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Abstract

Mode confusions are a significant safety concern in safety-critical systems, for exam-

ple in aircraft. A mode confusion occurs when the observed behaviour of a technical

system is out of sync with the user’s mental model of its behaviour. But the notion is

described only informally in the literature. We present a rigorous way of modelling

the user and the machine in a shared-control system. This enables us to propose

precise definitions of “mode” and “mode confusion” for safety-critical systems. We

then validate these definitions against the informal notions in the literature. A new

classification of mode confusions by cause leads to a number of design recommenda-

tions for shared-control systems. These help to avoid mode confusion problems. Our

approach supports the automated detection of remaining mode confusion problems.

We apply our approach practically to a wheelchair robot.
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1 Introduction

Many safety-critical systems today are shared-control systems. These are in-

terdependently controlled by an automation component and a user. Examples

are modern aircraft and automobiles. Shared-control systems can cause au-

tomation surprises, and, in particular, mode confusions.

The American Federal Aviation Administration (FAA) considers mode con-

fusion to be a significant safety concern in modern aircraft. For instance,

consider the crash of an Airbus A320 near Strasbourg, France, in 1992 [1].

Probably due to heavy workload because of a last-minute path correction de-

manded by the air traffic controller, the pilots confused the “vertical speed”

and the “flight path angle” modes of descent. The display read “3.3”, meaning

3,300 feet per minute. But the crew intended to descend at 3.3 degrees, which

translates into about 1,000 feet per minute. There was no ground view due

to night and poor weather. As a result, the Air Inter machine descended far

too steeply, crashed, and 87 people were killed. Another example is the often

cited kill-the-capture bust [2]: an MD-88 jet plane was supposed to climb to

5,000 feet. The captain set the capture mode of the autopilot for this. But

the aircraft climbed dangerously higher than 5,000 feet. The captain had ad-

justed the vertical speed before. This had disarmed the capture mode without

the pilot’s knowledge. The literature contains considerable research work on

mode confusions. Nevertheless, it remains surprisingly unclear what a mode

confusion actually is.

This article is structured as follows. Section 2 introduces to the research work

on mode confusions in safety-critical systems. We then present a rigorous
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definition of mode confusion in Section 3. This allows us to classify mode con-

fusions in Section 4, and Section 5 uses this classification to derive recommen-

dations for avoiding some of the problems. Section 6 validates our definitions

against the informal notions in the literature. Our approach supports the au-

tomated detection of remaining mode confusion problems; we therefore apply

this practically to a wheelchair robot in Section 7.

2 Mode Confusions in Safety-Critical Systems

A mode confusion occurs when the observed behaviour of a technical system

is out of sync with the user’s mental model of its behaviour. We now introduce

to mental models of behaviour, we give an informal intuition of the meaning

of mode confusion, and we briefly recapitulate the pertinent research results

on mode confusions.

2.1 Mental Models of Behaviour

People form internal, mental models of themselves and of the things with which

they are interacting [3]. (The term “mental model” has also another, different

meaning in the pertinent literature. We refer to the above one, introduced by

Norman [3].) There is ongoing research on the nature of such mental models,

and on how people use them when interacting with their environment.

Here, we restrict our interest to mental models of the behaviour of a tech-

nical system, in particular of an automated system. We exclude the aspects

unrelated to behaviour. For example, we are not interested in how people men-

tally represent spatial relations. We concentrate on shared-control, automated,
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technical systems, because many safety-critical systems are shared-control sys-

tems. We concentrate on their behaviour, because the notion of safety is usu-

ally defined with respect to the behaviour, for these systems. An advantage

of this restriction is that we have powerful mathematical tools for analyzing

models of behaviour.

Mental models of the behaviour of technical systems appear to be based on

state transition rules. This motivated many experiments to derive an explicit

description of a mental model, in form of a state machine with modes and

mode transitions. Mental models have been extracted from training material,

from user interviews, and by user observation. For example, Cañas et al. [4]

survey work on this. They also performed three experiments with 115 partic-

ipants. They exposed these users to different knowledge elicitation tasks and

made conclusions about their mental models.

Extracting a mental model from an individual user is notoriously difficult and

expensive. In particular, mental models are unstable [3]. The user constantly

learns and therefore adapts his/her mental model. The user also forgets. Fur-

thermore, the model which is the user’s long-term knowledge, the conceptual

model, is different from the user’s current working abstraction. When per-

forming a task, the user concentrates on the part of his/her knowledge which

he/she assumes to be relevant [4].

Nevertheless, even imperfect descriptions of mental models have value. If they

are extracted from individuals by interview or by observation, they will have

some randomness. If they are extracted from training material, they are generic

only. The value is that any mode confusion problem showing up here has some

chance to repeat itself with other individuals. We should therefore try to find
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its causes and tackle them. This is in line with Rushby’s argument on this

issue [5]: “most automation surprises reported in the literature are not the

result of an errant operator holding a specific and inaccurate mental model

but are instead due to the design of the automation being so poor that no

plausible mental model can represent it accurately.” A basic assumption of

our work is that one can produce descriptions of mental models at all that

have at least some resemblance to the actual mental models of individuals.

2.2 An Informal Intuition of Mode Confusion

Intuitively, a mode confusion occurs when the observed behaviour of a techni-

cal system is out of sync with the user’s mental model of its behaviour. Figure

1 shows the modes and mode transitions of some technical system and of some

mental model of its behaviour. These automata are “similar”: for the sequence

of inputs given first, the outputs are the same. But the mental model misses

one mode. For the second input sequence, the observed behaviour is different

from the expected behaviour. The user will be surprised, probably unpleas-

antly. Even more, the surprise happens only later (after the fourth input), not

when the modes actually get out of sync (after the second input). In Figure

1(a), circles denote modes, and arrows denote mode transitions, labelled with

the corresponding inputs and outputs.

2.3 Survey of Work on Mode Confusions

We briefly recapitulate the pertinent state of the art here. Since the early

1990s, a number of research groups from the human factors community, in
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(b) Reactions of the automata to different input sequences.

Fig. 1. Example with potential for mode confusion.

particular the aviation psychology community, work on mode confusions in

shared-control systems. Recently, people from the computer science commu-

nity, especially the formal methods community, also became interested. There

are some promising results with respect to tool supported detection of mode

confusion problems (see below). But it remains surprisingly unclear what a

mode confusion actually is.

Definitions of Mode and Mode Confusion. While some relevant publi-

cations give no [6–8] or only an implicit definition [9,10] of the notions “mode”

and “mode confusion”, there are others that present an explicit informal def-
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inition [11–14].

Doherty [15] presents a formal framework for interactive systems and also

gives an informal definition of “mode error”.

Thimbleby [16] develops his “mode” definition over some stages from a generic

and informal one (“a mode is a variable information in the computer system

affecting the meaning of what the user sees and does”, [16, p. 228]) to a formal

one. Doing so, he focuses his scope to the pure two-agent interaction between

the human and the machine. He does not consider the physical environment.

The latter is a third agent relevant in shared-control systems. As a result, he

defines a mode to be a “mathematical function mapping commands to their

meanings within the system” [16, p. 255]. Thimbleby does not deal with the

mode confusion problem. He therefore does not provide a rigorous definition

of the notion “mode confusion”.

Wright and colleagues give explicit but example driven definitions of the no-

tions “error of omission” and “error of commission” by using the language

CSP to specify user tasks [17].

Modelling and Tool Support. Interestingly, the way of modelling often

seems to be influenced significantly by the tool that is meant to perform the

final analysis.

Degani and Heymann use the language StateCharts to model separately the

technical system and the user’s mental model of its behaviour [18]. Then they

compose both models and search for certain composite states (so-called “block-

ing”, “error”, and “augmenting” states) which indicate mode confusions.
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Butler et al. use the theorem prover PVS to examine the flight guidance system

of a civil aircraft for mode confusion situations [7]. They do not consider the

mental model of the pilot as an independent entity in their analysis.

Campos and Harrison [8] use the model checker SMV. They specify the system

as a state transition system. They specify selected properties of the mental

model as assertions in temporal logic.

