Symp. on Requirements Engineering – RE’93,
San Diego, California, USA, IEEE Comp. Soc. Press (1993) 198–207

26. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,
New Jersey. USA (1985)

27. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall (1997)
28. Lankenau, A.: Bremen Autonomous Wheelchair “Rolland”: Self-Localization and

Shared-Control – Challenges in Mobile Service Robotics. PhD thesis, Universität
Bremen, Dept. of Mathematics and Computer Science (2002) To appear.

