On Preventing Telephony Feature Interactions which are Shared-Control Mode Confusions

Jan Bredereke

University of Bremen

Overview

1

- 1. mode confusions
- 2. many FI are mode confusions
- 3. how the notion of mode confusion helps against FI

1. Mode Confusions

Jan Bredereke: On Preventing FIs which are Shared-Control Mode Confusions, University of Bremen

Example:

Airbus A320 Crash near Strasbourg, 1992

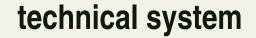
- pilots confused "flight path angle" and "vertical speed" modes of decent
 - \circ **3**.3° \sim 1,000 feet per minute
 - **3**,300 feet per minute
- 87 killed

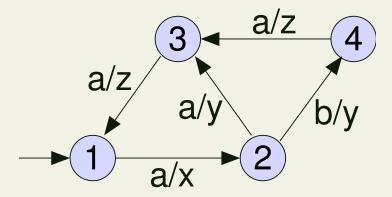
Example: Credit-Card Calling & Voice Mail

- credit-card calling:
 - 1st call: dial company's number + access code + callee's number
 2nd call: dial # + callee's number
- access your Aspen voice mail messages:
 - 1. dial Aspen's number
 - 2. listen to prompt or go to 3.
 - 3. dial # + mailbox number + passcode
- check voice mail via credit card

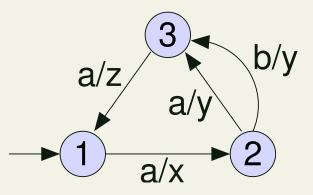
Modes in Example: Credit-Card Calling & Voice Mail

- credit card mode: **#** = next call
- voice mail mode: **#** = check mail
- user tries to shortcut voice mail's intro prompt
- surprise: call is terminated
 - $\circ\,$ new mode guaranteed only when prompt actually started

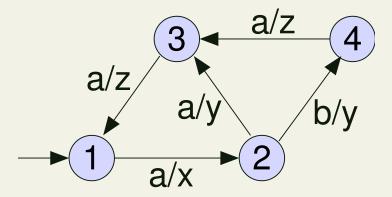

Mode Confusion

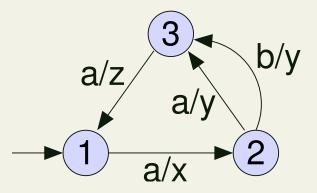

- a kind of automation surprise
- in shared-control systems

• aircraft, automobiles, . . .


Mode Confusion

- a kind of automation surprise
- in shared-control systems
 aircraft, automobiles, . . .
- humans use a mental model of the technical system
 - can get out of sync


mental model

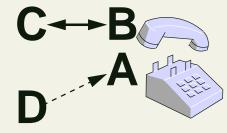

Mode Confusion

- a kind of automation surprise
- in shared-control systems
 aircraft, automobiles, . . .
- humans use a mental model of the technical system
 can get out of sync
- many research results

mental model

Causes of the Mode Confusion: Credit-Card Calling & Voice Mail

- incorrect abstraction
 - while planning the voice mail shortcut, user created abstraction with relevant parts
 - mistake: abstraction dropped the (latently still active) credit card feature
- incorrect knowledge
 - "implicit mode change"
 - b user cannot observe actual mode change until start of prompt
 - user makes wrong assumption about actual timing


Another Example: Call Waiting & Personal Communication Services

• call waiting:

- user is busy and 2nd call arrives
- $\circ\,$ user gets call-waiting tone

• personal communication services (PCS):

- user registers for current line
- o user gets all subscribed-to features there, maybe including Call Waiting
- Alice: PCS + Call Waiting Bob: PCS
- Alice, Bob registered for same line
- Bob already talks to Cindy; Dick calls Alice