Leveson and her group specify the black-box behaviour of the system in the

language SpecTRM-RL that is intended to be both well readable by humans

and processable by computers [14,19,20]. In [14], they give a categorisation of

different kinds of modes and a classification of mode confusion situations.

Thimbleby (see above) uses the so-called PIE modelling approach [16] that

describes human-machine interaction by specifying a sequence of user com-

mands, the Program. Such a program is interpreted by the technical system

by an Interpretation function and causes some Effect. PIE models are also

readable by humans and processable by computers.

Sage and Johnson [21] describe a rapid prototyping approach for an air traf-

fic control system. They are able to verify safety properties based on a sys-

tem specification in the language LOTOS. They claim that their method can

support the operator directed design process proposed in [22] (see below).

Nonetheless, they do not specify the mental model of the user.

Rushby and his colleagues employ the model-checking tool Murφ [23,9,6].

Technical system and mental model are coded together as a single set of so-

called Murφ rules. In each step, all rules are “fired” of which the condition

is true; i. e. some manipulation of global state variables is performed. Fur-

8



thermore, a set of invariants is checked. The mode confusion situations are

detected with these invariants.

Lüttgen and Carreño examine the three state-exploration tools Murφ, SMV,

and Spin with respect to their suitability in the search for mode confusion po-

tential [24]. They find that each tool has its advantages but also its drawbacks:

Spin supports the designer to find the sources of mode confusion situations

by the animation of diagnostic information. SMV bears the advantages that it

integrates temporal logics. And Murφ provides the best specification language.

Buth [13] and Lankenau [25] clearly separate the technical system and the

user’s mental model in their CSP specification of the well-known MD-88-“kill-

the-capture” scenario and in a service-robotics example, respectively. The sup-

port of this clear separation is one reason why Buth’s comparison between the

tool Murφ and the CSP tool FDR favours the latter [13, pages 209-211].

Meanwhile, also Rushby [26] acknowledges this need to separate both entities.

For mode confusion detection, he affirms the advantages of model-checking

tools for process algebras such as FDR over tools such as Murφ. A confor-

mance relation between two descriptions has to be checked. The concepts of

refinement and abstraction are required for this. They are provided directly

by FDR.

Case Studies. Almost all publications refer to the aviation domain when

examining a case study: an MD-88 [2,11,14,23,13], an Airbus A320 [6,10], or

a Boeing 737 [9]. For a non-aviation case study, refer to Thimbleby’s running

(pedagogical) example, a calculator [16].
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Recommendations. The literature has several recommendations for avoid-

ing mode confusions.

Reason [27] is concerned with human error in general. He recommends to min-

imize the affordances for error. He takes up the design principles of Norman’s

“Psychology of Everyday Things” [28]: use both knowledge in the world and in

the head in order to promote a good conceptual model. Simplify the structure

of tasks. Make both the execution and the evaluation sides of an action visi-

ble. Exploit natural mappings. Exploit the power of constraints, both natural

and artificial. Design for error; make it easy to reverse operations and hard

to carry out non-reversible ones; exploit forcing functions. When all else fails,

standardize.

Sarter and Woods [11] propose several measures against mode confusions:

reduce the number and complexity of modes (if possible). Focus training on

knowledge activation in context. Train skill at controlling attention. Provide

better indications of what mode the system is in and how future conditions

may produce changes. Maybe provide displays for the history of interaction.

Also use nonvisual, e. g., aural or kinesthetic, channels to reduce load on the

visual channel. Use forcing functions to guide the user, if the system has

enough overall context to do it sensibly.

Butler et al. [7] propose to create a clear, executable formal model of the

automation and use it to drive a (flight-deck) mockup for (pilot) training. It

can be augmented with an additional display, for training only, that directly

exposes the internal structure of the automation and its internal changes.

Leveson et al.[14,29] have identified six categories of system design features

that can contribute to mode confusion errors (and thus should be avoided):
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ambiguous interfaces, inconsistent system behaviour, indirect mode transi-

tions, lack of appropriate feedback, operator authority limits, and unintended

side effects.

Degani and Heymann [30] propose to check formally whether all necessary

information is presented to the user in order to avoid mode confusion. This

requires a formal model of both the machine and of user’s mental model.

They also propose an algorithm to generate automatically the interface to the

machine and the corresponding user manual information [18,31].

Rushby proposes a procedure to develop automated systems which pays at-

tention to the mode confusion problem [5]. The main part of his method is

the integration and iteration of a model-checking based consistency check and

the mental model reduction process introduced by [32,6].

Vakil and Hansman, Jr. [22] recommend three approaches to reduce mode

confusion potential in modern aircraft: pilot training, enhanced feedback via

an improved interface, and, most substantial, a new design process (ODP, for

operator directed design process) for future aircraft developments. ODP aims

at reducing the complexity of the pilot’s task, which may involve a reduction

of functionality.

Critique. Hourizi and Johnson [10,33] criticize that automation surprises

are not only due to mode error, but also due to a “task knowledge gap”.

It is more than a perceptual slip. The underlying problems are a (mode)

confirmation bias and selective (mode-confirming) perception of the human

user.
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3 A Rigorous Definition of Mode Confusion in Safety-Critical Sys-

tems

Interestingly, none of the work surveyed above defines the notions of “mode”

and “mode confusion” rigorously. We therefore propose such definitions. They

will help to tackle mode confusion problems.

We will present our definitions in several steps. We start with a brief intro-

duction to a suitable notion of formal refinement. It will be the base of our

definition. We then introduce the notions that are part of our definition: the

behaviour of the technical system, the mental model of the behaviour of the

technical system, the user’s senses, and the safety-relevant abstractions of all

of these. The actual rigorous definitions conclude this section.

3.1 Brief Introduction to Refinement

We use a kind of specification/implementation relation in the following. Such

relations can be modelled rigorously by the concept of refinement. There exist

a number of formalisms to express refinement relations. We use CSP [34] as

specification language and the refinement semantics proposed by Roscoe [35].

One reason for using CSP is that there is good tool support for performing

automated refinement checks with the tool FDR [35]. This section shall clarify

the terminology for readers who are not familiar with the concepts.

In CSP, one describes the externally visible behaviour of a system by a so-

called process. Processes are defined over events. CSP offers a set of operators.

One can use them to specify processes.
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In CSP, the meaning of a process P can be described by the set traces(P ) of

the event sequences it can perform. Since we must pay attention to what can

be done as well as to what can be not done, the traces model is not sufficient

in our domain. CSP offers the enhanced failures model for this case.

Definition 1 (Failure) A failure of a process P is a pair (s, X) of a trace s

(s ∈ traces(P )) and a so-called refusal set X of events that may be blocked by

P after the execution of s.

If an output event o is in the refusal set X of P , and if there also exists a

continuation trace s′ which performs o, then process P may decide internally

and non-deterministically whether o will be performed or not.

Definition 2 (Failures Refinement) P refines S in the failures model,

written S vF P , iff traces(P ) ⊆ traces(S) and also failures(P ) ⊆ failures(S).

This means that P can neither accept an event nor refuse one unless S does; S

can do at least every trace which P can do, and additionally P will refuse not

more than S does. Failures refinement allows to distinguish between external

and internal choice in processes, i.e. whether there is non-determinism. As this

aspect is relevant for our application area, we use failures refinement as the

appropriate kind of refinement relation.

3.2 The Behaviour of the Technical System

We must use a black-box view of a running technical system for the definition.

This is because the user of such a system has a strict black-box view of it and

because we want to solve the user’s problems. As a consequence, we can observe
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(only) the environment of the technical system, not its internal workings.

When something relevant happens in the environment, we call this an event.

The user can cause such events, too.

There must be a general consensus on what the events are. This is a basic

assumption of our approach about the domain where we apply it. In the safety-

critical systems domain, this assumption is true. For example, there is no

argument between pilots and cockpit designers about whether the lighting of

a sign or the pressing of a button is relevant for flying a plane.

The technical system has been constructed according to some requirements

document REQ. We can describe REQ entirely in terms of observable events,

by referring to the history of events until the current point of time. For this

description, no reference to an internal state is necessary. Usually, several

histories of events are equivalent with respect to what should happen in the

future. Such equivalences can greatly simplify the description of the behaviour

required, since we might need to state only a few things about the history in

order to characterise the situation.

