
IEEE Communications Magazine, Nov. 2002, c© IEEE 1

Maintaining Telephone Switching Software
Requirements∗

Jan Bredereke
Universität Bremen, TZi

P.O. box 33 04 40, D-28334 Bremen, Germany
brederek@tzi.de, www.tzi.de/˜brederek

Abstract

We discuss how telephony software requirements should be structured to
reduce maintenance costs. “Feature interaction” problems have become a
serious obstacle to add more features to telephone switches. We show why ex-
isting public switched telephone networks are hard to modify. We then argue
that a more modular, layered requirements architecture can help. Finally we
survey approaches for such an improved telephone switching architecture and
discuss them.

1 Introduction

During the lifetime of a successful software product, maintenance costs more than
anything else. Maintenance means to revise and enhance software systems, main-
taining (or improving) their conceptual integrity and keeping documents complete
and accurate.

Currently, telephone switching software must be changed substantially. Reasons
are the opening of the world telecommunications markets (which follows a similar
development in the USA), cheaper broadband transmission hardware, faster switch
processing hardware, the advent of wireless mobility, and the probable advent of
mass Internet telephony. Competition forces the providers to add more and more
new services into the switches. The intervals of changes become shorter and shorter.

Changing telephone switching systems is difficult because of their complexity.
They already comprise hundreds of features, and they rank among the largest soft-
ware systems in the world. Recently, so-called feature and service interaction prob-
lems have become a serious obstacle to adding more features and services to these
systems [1]. The awareness of these problems arose starting from the end of the

∗This work was partially funded by the Leibniz Program of the German Research Council
(DFG) under grant Ol 98/1-1.



IEEE Communications Magazine, Nov. 2002, c© IEEE 2

1980s. Since 1992 there has been a series of six Feature Interaction Workshops
[2, 3], where industry and academia together tried to tackle the problems.

According to a commonly used definition, “a feature interaction occurs when
the behaviour of one feature is altered by the use of another”, in particular in an
undesired way. In this definition, a “feature” can be, more or less, about every
change to the system imaginable. This can range from the introduction of Answer
Call over Number Portability to just increasing the number of trunks that the switch
can handle. In this article, we use “service” as a synonym for “feature”.

Several classes of causes for service interactions have been identified, and ser-
vice interaction categorisations have been proposed. Among others, Cameron et
al. [4] present a categorisation by causes of interactions. Their top-level categories
are: violation of service assumptions, limitations on network support, and intrinsic
problems in distributed systems.

We claim that the service interaction problems are a collection of separate prob-
lems from different domains; one of these domains is the topic of our article. Even
though many people use the term “service interaction problem”, we therefore prefer
the term in the plural, “problems”.

The domain we will discuss is a software requirements structure suitable for
maintenance. Service interactions often already arise in the requirements docu-
ments. When these documents are a complete description of the behaviours and
of other interesting properties, then all service interaction problems are present in
the requirements documents at least inherently. Therefore, they should be tackled
already there. (Of course, we still have to ensure that any implementation conforms
to its requirements. But this is a different question from that of the interaction of
services which work perfectly well on their own.) The information in a requirements
document must be structured suitably to make it manageable. Having a complete
requirements document alone is not sufficient by far to tackle service interaction
problems.

In Section 2, we show why existing telephone switching software requirements
are hard to modify; and in Section 3, we discuss solutions. In Section 4, we survey
approaches for improved telephone switching architectures. Section 5 summarizes
the survey and discusses these approaches.

2 Requirements Structuring Problems

In this section, we look at the structure of telephone switching requirements and
identify three problems which make the requirements hard to change consistently.

2.1 Monolithic Requirements or Single Layer of Extension

Existing PSTNs (Public Switched Telephone Networks) are hard to modify, because
at the upper, application oriented layers, one monolithic service provides lots of
separate functionalities. The IN (Intelligent Network) [5] is an attempt to solve



IEEE Communications Magazine, Nov. 2002, c© IEEE 3

Table 1: some new concepts in telephone switching.

conditional call setup blocking
dialled number translation
multi-party call/session
service session without communication session
distinction user – terminal device
distinction user – subscriber
mobility of users and of terminals
multiple service providers, billing separately

this problem, by defining an extension interface for POTS (Plain Old Telephone
Service).