Causes of the Mode Confusion: Call Waiting & Personal Commun. Services

 system has alerting mode because of Alice, mental model of Bob has not

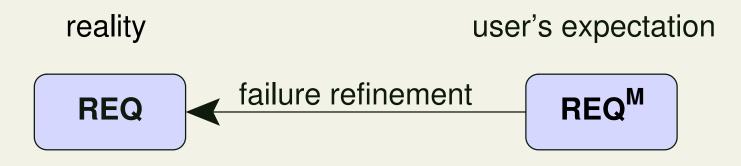
 \circ if alert,

Bob is annoyed and doesn't know how to stop it

• if no alert,

Alice's Call Waiting is ignored

• incorrect knowledge of Bob

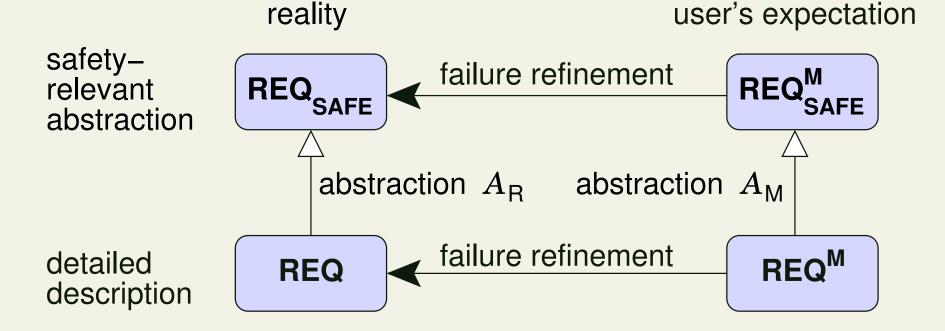

 $\circ\,$ Bob needs to know all other PCS users' features

Definition of Mode Confusion (1)

• "The user must not be surprised"

Definition of Mode Confusion (1)

- "The user must not be surprised"
- mental model: specification reality: implementation

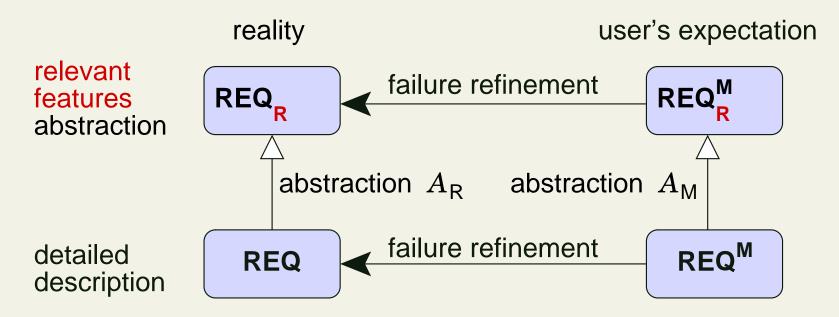

- failure refinement in CSP (Communicating Sequential Processes)
- REQ: system requirements
- REQ^{M} : user's mental model of REQ

Definition of Mode Confusion (2)

- "The user must not be surprised" (with respect to safety)
- mental model: specification reality: implementation

Definition of Mode Confusion (2)

- "The user must not be surprised" (with respect to safety)
- mental model: specification reality: implementation
- a refinement relationship in an abstracted description



Definition of Mode Confusion (3)

- complete rigorous definition in: (Bredereke and Lankenau, 2002)
- formalism: CSP (Communicating Sequential Processes)
- also need to distinguish: reality – perceived reality
 - $\circ\,$ not so relevant for telephony

Adapt the Definition to Telephone Switching

- user does not abstract to safety-relevant aspects, but to the set of features relevant currently
- relevant features:
 - currently active or can become active

2. Many FI are Mode Confusions

Jan Bredereke: On Preventing FIs which are Shared-Control Mode Confusions, University of Bremen

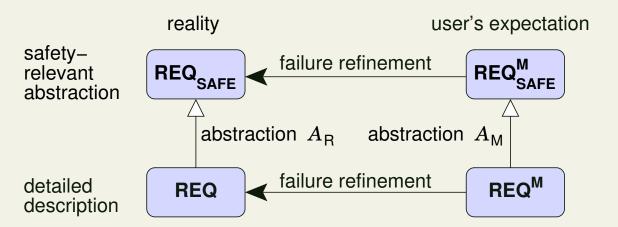
Mode Confusions in the FI Benchmark

benchmark example ID	<pre># of mode confusions</pre>	benchmark example ID	<pre># of mode confusions</pre>
CW&AC	_	OCS&CF/2	_
CW&TWC	2	CW&ACB	—
911&TWC	1	CW&CW	2
TCS&ARC	—	CW&TWC/2	1
OCS&ANC	_	CND&UN	_
Operator&OCS	_	CF&CF	_
CCC&VM	2	ACB&ARC	—
MBS-ED&CENTREX	—	LDC&MRC	1
CF&OCS	—	Hotel	2
CW&PCS	1	Billing	_
OCS&MDNL-DR	_	AIN&POTS	—