During any run of the technical system, it is in one specific state at any point of

time. The (possibly infinite) state transition system specified by REQ defines

the admissible system runs.

3.3 The Mental Model of the Behaviour of the Technical System

We call the user’s mental model of the behaviour of the technical system

REQM. Ideally, REQM should be “the same” as REQ. During any run of the

technical system, REQM is also in one specific state at any point of time. You

14



may think of the behaviour of REQM as a “parallel universe” in the user’s

mind. Ideally, it is tightly coupled to reality. Each time an event happens

and the technical system changes into another state, the user keeps track

of what has happened and adjusts his/her expectations about future events

accordingly.

Our approach is based on the motto “the user must not be surprised”. This

is an important design goal for shared-control systems. We must make sure

that the reality does not exhibit any behaviour which cannot occur according

to the mental model of its behaviour. Additionally, the user must not be sur-

prised because something expected does not happen. When the mental model

prescribes some behaviour as necessary, reality must not refuse to perform it.

For example after dialling a number, a phone must either produce an alert

tone or a busy tone, and it must never ring itself.

The rule of non-surprise means that the relationship between the reality’s

behaviour and the user’s mental model of its behaviour must be a relationship

of implementation to specification. The reality should do exactly what the

mental model prescribes, no less and no more. In case that the user does not

know what to expect, but knows that he/she does not know, then the reality

is free to take any of the choices. A common example is that the user does

not know the exact point of time at which the technical system will react to

an event, within some limits.

We can describe such an implementation/specification relationship formally

by a refinement relation. In CSP, failures refinement is precisely the relation

described above.
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3.4 The Senses

The user does not always notice when his/her mental model of the behaviour

REQM is not the same as the behaviour of the reality REQ. This is because

the user’s mind does not take part in any event in the environment. The user

perceives the reality through his/her senses only.

The user’s senses SENSE translate from the set of events in the environment

to a set of events in the user’s mind. SENSE is not perfect. Therefore we

must distinguish these two sets. For example, the user might not hear a signal

tone in the phone due to loud surrounding noise. Or the user might not listen

to all of a lengthy announcement text, or he/she might not understand the

language of the announcement. At the very least, there is always a larger-than-

zero delay between any environment event and the respective mental event.

In all these cases, what happens in reality, as described by REQ, is different

from what happens according to the user’s perception of it, as described by

SENSE(REQ).

The user is surprised only if the perceived reality does not behave the same as

his/her expectations. This is why the user does not always notice a difference

between the actual reality REQ and the “parallel universe” REQM in his/her

mind.

We cannot compare the perceived reality SENSE(REQ) to the mental model

of the reality REQM directly. They are defined over different sets of events

(mental/environment). We need a translation.

The user has a mental model of his/her own senses SENSEM. SENSEM trans-
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lates the behaviour of the mental model of the technical system REQM into

events in the user’s mind. It does this in the same fashion as SENSE does it

for REQ.

The user’s knowledge about the restrictions and imprecisions of his/her own

senses is also part of SENSEM. Ideally, the user should know about them

precisely, such that SENSEM matches SENSE exactly. The user is not sur-

prised if the process SENSE(REQ) is a failures refinement of the process

SENSEM(REQM). 1

3.5 The Abstractions

We restrict our definition of mode confusion to safety-critical systems. This

is because traditionally the safety-critical systems community has perceived

mode confusions as a problem. As a consequence, we need to abstract to the

safety-relevant aspects of the technical system.

When the user concentrates on safety, he/she performs an on-the-fly sim-

plification of his/her mental model REQM towards the safety-relevant part

REQM

SAFE
. This helps him/her to analyse the current problem with the lim-

ited mental capacity. Psychological studies show that users always adapt their

current mental model of the technical system according to the specific task

they carry out [4]. The “initialisation” of this adaptation process is the static

part of their mental model, the conceptual model. This model represents the

1 In [36], we used the name MMOD for SENSEM(REQM). We did not define

SENSEM and REQM separately. We now make a distinction between these two

different kinds of mental model for clarity.
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user’s knowledge about the system and is stored in the long term memory.

Analogously to the abstraction performed by the user, we perform a simpli-

fication of the requirements document REQ to the safety-relevant part of it

REQSAFE. REQSAFE can be either an explicit, separate chapter of REQ, or

we can express it implicitly by specifying an abstraction function, i. e., by de-

scribing which aspects of REQ are safety-relevant. We abstract REQ out of

three reasons: REQM

SAFE
is defined over a set of abstracted events, and it can

be compared to another description only if it is defined over the same ab-

stracted set; we would like to establish the correctness of the safety-relevant

part without having to investigate the correctness of the entire mental model

REQM; and our model-checking tool support demands that the descriptions

are restricted to certain complexity limits.

We express the abstraction functions mathematically in CSP by functions over

processes. Mostly, such an abstraction function maps an entire set of events

onto a single abstracted event. Other transformations are hiding (or conceal-

ment [34]) and renaming. But the formalism also allows for arbitrary trans-

formations of behaviours; a simple example being a certain event sequence

pattern mapped onto a new abstract event. We use the abstraction functions

AR for REQ and AM for REQM, respectively.

The relation SENSE must be abstracted in an analogous way to SENSESAFE.

They are relations from processes over environment events to processes over

mental events. It should have become clear by now that SENSESAFE needs to

be rather true, i. e., a bijection which does no more than some renaming of

events. If SENSESAFE is “lossy”, we are already bound to experience mode

confusion problems. SENSEM

SAFE
accordingly is the user’s mental model of
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Fig. 2. Relationships between the different refinement relations.

SENSESAFE.

Figure 2 shows the relationships among the different descriptions. In order

not to surprise the user with respect to safety, there must be a failures re-

finement relation on the abstract level between SENSESAFE(REQSAFE) and

SENSEM

SAFE(REQM

SAFE).

3.6 The Definitions

In the following, let REQSAFE be a black-box requirements specification, ab-

stracted to the safety-relevant aspects, let REQM

SAFE be a mental model of the

behaviour of REQSAFE, and let SENSESAFE and SENSEM

SAFE
be relations from

processes over environment events to processes over mental events representing

the user’s senses and the mental model of them, respectively.

The definition of mode needs a precise definition of a potential future be-

haviour. We take it directly from the failures model of CSP (Def. 1).

Definition 3 (Potential future behaviour) A potential future behaviour

is a set of failures.

19



A state is a potential future behaviour. We can distinguish two states of a

system only if the system may behave differently in the future. This is because

of the black-box view.

Definition 4 (Automation surprise) An automation surprise between

SENSE(REQ) and SENSEM(REQM) occurs if and only if

SENSE(REQ) is not a failures refinement of SENSEM(REQM), i.e., iff

SENSEM(REQM) 6vF SENSE(REQ) .

The user is surprised if any detail of the technical system contradicts to his/her

expectations.

A mode is just a state. But we reserve the word for the “states” of abstracted

descriptions, i. e., of SENSESAFE(REQSAFE) and of SENSEM

SAFE
(REQM

SAFE
).

We can distinguish two modes only if the system may behave differently in

the future with respect to safety.

Definition 5 (Mode) A mode of SENSESAFE(REQSAFE) is a potential fu-

ture behaviour. And, a mode of SENSEM

SAFE
(REQM

SAFE
) is a potential future

behaviour.

We now finally can present our central definition for mode confusion:

Definition 6 (Mode confusion) A mode confusion between

SENSESAFE(REQSAFE) and SENSEM

SAFE
(REQM

SAFE
) occurs if and only if

SENSESAFE(REQSAFE) is not a failures refinement of SENSEM

SAFE
(REQM

SAFE
),

i.e., iff

SENSEM

SAFE
(REQM

SAFE
) 6vF SENSESAFE(REQSAFE) .

A (safety-critical) mode confusion is an automation surprise, but only if it is
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safety-relevant.