Unfortunately the IN does not allow services to be created on top of other ser-
vices. Services must be independent of each other. This is because all new services
must be built on the POIs (Points of Invocation) and PORs (Points of Return) of
the Basic Call Process.

Independent services have the advantage that they can be developed indepen-
dently. But if two services, in some sense, overlap, undesirable interactions may
occur. CF (Call Forwarding) allows calls to one telephone to be forwarded to an-
other. OCS (Originating Call Screening) allows particular numbers to be blocked;
for example parents can restrict the phone access of their children. When both
services are available, an unexpected service interaction can happen; a youth might
circumvent OCS by programming the desired number as the call forwarding target,
and then calling his own number. The call will be forwarded to the target and will
defeat the screening if OCS is processed before and independently of CF.

The interaction problem cannot be solved by simply reversing the order of pro-
cessing. The user might have blocked all long-distance calls using OCS. Later, he
attempts to forward all his calls to a friend which he will visit and who lives in
a neighbour town. When CF is processed before and independently of OCS, all
incoming calls will be blocked instead of forwarded.

The notion of a called user is extended and thus changed by CF; all services that
rely on this notion must be defined on top of CF in order to solve the interaction
problem. They must use the extended notion of a called user.

2.2 New Services Depend Implicitly on New Concepts

Undesired service interactions can happen, because fundamentally new concepts
often are introduced only implicitly. Table 1 lists some new concepts. It is difficult
to understand a new concept fully while it is used by only one service. This makes
it hard to express the concept explicitly. Also, a new concept may need a new layer
in the architecture, which cannot be added explicitly to a non-layered architecture
such as the IN.



IEEE Communications Magazine, Nov. 2002, c© IEEE 4

One such new, implicit concept is the n-party session. It is a generalisation
of the “call”, which always has two end points. It is necessary for such services
as Consultation Call, Conference Call, Call Forwarding, and Universal Personal
Telecommunications. The latter allows its users to register with any terminal device
and then have all their calls and services available there. This new concept is not
explicit in the terminology or architecture of current switching requirements. In the
IN, the Call Forwarding service is expressed by two conventional calls glued together
in the middle. The above interactions between OCS and CF occur because the CF
service changes the semantics of a call implicitly, which invalidates assumptions of
the OCS service about a call.

Another such new, implicit concept is terminal mobility. More than 50% of the
terminal devices are now mobile in some countries. The requirements architecture
of any current telephone switching network does not allow to add mobility easily.
This is so even though mobility doesn’t change the set of requirements much from a
strictly user-oriented point of view. The user-oriented view has one big node which
represents the network, with many terminal devices attached. Mobility means that
there is no piece of wire anymore. Any current requirements architecture represents
the network by a set of interconnected nodes. Each represents a switch. Terminal
devices can be associated to one such switch only. A description of terminal mobility
therefore needs complex hand-over procedures between nodes. The description of
the switching network as a set of interconnected nodes had good reasons. But it
now prevents us from describing terminal mobility requirements “naturally” from
the user-oriented point of view. It prevents us from encapsulating mobility in the
design architecture into a separate description of how mobile terminal devices and
base stations inter-work.

2.3 Concerns of the Users’ Interface Are Spread Out

The requirements documents are difficult to maintain if the requirements for one
concern are spread out far through the documents; the users’ interface is such a
concern. There is no systematic coordination among the services of the IN about
the use of the physical signals at a terminal device. A terminal device often has
only few syntactic signals available: twelve buttons, a hook switch, and a few signal
tones. Many services are available currently. Together they require a large number of
signals, many more than are available physically on most terminal devices. Physical
signals must be reused in different modes of operation. But the definitions of several
services implicitly assume exclusive access to the user’s terminal device. When this
assumption is violated, undesired service interactions can, and frequently do, occur.