Summary of Mode Confusions in the FI Benchmark

8/22 benchmark examples with mode confusions
12 mode confusion problems total

3. How the Notion of Mode Confusion Helps Against FI


Jan Bredereke: On Preventing FIs which are Shared-Control Mode Confusions, University of Bremen

Classification of Mode Confusion Causes

(Bredereke and Lankenau, 2002)

- 1. incorrect abstraction
- 2. incorrect knowledge
- 3. incorrect observation
- 4. incorrect processing

Designing Against Mode Confusions

- help user to avoid:
 - incorrect abstraction
 - \circ incorrect knowledge

Incorrect Abstraction

- complexity of system makes correct abstraction difficult
- complexity factors (see FI benchmark):
 - non-determinism
 - long duration of feature activation
- resulting design rules:
 - give feedback on internal choices
 - \circ terminate feature's activity at end of call, if possible
 - or give feedback on set of active features

Incorrect Knowledge

- feature's behaviour must be learnable
 - \circ intuitive
 - complete training material
- resulting design rule:
 - redesign feature if not learnable
 - ▷ example: Call Waiting & Personal Communication Services

How to Check for Good Design

- (Vakil and Hansman, Jr., 2002): "operator directed design process"

 write user training material before software specification
 redesign immediately, if too difficult
- (Rushby, 2001), (Buth 2001), (Bredereke and Lankenau, 2002): model-check for mode confusions: system ↔ mental model
 - extract mental model from user training material

22

Case Study on Model-Checking for Mode Confusions

- (Bredereke and Lankenau, 2002)
- shared-control service robot: autonomous wheelchair

- extracted mental model through user interview
- four mode confusion problems found
- mathematical proof that no further problems exist

Summary

- many FI are shared-control mode confusions
- Human Factors approach in design can help:
 - design rules derived
 from definition of mode confusion
 - design processes and tools derived to check for good design

4. References

Jan Bredereke: On Preventing FIs which are Shared-Control Mode Confusions, University of Bremen

Some References

- [1] CHARLES E. BILLINGS. "Aviation automation: the search for a humancentered approach". Human factors in transportation. Lawrence Erlbaum Associates Publishers, Mahwah, N.J. (1997).
- [2] E. JANE CAMERON, NANCY D. GRIFFETH, YOW-JIAN LIN, ET AL.. A feature interaction benchmark in IN and beyond. In L. G. BOUMA AND HUGO VELTHUIJSEN, editors, "Feature Interactions in Telecommunications Systems", pp. 1–23, Amsterdam (1994). IOS Press.
- [3] JOHN RUSHBY. Modeling the human in human factors. In UDO VOGES, editor, "Computer Safety, Reliability and Security – 20th Int'l Conf., SafeComp 2001, Proc.", vol. 2187 of "LNCS", pp. 86–91, Budapest, Hungary (Sept. 2001). Springer.
- [4] D. A. NORMAN. Some observations on mental models. In D. GENTNER AND A. L. STEVENS, editors, "Mental Models". Lawrence Erlbaum Associates Inc., Hillsdale, NJ, USA (1983).

- [5] J. J. CAÑAS, A. ANTOLÍ, AND J. F. QUESADA. The role of working memory on measuring mental models of physical systems. *Psicologíca* 22, 25–42 (2001).
- [6] BETTINA BUTH. "Formal and Semi-Formal Methods for the Analysis of Industrial Control Systems". Habilitation thesis, University of Bremen, Germany (2001).
- [7] JAN BREDEREKE AND AXEL LANKENAU. A rigorous view of mode confusion. In STUART ANDERSON, SANDRO BOLOGNA, AND MASSIMO FELICI, editors, "Computer Safety, Reliability and Security – 21st Int'l Conf., SafeComp 2002, Proc.", vol. 2434 of "LNCS", pp. 19–31, Catania, Italy (Sept. 2002). Springer.
- [8] JAMES REASON. "Human error". Cambridge University Press (1990).
- [9] S. S. VAKIL AND R. J. HANSMAN, JR. Approaches to mitigating complexity-driven issues in commercial autoflight systems. *Reliability Engineering & System Safety* 72(2), 133–145 (Feb. 2002).