Every time a user’s REQM

SAFE changes, one must decide anew whether a mode

confusion occurs. Our definition of mode confusion is based on the (rather

strong) assumption that REQM

SAFE
is stable over time. The user generates

REQM

SAFE on-the-fly from REQM and must re-generate it later when he/she

needs it again. This re-generation might lead to a different result. In particular,

the re-generation requires the user’s recollection of the current mode. A user’s

lapse [27] here can result in a mode confusion. This happens when the user

selects a mode as initial mode which does not match the reality’s current

mode.

4 Classification of Mode Confusions

We classify mode confusions into four classes. The classification follows directly

from the above definition of mode confusion. Each part where something can

go wrong leads to a class.

(1) Mode confusions which arise from incorrect knowledge of the human

about the technical system and its environment.

If REQM does not match REQ, then the failures refinement relation

can break.

(2) Mode confusions which arise from the incorrect abstraction of the user’s

knowledge to the safety-relevant aspects of it.

If the mental abstraction function AM does not match the abstraction

function for the technical system AR, then the failures refinement relation

can break (compare Figure 2 above).
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(3) Mode confusions which arise from an incorrect observation of the tech-

nical system or its environment. This may have physical or psychological

reasons.

The sense organs may be physically imperfect; for example, eyes which

cannot see behind the back. Or an event is sensed physically, but is not

recognised consciously; for example because the user is distracted, or

because the user currently is flooded with too many events. (“Heard,

but not listened to.”) If SENSE does not match SENSEM, the failures

refinement relation can break. We could call this class also the mode

confusions which arise from incorrect knowledge of the human about his

or her own senses. The confusion disappears when the human knows

about the senses’ limitations.

(4) Mode confusions which arise from an incorrect processing of the ab-

stracted mental model by the user. There can be a memory lapse or

a “rule-based” mistake [27], i. e., a mode transition that is not part of the

correctly interpreted model.

An “execution failure” can spoil an otherwise perfect abstracted mental

model. The model’s semantics depends on the executing “machine”.

In contrast to previous classifications of mode confusions, this classification is

by cause and not phenomenological, as, e.g., the one by Leveson [14].

5 Recommendations for Avoiding Mode Confusions

The above causes of mode confusions lead directly to recommendations for

avoiding them.
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R1: Make the technical system deterministic. Non-determinism in-

creases the user’s effort for processing the mental model. The user must

simultaneously track several alternative paths in the model. This can

quickly exceed the user’s mental processing capabilities and lead to in-

correct processing. Therefore, the requirements of the technical system

should allow as little non-deterministic internal choices as possible. To

eliminate a non-deterministic internal choice, we must change the sys-

tem requirements. We must add an environment event controlled by the

machine and observed by the user which indicates the software’s choice.

This recommendation generalises and justifies the recommendation by

others to eliminate “hidden mode changes” [29,12].

R2: Check that the user can physically observe all safety-relevant

events. This avoids incomplete observation. To also avoid incorrect ob-

servation, we must check that the user’s senses are sufficiently precise

to ensure an accurate translation of these environment events to mental

events. To prevent observation problems, we can apply the same measure

as used against non-deterministic internal choices: we add an environ-

ment event controlled by the machine which indicates the corresponding

software input event.

Improving the user’s knowledge about his/her own senses has little

potential for avoiding mode confusion problems. If the user knows that

some things may happen, but he/she cannot perceive them, then they are

non-deterministic choices to the user’s mind. Again, the user will have

difficulties with the complexity of tracking alternative outcomes.

R3: Check that the user can psychologically observe all safety-

relevant events. This avoids an incorrect observation because of a psy-

chological reason. We must check that observed safety-relevant environ-
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ment events become conscious reliably. The knowledge-based approach

of Hourizi and Johnson [10,33] can be a starting point here.

R4: Document the requirements explicitly and rigorously. This helps

to establish a correct knowledge of the user about the technical system

and its environment. It enables us to produce user training material, such

as a manual, which is complete with respect to functionality.

R5: Document the safety-relevant part of the requirements sepa-

rately, or mark it clearly. This helps to produce training material

which aids the user to concentrate on safety-relevant aspects. Such train-

ing material, in turn, helps the user to abstract correctly to the safety-

relevant parts. It makes explicit the safety-relevance abstraction function

for the machine, AR.

We must also minimize the affordances for human error in general. We already

cited the respective recommendations of Reason [27] on page 10 above. Rea-

son distinguishes three basic types of human error: skill-based slips and lapses,

rule-based mistakes, and knowledge-based mistakes. Slips appear as incorrect

observation for psychological reasons in our classification, and knowledge-

based mistakes appear as incorrect knowledge. Lapses and rule-based mistakes

cause incorrect processing.

6 Checking Our Definition Against Other’s Notions of Mode Con-

fusion

We now check whether our definitions of mode and of mode confusion indeed

cover the informal notions in the literature. Appendix A contains a detailed

comparison of eight informal notions to our definition. There, we investigate
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the work of Thimbleby [16], Doherty [15], Sarter & Woods [11], Leveson et al.

[14], Rushby [9,26], Degani & Heymann et al.[12,31,18], Buth [13], and Hourizi

& Johnson [10,33]. Here, we discuss our findings in Appendix A.

We conclude that all authors, including us, agree about what a mode is. Only

Degani & Heymann et al. disagree in one sub-topic. They have a white-box

view of the system instead of the usual black-box view.

The abstraction from states to modes is discussed by only a few authors.

Most just implicitly assume that it has been done. Some use abstraction for a

different purpose. They use it to reduce the size of the state space such that

model checking becomes feasible. Doherty makes a case to have a user-relevant

abstraction. We specialize this to a safety-relevant abstraction.

All authors who use a model-checking tool require that the two models must

be in some equivalence relation to avoid mode confusion. Here, we disagree.

We require a (failures) refinement relation in one direction only. Equivalence

would mean refinement in both directions. Our position gets some support

from Sarter & Woods: a problem arises only if the user does something wrong.

We claim that equivalence is stronger than necessary. If the mental model is in

a specification/implementation relation, i. e., a refinement relation, with the

technical system, then no automation surprise will arise. We agree that a non-

deterministic mental model can cause a problem indirectly. Non-determinism

can quickly exceed the user’s mental capacity, leading to incorrect processing

of the model. But this does not happen necessarily. Therefore we prefer to

distinguish an outright wrong mental model from an execution failure on a

correct model.
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We suspect that the general insistence on an equivalence relation roots in the

tools used. There are many model checking tools, but only one can check for

failures refinement. This is FDR, the tool we use. Without FDR, one needs to

check for a more than sufficient condition if one wants tool support at all.

It is generally accepted that two models must be compared. Nevertheless, all

model checking tools except FDR require to encode the two models into a

single composite automaton. Buth’s idea to use FDR makes the comparison

much more natural.

Only few authors consider “incorrect observation” explicitly. Degani & Hey-

mann et al. do it, and Hourizi & Johnson, too. We can probably safely assume

that all other authors would agree that this can happen, even if they did

not include it in their particular approach. Buth, for example, hides a non-

perceivable event manually. Our rigour made it obvious that one needs an

explicit translation from environment events to mental events.

Our approach does not allow to have more than one human controller or more

than one automated controller, as Leveson et al.’s approach does. But both

views can be translated into each other.

Our approach is specific to safety-critical systems. Other, earlier literature

discusses mode confusion in (moded) text editors. We can adapt our definition

by abstracting to other than safety-relevant aspects. We do this elsewhere

[37,38], for the telephony domain.

All tool-supported approaches use the term “mental model” in the restricted

sense of “mental model of the behaviour of the technical system”. They fur-

thermore assume that an explicit, useful description of such a mental model
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can be extracted. We follow them in our attempt to clarify the definitions.

This restriction loses the wider general meaning of mental model. But it also

enables us to propose definitions for mode and mode confusion with mathe-

matical rigour, and it enables us to exploit the analytical power of the tools.

All tool-supported approaches check for any kind of automation surprise. This

includes our approach. One might argue that automation surprises exist that

are no mode confusions. We are convinced firmly that we need a black-box view

of the technical system. But this implies that we can distinguish two modes

only by their potential future behaviour. If two behaviours are different, that

is, if there is a surprise, then there must be two different modes. Our solution

therefore is to have a suitable abstraction from states to modes. An automation

surprise is no mode confusion if it is abstracted away.