The service interaction between a Credit Card Call (CCC) service and a Voice
Mail service is an example. A Credit Card Call begins with an authorisation phase.
The user must enter the card’s number and PIN. For convenience, the service often
allows to make another call without entering this long sequence again. She just
presses the “#” button at the end of the first call. The user of a Voice Mail service
can access her voice mail messages. If she does it from a phone other than her
own, she must authorize herself, too. She calls her own phone number and then



IEEE Communications Magazine, Nov. 2002, c© IEEE 5

presses the “#” button followed by some identification. She may want to access the
voice messages using the CCC service. But the services cannot work together. The
telephone system has no way to determine whether the caller presses the “#” button
because she wants to terminate the call without leaving a message, or whether she
is the owner of the voice mail box and wants to authenticate herself.

This service interaction can be resolved by adding another physical signal. In
the calling card service to which the author once subscribed, the “#” button must
be pressed at least two seconds to take effect. Unfortunately, the existing terminal
devices do not allow additional physical signals in a number sufficient for all services.

3 Solution: A More Modular Requirements

Structure

The use of modularization in the information hiding sense is one way of preparing
for future changes. This means that we identify different concerns and separate
them as much as possible. The idea is well known for the design phase, but it
can be applied to software requirements, too. In the design phase, one defines
an information hiding module for each concern with narrow, precisely documented
interfaces between them. Each module hides a “secret”, i.e., one implementation
decision. Whenever a secret changes, only one module is affected. When we look at
telephone switching software requirements, we claim that the principle is not applied
sufficiently.

The responsibility for the users’ interface should be centralised. A few, dedicated
requirements documents should describe it. Their maintenance must be coordinated
by a single organisational unit. There must be only one such unit within a provider.
For some aspects, the unit should be attached even to a standardisation body. In
the area of human-computer interfaces (HCI), a centralized user interface is already
standard operating procedure. There are good libraries for graphical user interfaces
(GUIs). Application requirements are written on the semantic level only (“select
file”), never on the syntactic level (“mouse click”). In contrast, the requirements for
most telephone services contain users’ interface concerns. They are written in such
terms as “on-hook” and “flash-hook”. Examples are the assignments of the first
and the second feature interaction detection contest at FIW’98 [3] and FIW’00 [2].
These assignments are accessible, of manageable size, and written by people from
industry.

In [6], we propose such a centralized approach. It encapsulates the syntactic
details of the signal-poor current users’ interface and provides a sufficient number of
semantic signals to other modules. We also sketch an application to the Intelligent
Network.

A prerequisite for encapsulating the users’ interface is a requirements architecture
that supports information hiding modules, such as a layered architecture. In a
layered architecture, each layer solves a partial problem and hides its details from
the other layers. Computer communication systems today are usually designed



IEEE Communications Magazine, Nov. 2002, c© IEEE 6

in this way. The upper layers of the Internet protocols provide many specialised
services, such as HTTP, SMTP, FTP, Telnet, and many more. Changes to one of
these services do not affect the others. Nevertheless, some application protocols,
which implement their respective service, build on other application services. The
PSTN has a similar structure for the lower communication layers; an example is
the architecture of the widely used Signalling System No. 7. In contrast, the upper,
application oriented part of the PSTN is a single monolithic block. We think that
the Internet way of adding services will reduce service interactions, compared to the
PSTN and Intelligent Network way.

But first the idea of modularizing the requirements must be accepted more
widely; only then the architectural models can be improved. The structure of the
assignments for the feature interaction detection contest shows this.

A modular, layered architecture helps to avoid implicit, undocumented assump-
tions. Layers of information hiding modules are connected by explicit interfaces.
Explicit interfaces document the assumptions on modules. Implicit, undocumented
assumptions can become invalid by new services. This is one of the main causes of
service interaction problems.

An architecture of fully layered services reduces the danger that the same new
concept will be introduced by different services. Such a parallel introduction can
lead to inconsistency. A layered architecture encourages to define a new concept
much earlier. It is cheaper to add another layer than to restructure a monolithic
system.