5. Material For Questions

Jan Bredereke: On Preventing FIs which are Shared-Control Mode Confusions, University of Bremen

Getting an Explicit Mental Model

according to (Rushby, 2001):

- from training material
- from user interviews
- by user observation

Example: Call Waiting & Call Waiting

• Call Waiting:

• Alice gets call-waiting tone

 $\circ\,$ Alice puts other party Bob on hold

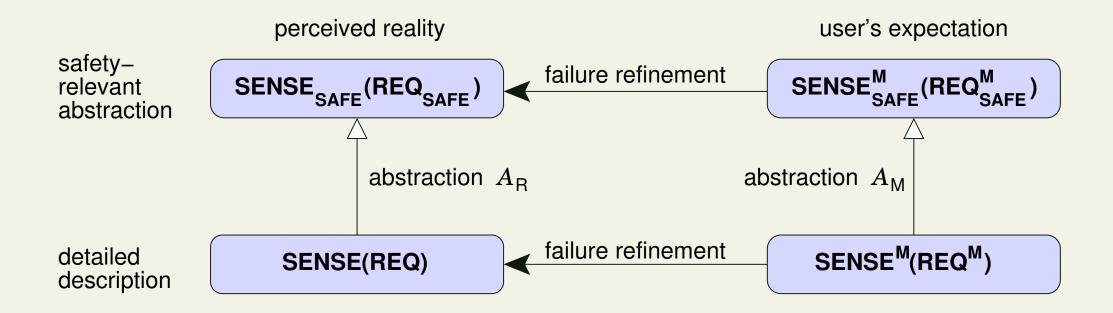
• Call Waiting & Call Waiting:

• Bob gets call-waiting tone, too

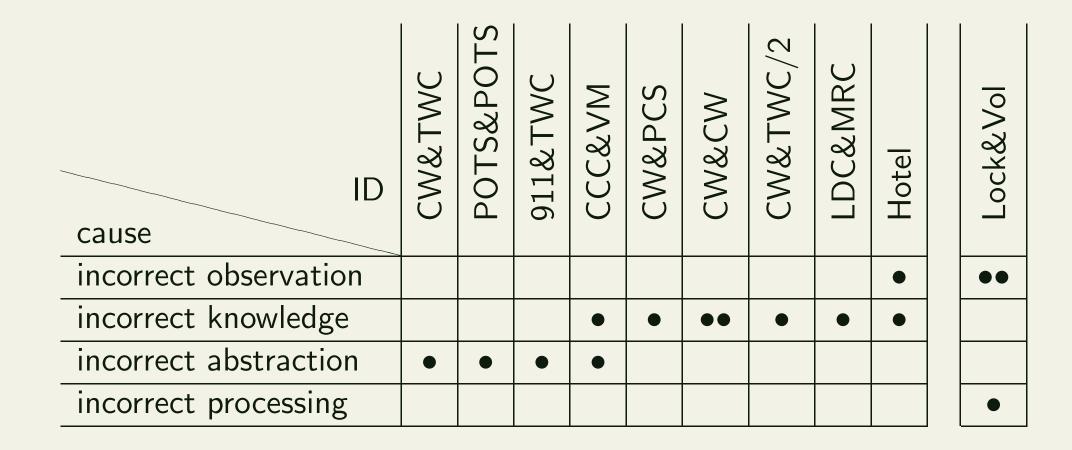
- $\circ\,$ Bob puts Alice on hold, too
- Alice finally returns to call with Bob
- Alice hears nothing and is surprised

Causes of the Mode Confusion: Call Waiting & Call Waiting

- system has a mode where Alice is on hold when returning from Call Waiting
- Alice's mental model doesn't have this mode
- incorrect knowledge of Alice


Example: Calling from Hotel Rooms

- hotel cannot determine whether call is completed
- hotel uses timer to guess
- user billed for incomplete call that rang a long time


Causes of the Mode Confusion: Calling from Hotel Rooms

- modes: not billing / billing
- incorrect knowledge:
 - user doesn't know about timer at all
- incorrect observation:
 - \circ user does know about timer
 - user measures time not precisely

Complete Refinement and Abstraction Relations

Distribution of Mode Confusion Causes

Help User to Abstract His/Her Mental Model

- difficult for user: abstraction to relevant features
- enhance feedback
- is it obvious whether the feature is active?
- have simple features
- have few features active

Online Mode Confusion Detection and Resolution

- "intelligent" interface component
 - $\circ\,$ run-time detection of mode-confusion potential
 - ▷ model-checking of currently active feature set
 - $\circ\,$ resolution by specific, additional feedback

 \circ research just started

What Remains to Be Done?

- practical experience in telephony
- more feature design rules that help user to abstract to active set of features
 - "minimal safe mental model"
 in shared-control systems
 - how can user have a smaller mental model without a mode confusion?