7 Application: Mode Confusion Analysis for an Automated

Wheelchair

We demonstrate the usefulness of our definition and of our recommendations

by an application in the service robotics domain. We analyze the cooperative

obstacle avoidance behaviour of a wheelchair robot. We specify its behavior

formally and then we analyze it with an automated tool. This reveals several

mode confusion problems. We then resolve these problems.
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Fig. 3. The autonomous wheelchair Rolland that was model-checked for mode con-

fusion problems. Photo: Rolf Müller

7.1 The Bremen Autonomous Wheelchair “Rolland”

The Bremen Autonomous Wheelchair “Rolland” is a shared-control service

robot, that realizes intelligent and safe transport for handicapped and elderly

people. The vehicle is a commercial off-the-shelf power wheelchair Meyra Ge-

nius 1.522. It has been equipped with a control PC, a ring of sonar proximity

sensors, and a laser range finder (Fig. 3).

Rolland is jointly controlled by its user and by a software module, in contrast to

other service robots. Depending on the active operation mode, either the user

or the automation is in charge of driving the wheelchair. Conflict situations,

often caused by mode confusions, arise if the commands issued by the two

control instances contradict each other.
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7.1.1 System Architecture

The user controls the commercial version (no control PC, no sensors) of the

wheelchair with a joystick. The command set via the joystick determines the

speed and the steering angle of the wheelchair.

The safety module [39] wiretaps the control line from the joystick to the motor.

Only those commands that won’t do any harm to the wheelchair and its

user are passed unchanged. If there is an obstacle dangerously close to the

wheelchair, the safety module performs an emergency brake by setting the

target speed to zero. The notion “dangerously” refers to a situation in which

there is an object in the surroundings of the wheelchair that would be hit, if the

vehicle was not decelerated to a standstill immediately. Thus, this fundamental

module ensures safe travelling in that it guarantees that the wheelchair will

never actively collide with an obstacle.

Higher-level skills provide additional functionality above the safety module.

Obstacle avoidance (i. e., smoothly detouring around objects in the path of

the wheelchair), assistance for passing the doorway, behaviour-based travelling

(wall following, turning on the spot, etc.) and others. These modules have been

combined to the driving assistant [40]. It provides the driver with various levels

of support for speed control and for steering.

7.1.2 Obstacle Avoidance Skill

The obstacle avoidance skill must satisfy two requirements. Firstly, the au-

tomation must support the handicapped user when braking or detouring

around objects. The goal is a smooth and comfortable driving behaviour.

29



Fig. 4. Deciding on which side the user wants the obstacle to be passed.

Secondly, the user must not be surprised. Whatever the automation decides

to do, it has to be consistent with the user’s expectation.

This intelligent shared-control behaviour is realized by projecting the antici-

pated path of the wheelchair into a local obstacle occupancy grid map. Figure 4

shows a situation in which the wheelchair is supposed to pass through a door-

way. The right doorpost is a relevant obstacle since it is on the current path of

the vehicle. The distance before collision is visualised for positions on this path

by the grey-shaded area: the darker the sooner some part of the wheelchair

will reach the corresponding position. The joystick command shown on the

photo in the upper right corner of the figure indicates a narrow right curve.

Since the corresponding projected path (upper arrow) points to the right of the

doorpost, this command is interpreted as “do not pass through the doorway”.

The lower photo shows a joystick command indicating a left curve. Since the

corresponding projected path (lower arrow) points to the left of the doorpost
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(i. e. through the doorway), this command is interpreted as “pass through the

doorway”.

The algorithm chooses the speed and steering angle depending on the side on

which the projected path, indicated with the joystick, passes the obstacle. If

the driver directly steers toward an obstacle, the algorithm infers that he or

she wants to approach the object. Then it does not alter the steering angle. As

a result, obstacles are smoothly detoured if desired, but they can be directly

approached if need be. If the automation realizes that the projected path of the

vehicle happens to be free after an avoidance manoeuvre, it again accelerates

up to the speed indicated by the user via the joystick.

The transition to the obstacle avoidance mode is an “indirect” one [14]. The

mode is not invoked by the user on purpose. Thus, the driver probably does not

adapt to the new situation after an obstacle has been detoured, because he or

she did not notice that the operation mode changed from operator-control to

obstacle avoidance. It is very likely that the user would not react immediately

after the avoidance manoeuvre and steer back to the original path. Instead,

he or she would probably not change the joystick command. The driver would

be surprised that the wheelchair follows a wrong track after the obstacle.

An additional feature of the obstacle avoidance algorithm fixes this obvious

mode confusion problem. It steers back to the heading of the original path

after the obstacle has been passed. If the user does not adapt to the new

situation, i. e., he or she does not change the joystick position after a detouring

manoeuvre, the algorithm interprets the command in the frame of reference

that was current when the manoeuvre began.

The algorithm therefore is able to navigate through a corridor full of people
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or static obstacles by simply pointing forward with the joystick. If there is an

object that has to be detoured, the user keeps the joystick in an unchanged

position and thereby enables the obstacle avoidance algorithm to steer back

to the orientation of the original path.

Please note that we extend the narrow safety notion introduced here during

our case study: Any behaviour of the wheelchair that contributes to its obstacle

avoidance skill is considered to be safety-relevant.

7.2 Obtaining Specifications of the Behaviour

We obtained an explicit specification of the motion behaviour of the wheelchair

robot, and we obtained an example of an explicit mental model of the wheel-

chair’s motion behaviour, in order to demonstrate our mode confusion analysis

approach.

7.2.1 Methodology

Our goal is to prove that our mode confusion analysis can be applied success-

fully to a problem of practical size. This requires that two explicit specifications

are available for comparison. It is not our goal to explore suitable ways for

the extraction of a mental model of behaviour. This is outside of our research

focus and of our expertise.

A basic assumption of our work is that an explicit mental model of the safety-

relevant aspects of the wheelchair’s behaviour can be made available. Mental

models have been extracted from training material, from user interviews, and

by user observation (see Sect. 2.1). There is dispute about how reliable user
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observations are, in particular (see, e.g., [4]). Even in a user interview, one has

to take into account that the user may actually believe in one thing, but act

in a different manner [3]. Solutions to such difficulties are outside the focus of

our work.

We selected a simple way of obtaining an example of a mental model of be-

haviour. It is sufficient to prove the feasibility of our approach under the

above assumption. We performed a naive user interview. The resulting ex-

plicit description probably does not match exactly the actual model of the

user. Furthermore, the user interviewed is an expert user. This prevents us

from detecting mode confusion problems that are specific to novice users.

Nevertheless, we believe that the resulting explicit model has sufficient resem-

blance to an actual mental model to prove the feasibility of our approach. In

addition, we think that the insights from the example analysis are still of value

to a designer of an automated wheelchair, despite some limitations.

7.2.2 The Events

The relevant events are obvious for the wheelchair. The basic assumption from

Sect. 3.2 above therefore is satisfied that there is a general consensus about

the events. There is a number of variables of the technical system visible to

the user in a black-box view. These are the position of the joystick, the actual

status of the wheelchair motors, the orientation of the wheelchair in the initial

inertial system, the locations of obstacles, and the current command to the

wheelchair motorics. We therefore specified events in CSP that denote a change

in one of the variables.

The safety-relevant abstractions of the events required a little more work,
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but it was straightforward. First, we documented explicitly for the detailed

data types that describe measured values and motor commands, which proper-

ties are safety-relevant. We then replaced the detailed data types by suitably

abstracted ones. The latter only have two to three or sometimes four dis-

tinct values instead of some integer ranges. For example, we abstracted an

integer-valued speed command range between −42 cm/s and 84 cm/s to the

three values standStill, slowSpeed, and fastSpeed. They cover all distinct

safety-relevant cases. We do not even distinguish between forward and back-

ward driving, since the setting turned out to be symmetrical with this respect.

The most difficult abstraction was that of the virtual map of the obstacle situ-

ation. We kept only the closest obstacle on the current path of the wheelchair.