Nevertheless, adding or extending concepts still costs. When we extend the two-
ended “call” to a n-party “session”, and when we have a dedicated “connection
resource” module, then the syntactic definition of its interface will show clearly
which other modules use this module and which don’t. Unfortunately, at least most
of the connection-oriented services must be inspected and many of them must be
revised. After this work is done, we can add more services like Call Forwarding,
without further work or fear of interactions.

Integrating a new concept needs sufficient confidence in its quality and future
success. Changing a software infrastructure of this size is extremely expensive.
Nevertheless, integrating some new concepts eventually is inevitable. We think that
the session concept now is understood sufficiently well. It therefore should become
a first class member of switching requirements. In the following, we discuss new
architectures that go this way.

4 Survey of New Architectures

We now sketch some approaches that propose an improved telephone switching
architecture. These approaches are not concerned with software requirements only,
but with a comprehensive software architecture. Nevertheless, here we are interested
mostly in the requirements aspect.



IEEE Communications Magazine, Nov. 2002, c© IEEE 7

4.1 Current: the Intelligent Network

The Intelligent Network (IN) [5] currently has the largest impact on implementa-
tions. This international standard by the ITU-T defines an interface to PSTNs
where new services can be added, potentially created by third parties. The IN mod-
els POTS, possibly enhanced by any non-IN services, in an abstract way as a Basic
Call Process (BCP). A number of processing states is identified at which the basic
processing can be suspended in order to process an IN service. It is not intended
to capture the structure of the entire basic call processing in the definition of the
BCP. An IN service has one POI and one or more PORs, where basic call process-
ing resumes. The invocation can depend on several kinds of trigger conditions. The
structure of the Service Switching Function (SSF), which hands off control from the
basic call processing to the IN call processing, also comprises a Feature Interaction
Manager (FIM). Its task is to handle interactions among IN services and between
IN and non-IN services. The ways in which this can be achieved are not part of the
IN standard and are left to the implementers.

The IN architecture builds on POTS and therefore it is based on a call-oriented,
two-party, narrow-band voice communication link between non-mobile terminal de-
vices, billed by a single network provider. Many of the IN services independently
lift one of these limitations.

Jain [7, 8] has an enhanced IN-like architecture. It is a standard developed
currently. Jain offers a portable network interface to application services. This
interface can be added on top of any kind of network (PSTN, wireless, Internet).
It is written in the Java language. Its call model allows multi-party, multi-media
calls. Jain’s Java Call Control (JCC) has a call state machine similar to that of
the IN, and also uses a similar trigger mechanism. JCC does not handle feature
interactions. These must be managed at the application level, or by provisioning
and management functions.

4.2 Future: Tina, Race and Acts

The Tina initiative (Telecommunication Information Network Architecture) [9, 10]
follows a more radical approach. It was conducted by Tina-C, a world-wide consor-
tium of network operators and telecommunications and computer suppliers. It has
a long-term scope and defines an entirely new architecture, called Tina. The initia-
tive took up concepts from Open Distributed Processing (ODP) and the Common
Object Request Broker Architecture (Corba), and it applied and adapted them to
the telecommunications domain.

The Race project (Research and technology development in Advanced Commu-
nications technologies in Europe) is a related large research initiative and has been
conducted by the European Community. Cassiopeia was one of its many projects. It
developed an open services architectural framework for integrated service engineer-
ing, called Osa [11]. Both the thrust of the project and the resulting architecture
are quite close to Tina-C. Both have a service driven approach, and both emphasize
the separation of concerns. Differences are that Tina-C explicitly aims to define a



IEEE Communications Magazine, Nov. 2002, c© IEEE 8

software architecture, while Cassiopeia focuses more on requirements engineering of
services. Tina defers the use of legacy services and their access to a later stage, while
Cassiopeia sees them as an important part of the resource infrastructure, since they
are always there and must be taken into account.

The commonalities are not surprising. Both Cassiopeia and Tina have been
influenced by the previous Race project Rosa (Race Open Service Architecture),
and both had some partners in common.