An object in the surrounding is a relevant obstacle if driving further on the

current path would cause some part of the wheelchair to collide with the ob-

ject. We describe the position of the obstacle relative to the wheelchair by a

potential wheelchair path and a distance. The path is defined by the steering

angle that would be necessary for a collision of the centre of the wheelchair’s

front axle with the obstacle. The distance is the travel distance before im-

pact. Since we are not interested in the distance as such, we abstract it to

the corresponding criticality with respect to the current wheelchair speed: if

the obstacle is far away, the required action is less demanding than it is if the

obstacle is close.

7.2.3 Obtaining an Example Mental Model of the Behaviour

We “interviewed” a user who has built a mental model of the wheelchair robot

through extensive use: the second author of this article. Even though he has
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seen the source code of the software, he definitely does not use this knowledge

while driving. Instead, he has built his own, intuitive, black-box mental model.

This model is much easier to use for quick decisions. It also turned out that

it is structured differently than the technical system. In addition, the user

interviewed can express himself in CSP directly. This saved us from conducting

a standard user interview for this research.

However, we conducted several interviews with different kinds of users for

other purposes. We tried to optimize the different skills of the wheelchair such

as obstacle avoidance, turning on the spot, etc. For this, we also experimented

with wheelchair novices such as visitors and students.

7.2.4 Obtaining the Requirements Specification of the Behaviour

We extracted the CSP requirements specification of the behaviour of the

wheelchair robot through “reverse engineering” from the source code. Un-

fortunately, no requirements document existed before this. (Of course, we did

this only after we specified the mental model, in order not to spoil the latter

by a fresh and close impression of the code.) The CSP specification is close to

the source code. We restricted it to those parts related to motion. The rather

complex sensor software is included at a high level of abstraction only.

The technical system is split into three parts: the input devices, the software,

and the output devices. This separation is not present in the mental model.

The mental model sees the entire technical system as a single black box.

The driver software of the sonar system provides “virtual sensors” [40]. They

allow the other software to inspect a virtual map of the obstacle situation.
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This design structure of Rolland helped a lot for the specification of the re-

quirements of the input devices. The mapping of physical obstacle locations

to the software’s input variables became a nearly trivial mapping because of

this.

The safety-relevant abstraction of the behaviour is rather similar to the de-

tailed specification. Mostly, the parameters of the detailed events were re-

placed by the simpler parameters of the abstracted events. All motion-related

behaviour is potentially safety-relevant. Accordingly, the mental model of the

safety-relevant part of the behaviour is rather similar to its detailed version,

too. But with other applications, more simplifications might be possible and

necessary.

7.2.5 Overview of CSP Specifications

There are the four specifications in CSP. We have versions for the technical

system and for the mental model, both subdivided into a detailed version

and an abstracted version. They partially share the definitions of events and

types as appropriate. Ultimately, we combine them for a refinement check of

the detailed descriptions on the one hand, and for an automated refinement

check of the safety-relevant abstractions on the other hand. As expected, an

automated refinement check at the detailed level is not possible since the state

space is way too large.

The user’s mental model of the behaviour of the wheelchair’s obstacle avoid-

ance module is specified by four major CSP processes: a “halt” process entered

whenever the joystick is in neutral position, a “user controlled” process for user

controlled driving, an “avoid” process for the obstacle avoidance skill of the
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Fig. 5. The user’s mental model of the behaviour of the wheelchair represented by

four CSP processes.

wheelchair, and a “steer-back” process in which the wheelchair automatically

returns to the original driving direction after an obstacle avoidance manoeuvre

has been completed. Figure 5 shows the processes and the transitions among

them.

The structure of the specification of the wheelchair behaviour requirements is

different from that of the mental model. The specification of the wheelchair

behaviour requirements REQ is the composition of the requirements on the

technical system SYSREQ and of the requirements on its environment NATREQ.

SYSREQ in turn is a composition of the input device requirements IN, the soft-

ware requirements SOF, and the output device requirements OUT. SOF performs

an infinite loop of reading sensors, choosing the appropriate software routine,

processing the input, and setting the actuators. In contrast, the specification of

the mental model of the behaviour of the wheelchair REQ M is the composition

of the mental model of the behaviour of the technical system SYSREQ M and

of the mental model of the behaviour of its environment NATREQ M. SYSREQ M

performs a loop of perception, calculation, and acting. There are no separate

input/output relations, and the detailed structure of SYSREQ M is also quite

different from that of SOF. For each of the above, the structure of the detailed
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and of the abstracted specifications are identical.

The size of both safety-relevant abstractions together is about 1400 lines of

commented CSP specification, or about 720 lines of pure CSP specification.

The specification is available from us on request.

7.3 Mode Confusion Detected During Modelling

Our rigorous modelling process already revealed a first mode confusion prob-

lem:

Mode Confusion Due to Imperfect Vision

The user’s vision is more restricted than one would think. We found out when

we had to specify the user’s senses SENSE explicitly. SENSE does a direct

one-to-one mapping of monitored events to mental monitored events mostly

(with some delay). But the explicit modelling made it obvious that there is

one exception. The user cannot see obstacles behind his back. Of course, this is

already a problem when driving backward. But they are likely to obstruct for-

ward paths, too: when driving a curve, the back of the wheelchair swerves out

to the side and may hit obstacles which are nearby alongside the wheelchair,

but behind the user’s head. The wheelchair robot will notice the danger, acti-

vate the obstacle avoidance skill, and change the motion into a safe one. The

user will not notice the mode change, and he or she will be surprised. This

is the reason why driving backward has the exactly same problems as driv-

ing forward. (It therefore can be ignored in our abstraction out of symmetry

considerations.)
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In our classification, the problem found is one arising from an incorrect obser-

vation of the environment by the user.

This mode confusion problem can be resolved by adding a feedback light to

the user interface. It is on when the system is in the “avoid” or “steer-back”

software routine.

7.4 Mode Confusions Detected by Model Checking

An automated analysis detected two mode confusion problems which were new

to us. This happened despite the second author knows the wheelchair robot

well, even its more obscure properties. Additionally, the automated analysis

detected all expected mode confusion problems.

Mode Confusion Due to Fast and Slow Senses

The first new mode confusion problem occurs when the different senses of

the user work at different speeds. The relation SENSESAFE translates moni-

tored events to mental monitored events. In a first version, we specified this

translation independently for each of the user’s senses (vision, tactile, motion-

detection). This is realistic, since the organ of equilibrium can take some time

before detecting a slow turning, and since the user might not see an obstacle

in a complex surrounding immediately. These delays need not be correlated.

And the joystick position is felt practically without delay by the user.

The automated model-checking tool FDR [35] detected a violation of

the refinement property resulting from this. Figure 6 shows one of the

generated counter-examples. Initially, the wheelchair does not move. The
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SENSE_M_SAFE(REQ_M_SAFE):

performs:

<mmJoystickCommand.100.straight>

then accepts:

{mcMotorsCommand.fastSpeed.straight}

SENSE_SAFE(REQ_SAFE):

performs:

<mmJoystickCommand.100.straight,

mmJoystickCommand.100.right>

This proves that SENSEM

SAFE
(REQM

SAFE
) 6vF SENSESAFE(REQSAFE), i. e.,

that the perceived reality is not an implementation of the mental model.

Fig. 6. Counterexample by FDR proving the mode confusion due to fast and slow

senses.

user then fully tilts the joystick forward. Shortly after that, the user

points the joystick to the right. The user expects to feel the acceleration

(mcMotorsCommand.fastSpeed.straight) of the forward command after is-

suing it. Instead, the user has time to issue another command while he or she

cannot feel any reaction of the wheelchair. This is a mode confusion. FDR al-

lows to investigate the cause by inspecting the traces of the CSP sub-processes

from which SENSE_SAFE(REQ_SAFE) is composed. The wheelchair indeed re-

acts as expected, but the user’s senses delay the perception of the reaction.

In practise, the situation is not really grave. Human senses are sufficiently

fast to clear up any such confusions before driving at 6 km/h becomes diffi-

cult. Nevertheless, the tool correctly pointed out that in principle there is a

problem.
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In our classification, the problem found is one arising from an incorrect obser-

vation of the system by the user.

Really resolving this mode confusion is hard. In principle, we can educate

the user about the timing problems. But the mental model will become much

more non-deterministic. Strongly non-deterministic mental models are hard

to handle for the user. They can easily go beyond his or her mental process-

ing capabilities. This leads to mode confusion problems because of incorrect

processing. The most viable solution is to keep the timing of the system so

slow that we can make the explicit assumption that the user’s senses will not

delay events noticeably. This was what we did in our case.

The mode confusion problem found will occur in most shared-control systems.

It occurs if the user uses different senses, and if these can have different delays

for perception. With this respect, a complex visual scene can already count

as being perceived by different senses, like the collection of aircraft cockpit

panels.

Mode Confusion Due to Wrong Knowledge About the Halting Wheelchair

The second mode confusion problem revealed by the FDR tool is caused by

an erroneous simplification of the acquired mental model by the user. Rushby

denotes this process of irregularly generalising often used knowledge as in-

ferential simplification [5]. The user simplified his model of the behaviour of

the “halt” routine (see above) such that the wheelchair was assumed to re-set

the steering angle to its initial “straight” position whenever the intended user

speed was set to zero. As a consequence, according to this mental model the

wheelchair could not change its steering to a value other than straight when
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SENSE_M_SAFE(REQ_M_SAFE):

performs:

<mmJoystickCommand.0.right>

then accepts:

{mcMotorsCommand.standStill.straight}

SENSE_SAFE(REQ_SAFE):

performs:

<mmJoystickCommand.0.right,

mcMotorsCommand.standStill.right>

This proves that SENSEM

SAFE
(REQM

SAFE
) 6vF SENSESAFE(REQSAFE), i. e.,

that the perceived reality is not an implementation of the mental model.

Fig. 7. Counterexample by FDR proving the mode confusion in the “halt” routine.

standing still. But the technical system allows this.

The FDR tool reported the refinement violation shown in Fig. 7: the user in-

tends to steer to the right while the wheelchair stands still. Both, the perceived

reality as well as the mental model of the reality engage in the corresponding

mental monitored event mmJoystickCommand.0.right. The technical system

correctly maps this joystick command to the corresponding motor command

mcMotorsCommand.standStill.right. Due to the inferential simplification

mentioned above, the mental model refuses to engage in this event, it only

accepts mcMotorsCommand.standStill.straight here.

Please note that this mode confusion is safety-relevant: if the user’s mental

model does not allow to change the steering angle during a standstill, the user

might lose track of the automation behaviour: consider a situation in which it
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is necessary to set the steering angle to its maximum value on either side to

avoid a certain object in front of the wheelchair. If your mental model refuses

to steer while standing still, you might not be able to set the steering angle

soon enough while driving. This is because the curve radius increases when you

steer while you are already driving (even at a very low speed level). Therefore,

this mode confusion may decide about whether or not it is possible to pass an

obstacle, and is thus safety-relevant.

In our classification, this mode confusion results from incorrect knowledge of

the user about the system caused by an erroneous inferential simplification.

We resolved this mode confusion by refreshing the second author’s knowledge

about the “halt” routine: The corrected version of his mental model allows to

change the steering angle while the wheelchair is in a standstill. This enhanced

version of the mental model is used in the following.

Detecting the Known Mode Confusion

The automated analysis also detected the mode confusion problem which

we already found during modelling. We specified the user’s senses in non-

matching versions for reality and for the mental model of it. The mental

model SENSEM

SAFE, ideal maps all physical events to mental events perfectly.

The reality SENSESAFE, however, may replace the visual perception of the

closest obstacle by a less critical one.

The model-checking tool generated example traces for a mode confusion situ-

ation (Fig. 8 shows one of them). The wheelchair appears to change its motion

behaviour without a cause. In the beginning, the user fully tilts the joystick to
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SENSE_M_SAFE_IDEAL(REQ_M_SAFE):

performs:

<mmJoystickCommand.100.right,

mcMotorsCommand.fastSpeed.right,

mmObsLocChange.left.nonCriticalDist>

then accepts:

{mcMotorsCommand.fastSpeed.right}

SENSE_SAFE(REQ_SAFE):

performs:

<mmJoystickCommand.100.right,

mcMotorsCommand.fastSpeed.right,

mmObsLocChange.left.nonCriticalDist,

mcMotorsCommand.standStill.right>

This proves that SENSEM

SAFE, ideal
(REQM

SAFE
) 6vF SENSESAFE(REQSAFE),

i. e., that the perceived reality is not an implementation of the mental model.

Fig. 8. Counterexample by FDR proving the mode confusion due to imperfect vision.

forward right. The wheelchair accordingly moves in a right curve at full speed.

The user then sees an obstacle on the path. It is a bit to the left of the middle of

the path, and still at a non-critical distance. Suddenly, the wheelchair brakes

to a stand-still. The cause for the braking action is a second, much closer

obstacle on the path which is out of the user’s vision. The user is confused.

He thinks the wheelchair is in the user control mode, while in reality it is in

the avoid mode. He cannot explain this behaviour as long as he assumes that

his vision is perfect. Therefore the failures refinement check fails and produces

this counter-example.
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In our classification, such a mode confusion arises from an incorrect observa-

tion of the environment: the “wrong” obstacle is assumed to be the closest

obstacle.

We resolved the mode confusion by updating the user’s knowledge about his

senses: we replaced SENSEM

SAFE, ideal
by SENSEM

SAFE
. The latter mental model

of the senses includes the restricted vision and is identical to the physical

senses SENSESAFE.

The above mode confusion is very common in manned robotics: the human

driver of the robot (here: the wheelchair) is not correctly aware of the obsta-

cle situation in the surrounding of the robot. As a consequence, the user is

surprised if the automation intervenes where there seems to be no reason for

such an intervention. Or, vice versa, the user cannot track the automation’s

behaviour if it does not intervene while the user expects it should do so.

Proving the Absence of Further Mode Confusions

The automated analysis proved the absence of further mode confusions af-

ter we resolved the above problems as described. The model-checking tool

investigated all traces of events theoretically possible and thereby conducted

a mathematical proof by exhaustive enumeration. Of course, the proof holds

only for the mental model of this specific user, and only as long as the ac-

tual mental model does not change. The expanded transition graphs to be

explored during one of the refinement checks are in the order of 100,000 states

and 300,000 transitions.
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8 Summary

We present a rigorous way of modelling the user and the machine in a shared-

control system. This enables us to propose precise definitions of “mode” and

“mode confusion” for safety-critical systems. We then validate these definitions

against the informal notions in the literature. Our definition is an improve-

ment with two respects: First, it “sharpens” the relation between the two

models involved. We demonstrate that a mathematically weaker relation is

sufficient to avoid automation surprises. Instead of an equivalence relation, a

specification/implementation relation is sufficient. Second, our definition adds

precision to many details. For example, an abstraction step from states to

modes is necessary, and one must consider a possibly incorrect observation of

the environment by the user.

A new classification of mode confusions by cause is another result of our

definitions. It leads to a number of design recommendations for shared-control

systems which help to avoid mode confusion problems.

Our approach supports the automated detection of remaining mode confusion

problems. A tool to model-check our specific specification/implementation re-

lation exists. We demonstrated our approach practically by applying it to a

wheelchair robot. Our rigorous modelling process already revealed a mode con-

fusion problem. Our automated analysis detected two other mode confusion

problems, which were new to us. We then could resolve these problems.

The automated detection is obviously restricted to a particular instance of a

mental model of behaviour that has been extracted. The success of reducing

mode confusion potential in this way therefore depends on the suitable selec-
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tion of one or more typical users. It also requires that sufficiently accurate

methods are available for extracting a mental model by a user interview or

by user observation. As an exception, a mental model derived from training

material will be relevant for most users of a safety-critical system without

further effort.

If one had applied our recommendations already while building the automated

wheelchair, it would have been easier to use. One should have kept an up-to-

date requirements document, with a separate section on the safety-relevant

behaviour. This could have prevented the above problem with the “halt” pro-

cess. One also should have made the display show which part of the wheelchair

is about to collide with an obstacle. This could have prevented confusion be-

cause of the user’s insufficient lateral obstacle observation abilities.