Another Race project worth mentioning here is Score (Service Creation in an
Object-oriented Reuse Environment). It is not directly concerned with software
architecture. But it is concerned with the methodological aspects of service creation.
Part of that is the detection of undesired service interactions. Score applies formal
methods to IN-like systems. The goals are to detect conflicting service requirements
which are not satisfiable and to detect specified requirements which are not satisfied
on an explicit behavioural model. The approach uses exhaustive simulation for these
validations. It has been applied to small demonstration examples.

The Acts project (Advanced Communications Technologies & Services) [12] of
the European Union follows the Race project. Five of its projects are concerned
with service architectures. The emphasis is now on their application and on their
evaluation in trials. The Difference project relates different service and service man-
agement architectures to each other. The Dolmen project extended and refined the
Tina architecture (and also Cassiopeia’s Osa), in particular in the area of mobility,
since the earlier projects had assumed an underlying fixed network. The result is
called Open Service Architecture for an integrated fixed and Mobile environment
(Osam). The Vital project implemented and tested a specification of an Open Dis-
tributed Telecommunications Architecture (Odta), which is based on Tina. The
Acts Insignia project added an IN interface to broadband ISDN [13]. This approach
was extended by the Ibis project of the CoRiTeL laboratory. The Ibis project ran a
Tina architecture over an underlying broadband ISDN by using the IN interface of
the Insignia project [14]. The Acts Avanti project investigated user interfaces to a
multi-media system that can adapt to different terminal hardware, network band-
width, and user abilities (able-bodied/blind/motor-impaired). The user interface
module of Avanti encapsulates the lexical and syntactic levels of user interaction; it
makes them exchangeable for each user group.

Two Acts projects are concerned with service creation. The Screen project iden-
tified and documented what is known about tool supported methodology for service
creation. It created a document on engineering practices for component-based ser-
vice creation (Corba, Tina). Contrary to original plans, its service interaction work
remained relatively general-purpose. The Tosca project is concerned with the inte-
gration of IN-based systems into Tina, It developed a service creation platform for
both Tina and IN, with particular emphasis on IN–Tina inter-working. In the Tosca
project, Kolberg and Magill also evaluated Tina with respect to service interactions.
We will discuss the result below.



IEEE Communications Magazine, Nov. 2002, c© IEEE 9

4.3 Research: the DFC and the Agent Architecture

More novel architectures have been proposed in the research literature.
The DFC (Distributed Feature Composition) virtual architecture is proposed by

Jackson and Zave [15]. Its specific goal is to avoid and to detect service interaction
problems. It allows to compose features in a pipe-and-filter network. Each feature
is represented by one or more boxes, or filters. These are connected by simple two-
way voice and signalling connections, or pipes. The features and the routing among
them are separated. Feature boxes are composed dynamically by the DFC router
when a usage demands it. The concept of the usage is related to the concept of the
session.

Therefore, multi-party sessions are supported, even with a dynamic structure.
Tool support for detecting feature interaction problems is possible. The be-

haviour of the feature boxes is specified by a combination of formal description
techniques. The features are encapsulated into loosely coupled boxes to make this
analysis easier.

The architecture is called virtual because it does not assume any particular un-
derlying physical architecture. Nevertheless, the authors consciously avoided choices
that are likely to be expensive to implement.

There is no layered architecture; all features are specified independently. Features
cannot build onto each other in an organised way.

The architecture is prepared for some new concepts of call related features, but
not for others. It supports the multi-party call. But in the DFC’s concept of the
telephone number, there is no distinction among users, the different roles they play,
and the different terminal devices they may use. The architecture has no specific
provisions for billing or management. These issues need to be handled by the (call-
related) feature boxes, too.

The users’ interface is another concern which is spread out over the feature boxes.
The signals are on a syntactic level, for example “flash hook”.

The DFC architecture must have many of the problems that current switch-
ing architectures have because of one of its strong points: it was designed to be
implementable on a conventional switch.