Our work lends itself to extension into at least two directions. First, we can

apply our recommendations while building a new system. Second, the notions

of mode and mode confusion need not be restricted to safety-critical systems,

e. g., aviation and robotics. Elsewhere [37,38], we investigate the telephony

domain. There, we find that a considerable number of so-called feature inter-

actions are also shared-control mode confusions, and we transfer and adapt the

measures against mode confusions from safety-critical systems to telephony.

A Detailed Comparison of Our Definition Against Other’s Notions

of Mode Confusion

We now provide the detailed comparison for the discussion in Sect. 6. We

check whether our definitions of mode and of mode confusion indeed cover the
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informal notions in the literature.

Thimbleby [16] defines a mode to be a “mathematical function mapping

commands to their meanings within the system”. This is consistent with a

mode being a potential future behaviour. Thimbleby does not deal with the

mode confusion problem.

Doherty [15, pp. 118] finds that any treatment of mode must be based on a

user-relevant abstraction, because there will be sequences of input actions

which can distinguish between virtually all states. This avoids treating all

states as separate modes. This argument supports our choice of a mandatory

abstraction function. Doherty defines modes as partitions of the state-space.

A mode formally relates a trace of input actions to an outcome. This again

is consistent with a mode being a potential future behaviour. Doherty has

no explicit notion of mode confusion.

Sarter & Woods [11] have no explicit definition of mode. Concerning mode

confusion, they refer to Norman [28] and state that “a human user can

commit an erroneous action by executing an intention in a way that is

appropriate to one mode when the device is actually in another mode.”

This definition leaves open what “erroneous” and “inappropriate” mean.

If we interpret them as “has an undesired outcome”, we get close to our

definition. One can argue that Sarter & Woods don’t include situations with

an unexpected but not undesired outcome. For example, the user might just

not care about the different behaviour. We cover this aspect insofar as we

first abstract the system to its safety-relevant behaviour. After that, all

differing behaviour is undesired by definition.

Leveson et al. [14] explicitly view the system as a black box, exactly as us.

For them, “a mode defines a mutually exclusive set of system behaviours.”
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The term “mutually exclusive” alludes to the partitioning of the state space,

again. The term “set of system behaviours” is precisely equivalent to our

definition.

Leveson et al. allow more than one human controller and more than one

automated controller. Nevertheless, the idea is the same to have separate

models that must be consistent. We focus on one of the human users only

and put all other humans into the environment. Both views can be translated

into each other.

These authors distinguish three kinds of modes: supervisory modes, com-

ponent operating modes, and controlled-system operating modes. This dis-

tinction is a direct consequence of their different view on controllers. With

our view, the three kinds collapse into two kinds: the modes of the technical

system and the modes of the human’s mental model of it.

Leveson et al. define that “mode confusion errors result from divergent

controller models.” This definition is stronger than ours. It requires equiva-

lence between the models, that is, refinement in both directions. We require

refinement in one direction only. The latter covers situations where the user

does not know how the system will behave, but where the user knows that

he/she does not know. Such a situation does not lead to an automation

surprise. Leveson et al. are right that this is undesirable. But we prefer to

distinguish insufficient knowledge of the user from actual confusion situa-

tions.

The definition of Leveson et al. is informal, it does not define precisely

the term “divergent”. Therefore, it is not clear whether the models must

have the same set of traces only or also the same set of failures. Only the

latter ensures that no model can refuse an event when the other cannot. We

clearly opted for the second choice. Otherwise, a surprise can still happen.
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Rushby [9,26] has implicit definitions of mode and mode confusion only.

Rushby writes [26]: “Complex systems are often structured into ‘modes’

[. . . ], and their behavior can change significantly across different modes.

‘Mode confusion’ arises when the system is in a different mode than as-

sumed by its operator; this is a rich source of automation surprises, since

the operator may interact with the system according to a mental model that

is inappropriate for its actual mode.” We do not see any contradiction to

our rigorous definitions.

Rushby describes his model-checking approach [26]: “If we accept that

automation surprises may be due to a mismatch between the actual behavior

of a system and the operator’s mental model of that behaviour, then one

way to look for potential surprises is to construct explicit descriptions of the

actual system behavior, and of a postulated mental model, and to compare

them.” This does not say yet how the models are compared. Otherwise, it

matches our approach. Rushby’s actual comparison of models is determined

strongly by the tool he uses, Murφ. Murφ can check one model against a

set of properties, but not two models against each other. Therefore, Rushby

must encode the comparison indirectly. Buth [13] discusses this in detail. In

the end, Rushby explicitly agrees that the two-model approach of FDR and

CSP (as we use it) would have been better.

Degani & Heymann et al.: Degani et al. [12] “define a mode as a machine

configuration that corresponds to a unique behavior.” The term “unique

behavior” matches our notion. The term “machine configuration” already

reveals that they do not use a black-box view on the technical system.

Together with Leveson et al., we think that a black-box view is necessary.

Because of their white-box view, Heymann and Degani [31] propose a formal

abstraction algorithm. This algorithm generates a (minimal) black-box de-
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scription from an internal machine description that includes non-observable

events. This is helpful if one does not have a (black-box) requirements doc-

ument in the beginning. Nevertheless, we prefer to start with an explicit

requirements document.

Degani et al. [12] distinguish clearly between physical and actually ob-

served events. This matches the respective part of our definition. They point

out that the user must be able to sense the input events that trigger a tran-

sition, and that “the user’s job of integrating events, some of which are

located in different displays, is not trivial”. These recommendations are

close to our recommendations to check that the user can both physically

and psychologically observe all safety-relevant events.

Degani et al. [12] state a prerequisite for mode confusion: the user’s in-

ability to anticipate the future behavior of the machine leads directly to

confusion and error. As with Leveson et al., this description includes non-

surprise situations where the user knows that he/she does not now what

will happen.

Degani and Heymann [18] add a formal verification algorithm. The models

must “march in synchronization”. This means automata equivalence, as with

Leveson et al. They construct a “composite model” in a fashion similar to

Rushby, and they state three correctness criteria for the composite model.

The check for equivalence is motivated by Degani’s and Heymann’s de-

sire to construct a minimal safe mental model. We agree that a minimal

safe mental model should be in an equivalence relation with the machine.

However, we define correctness separately from minimality.

A prerequisite for their entire approach is that the machine is determin-

istic. This eliminates the difference between our failures refinement and the

simpler traces refinement. Our approach can handle non-deterministic mod-
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els that nevertheless do not imply a mode confusion.

Buth [13, pp. 183] writes: “Modes are identifiable and distinguishable states

of a system which differ with regard to the effect of interactions.” This is

exactly the same as our notion. She continues: “Mode confusion scenarios

or in general automation surprises describe situations where the operator’s

assumption about the system mode differs from the actual mode of the

system and may lead to potentially critical actions of the operator.” This

also is exactly our intuition.

Later (pp. 199), Buth uses failures refinement in CSP. We adopted this

idea from her. A major part of her work is the comparison of Rushby’s one-

automaton approach to the two-automaton failures refinement approach,

for checking the two models against each other. She finds that the failures

refinement approach is better.

A difference to our approach is that Buth requires mutual failures refine-

ment, i. e., equivalence. This is due to the notion of mode confusion that

Rushby uses and which Buth investigates.

Buth does not consider senses, and she does not consider the task of

abstraction formally. However, in one case she hides an event manually

that the user cannot perceive. And she discusses abstraction, but only in

the light of model checking and state space explosions, not with respect to

safety-relevance (pp. 208).

Hourizi & Johnson [10,33] criticize the mode confusion detection efforts

in the literature. They stress that the underlying problems are a (mode)

confirmation bias and selective (mode-confirming) perception of the human

user. These are covered by our definition, too. They manifest themselves as

a lossy relation SENSESAFE whose lossiness depends on the current mode.

We already stated that any imperfect relation SENSESAFE is bound to
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cause trouble. One should fix the perception first and then perform the

formal verification of the rest. Therefore, it does not matter that it would

indeed be rather difficult to obtain an explicit SENSESAFE that is sufficiently

precise in its mode-dependent lossiness.
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