The DFC architecture is interesting because of its mechanisms for handling the
problems when combining features. Recently, the DFC architecture has been im-
plemented in AT&T’s Eclipse project, which additionally incorporates Voice Over
IP.

An Agent Architecture is outlined by Zibman et. al. [16]. It separates several
concerns explicitly. There are four distinct types of agents: user agents, connection
agents, resource agents, and service agents. This separates user and terminal con-
cerns. The terminal resource agent encapsulates the user interface details, such as
the signal syntax. The distinct user and connection agents separate call and connec-
tion concerns. The user agents bring the session concept with them. The connection
agents coordinate multiple resource agents. The resource agent separates resource
management from both session control and from the services.

The approach allows to detect service interaction problems only late, at run-time.



IEEE Communications Magazine, Nov. 2002, c© IEEE 10

Table 2: some new concepts and how architectures cover them.

explicit concept available in basic architecture IN Tin
a,

R
ac

e,
A
ct
s

D
FC

A
ge

nt
A
rc
hi
te
ct
ur

e

conditional call setup blocking √ √ √ √

dialled number translation √ √ √ √

multi-party call/session − √ √ √

service session without communication session − √ √ √

distinction user – terminal device − √ − √

distinction user – subscriber − √ − −
mobility of users and of terminals − √ − −
multiple service providers, billing separately − √ − −

Table 3: ideas for maintainability and how architectures cover them.

IN Tin
a,

R
ac

e,
A
ct
s

D
FC

A
ge

nt
A
rc
hi
te
ct
ur

e

multiple layers of services − √ − √

most current concepts explicitly included (Table 2) − √ − −
encapsulated users’ interface − √ − √

mechanisms to detect service interactions off-line − (−) √ −
close to legacy systems √ − √ √

Ambiguities are logged, for example ambiguities in precedence rules.
This architecture has some problems of the currently implemented architectures,

too, because it was designed to work with them. It restricts itself to narrow-band
telephony over a fixed network. And it was a design goal that the introduction of
new services should not require modifications of existing software. Therefore POTS
is represented by a single service agent even though POTS really comprises several
distinct concerns.

5 Summary and Discussion

Table 2 summarizes how the new architectures cover our selection of new concepts
from Table 1 above. Table 3 lists how the architectures cover the ideas for main-
tainability discussed.



IEEE Communications Magazine, Nov. 2002, c© IEEE 11

The IN is an important step towards an open and extensible architecture, com-
pared to the proprietary and monolithic architectures that existed before. But it
can be only one step towards a maintainable architecture. Such an architecture
must provide already more of the current concepts explicitly, and it must be more
modular to allow adding further concepts.

The substantial research efforts of the Tina, Race, and Acts projects have added
most of the interesting concepts to the resulting architecture. The drawback is that
it is quite far away from the structure of current systems, and a transition would be
expensive.

The PSTN providers have the choice of either making high investments into the
architecture, or of postponing the introduction of many interesting services, or of
saving money up front by introducing the few general-purpose “loop holes” at the
price of increased sub-sequential costs for more service interaction problems.

Most mechanisms are still research work that detect service interaction problems
off-line, before the services are installed. This is true for the DFC approach as well
as for other approaches not presented here.

Undesired service interactions can still happen in the new architectures, such as
Tina. This is so despite that Tina avoids several kinds of service interactions which
can occur in the IN, for example in the users’ interface and due to limited network
support. Violated assumptions or conflicting goals can still cause undesired service
interactions.

Kolberg and Magill report in [3] that many undesired service interactions known
from the IN world can still happen between Tina services. Calling Number Delivery
(CND) could be implemented in Tina. It allows its users to see the identification
of the inviting party. Independently, Calling Number Delivery Blocking (CNDB)
could be implemented. It allows its users to block the delivery of the identification
information. When a user with CNDB invites a user with CND, it cannot be decided
who has priority, and whether the identification information should be revealed.
Tina does not provide any mechanisms to prevent such interactions, where user
goals conflict.

Research projects need to restrict themselves in order to succeed in their focus
area. Covering the concepts relevant for telephony is a huge task. We have seen
how the DFC approach still does not include many important concepts. The Agent
Architecture of Zibman et. al. also misses important telephony concepts such as
mobility and separated stakeholders for billing. It is complementary to the DFC
in its research focus. It allows to detect service interaction problems only late, at
run-time. Instead, it stresses the modularization of the architecture.

Important Software Engineering problems remain unsolved. We don’t know how
to prepare for unanticipated changes, like mobile telephony or Internet telephony
have been. The information hiding principle must assume that it is known which
information is likely to change, and what will be stable. We only can alleviate the
problem by taking great care and effort when making predictions.

We have better chances to confine a future maintenance task to one module only
if we use an architecture that supports modularization and layers of services, and if
we define carefully the known telephony concepts.



IEEE Communications Magazine, Nov. 2002, c© IEEE 12

References

[1] Dirk O. Keck and Paul J. Kühn. The feature and service interaction
problem in telecommunications systems: a survey. IEEE Trans. Softw. Eng.
24(10), 779–796 (October 1998).

[2] Muffy Calder and Evan Magill, editors. “Feature Interactions in
Telecommunications and Software Systems VI”. IOS Press, Amsterdam (May
2000).

[3] Kristofer Kimbler and L. G. Bouma, editors. “Feature Interactions
in Telecommunications and Software Systems V”. IOS Press, Amsterdam
(September 1998).

[4] E. Jane Cameron, Nancy D. Griffeth, Yow-Jian Lin, et al.. A
feature interaction benchmark in IN and beyond. In L. G. Bouma and Hugo
Velthuijsen, editors, “Feature Interactions in Telecommunications Systems”,
pages 1–23, Amsterdam (1994). IOS Press.

[5] ITU-T. “Q.12xx-Series Intelligent Network Recommendations” (2001).

[6] Jan Bredereke. Avoiding feature interactions in the users’ interface. In
Kimbler and Bouma [3], pages 305–317.

[7] John de Keijzer, Douglas Tait, and Rob Goedman. JAIN: A new
approach to services in communication networks. IEEE Commun. Mag. 38(1),
94–99 (January 2000).

[8] Ravi Jain, Farooq M. Anjum, Paolo Missier, and Subramanya Shas-
try. Java call control, coordination, and transactions. IEEE Commun. Mag.
38(1), 108–114 (January 2000).

[9] Marcel Mampaey and Alban Couturier. Using TINA concepts for IN
evolution. IEEE Commun. Mag. 38(6), 94–99 (June 2000).

[10] C. Abarca et al.. Service architecture. Deliverable, TINA-Consortium, URL
http://www.tinac.com/ (16 June 1997). Version 5.0.

[11] S. Trigila (ed.). “Open Services Architectural Framework for Integrated
Service Engineering”. Deliverable R2049/FUB/SAR/DS/P/023/b1, Version 4,
RACE Project 2049 (Cassiopeia) (24 March 1995).

[12] The ACTS information window. http://www.infowin.org/acts (2000).

[13] George N. Prezerakos, Stefano Salsano, Alexander W. van der
Vekens, and Fabrizio Zizza. INSIGNIA: a pan-European trial for the
intelligent broadband network architecture. IEEE Commun. Mag. 36(6), 68–
76 (June 1998).

[14] Marco Listanti and Stefano Salsano. IBIS: A testbed for the evolution
of intelligent broadband networks toward TINA. IEEE Commun. Mag. 36(6),
78–91 (June 1998).

[15] Michael Jackson and Pamela Zave. Distributed feature composition: A
virtual architecture for telecommunications services. IEEE Trans. Softw. Eng.
24(10), 831–847 (October 1998).



IEEE Communications Magazine, Nov. 2002, c© IEEE 13

[16] Israel Zibman et al.. Minimizing feature interactions: an architecture and
processing model approach. In Kong Eng Cheng and Tadashi Ohta,
editors, “Feature Interactions in Telecommunications III”, pages 65–83. IOS
Press, Amsterdam (1995).


