“Objects, Agents and Features”, 2004, (©) Springer Verlag 1

On Feature Orientation and
on Requirements Encapsulation
Using Families of Requirements

Jan Bredereke

Universitat Bremen, FB 3 - P.O. box 330 440 - D-28334 Bremen - Germany
brederek@tzi.de - www.tzi.de/ brederek

Abstract. Naive feature orientation runs into problems with large soft-
ware systems, such as telephone switching systems. With naive feature
orientation, a feature extends a base system by an arbitrary increment
of functionality. Information hiding helps to structure a large software
system design into modules such that it can be maintained. We focus
on the requirements of a software system. Requirements can be struc-
tured analogously to design modules. Naive feature orientation can vi-
olate requirements encapsulation. We survey approaches with improved
encapsulation, and we show how and when families of requirements can
help.

1 Introduction

A feature oriented description of a software system separates a base system
from a set of optional features. Each feature extends the base system by an
increment of functionality. Feature orientation emphasizes the individual features
and makes them explicit. The description of one feature does not consider other
extensions of the base system. Any interactions between features are described
implicitly by the feature composition operator used.

Feature orientation is attractive. It meets the needs of marketing. Marketing
must advertise what distinguishes a new version from its predecessors. Marketing
must offer different functionality to different customers, in particular at different
prices. Successful marketing also demands a short time to market. This requires
that the system can be changed easily. It can be achieved by just adding a new
feature. The large body of existing descriptions never needs to be changed.

But naive feature orientation runs into problems with large software systems,
such as telephone switching systems. In this paper, we show where naive fea-
ture orientation can violate information hiding, and how and when families of
requirements can help.

2 Feature Orientation

2.1 Naive Feature Orientation

With naive feature orientation, a feature extends a base system by an arbitrary
increment of functionality. The increment is typically chosen to satisfy some new

2 “Objects, Agents and Features”, 2004, (©) Springer Verlag

user needs. This selection of user needs happens from a marketing perspective.
In particular, the selection is neither particularly aligned to the internal struc-
ture of the software system nor to the organization of the system’s documented
requirements.

Many feature addition operators have been used in practice or proposed on
theoretical grounds [1, 2, 3, 4, 5, 6]. They typically share the property that they
add code in different places of the base system as needed. They are therefore
operators of a syntactic nature.

A canonical example is the structure of the Intelligent Network (IN) [7, 8, 9].
The IN is the telephone switching industry’s currently implemented response
to the demand for new features. This example demonstrates the naive feature
orientation nicely. This remains true even if the IN might be replaced by emerging
architectures eventually, such as Voice over IP (VoIP).

The IN specifies the existence of a Basic Call Process (BCP) and defines
sets of features. Examples of IN features are listed in Fig. 1. When a feature
is triggered, processing of the BCP is suspended at a Point of Initiation (POI),
see Fig. 2. The feature consists of Service-Independent Building Blocks (SIBs),
chained together by Global Service Logic. Processing returns to the BCP at a
Point of Return (POR). The Basic Call Process consists of two automata-like
descriptions, one for the originating side of a call, and one for the terminating
side of a call, see Fig. 3. In these, a feature can be triggered at a so-called
Detection Point, and processing can resume at more or less any other Detection
Point. This allows a feature to modify basic call processing arbitrarily.

There has been considerable research effort on feature composition opera-
tors. In particular, in the FIREworks project [10, 11] (Feature Interactions in
Requirements Engineering), various feature operators were proposed and inves-
tigated. These operators successfully reflect the practice of arbitrary changes to
the base system. The theoretical background is the superimposition idea by Katz
[12]: one specifies a base system and textual increments, which are composed by
a precisely defined (syntactic) composition operator.

A feature is inherently non-monotonous [15]. Most features really change the
behaviour of the base system. That is, a feature not only adds to the behaviour
of the base system, or only restricts the behaviour of the base system. For ex-
ample, in telephony a call forwarding feature both restricts and adds to the
behaviour. It prevents calls to the original destination, and it newly makes calls
to the forwarded-to destination. Therefore, a refinement relation is not suitable
to describe adding a feature.

2.2 Feature Interaction Problems in Telephone Switching

It turns out that severe feature interaction problems appear if one applies a
naive feature oriented approach to a large software system, such as a telephone
switching system. It is relatively easy to create a new feature on its own and make
it work. But it becomes extremely difficult to make all the potential combinations
of the optional features work as the users and providers expect. The telecom
industry complains that features often interact in an undesired way [1, 2, 3, 4, 5,

“Objects, Agents and Features”, 2004, (©) Springer Verlag 3

Abbreviated dialling

Attendant

Authentication

Authorization code

Automatic call back

Call distribution

Call forwarding

Call forwarding on busy/don’t answer
Call gapping

Call hold with announcement

Call limiter

Call logging

Call queueing

Call transfer

Call waiting

Closed user group

Consultation calling

Customer profile management
Customized recorded announcement

Customized ringing
Destinating user prompter
Follow-me diversion

Mass calling

Meet-me conference
Multi-way calling

Off net access

Off net calling

One number

Origin dependent routing
Originating call screening
Originating user prompter
Personal numbering
Premium charging
Private numbering plan
Reverse charging

Split charging
Terminating call screening
Time dependent routing

Fig. 1. The features in the Intelligent Network (version CS 1).

Csipy) ~Comz) =Csiea) (oo

@

‘ POI basic call process POR POR ‘

Fig. 2. feature-oriented extension in the Intelligent Network (from [13, p. 3]).

6]. There are already hundreds of telephony features. The combinations cannot
be checked anymore because of their sheer number. Undesired interactions annoy
the telephone users, and the users are not willing to accept many of them. The
users expect reliability from a telephone system much more than from other
software-intensive systems such as desktop PCs.

One typical example of a telephony feature interaction occurs between a
Calling Card feature and a Voice Mail feature.

We had once a calling card from Bell Canada. It allowed us to make a call
from any phone and have the call billed to the account of our home’s phone. We
had to enter an authentication code before the destination number to protect
us against abuse in case of theft. For ease of use, we could make a second call
immediately after the first one without any authorization, if we pressed the
“#” button instead of hanging up.

We also had a voice mail service from Meridian at work. A caller could leave a
voice message when we couldn’t answer the phone. We could check for messages
later, even remotely. For a remote check, we had to call an access number, dial

4 “Objects, Agents and Features”, 2004, (©) Springer Verlag

[on] 0_Bxception) (T_Exception }——] TNl
T_Abandon
0 Alarcn Origination_Attempt) Termination_Attempt|
Authorize_Origination_Attempt orgintion deied Authorize_Termination_Attempt

termination_denied

Origination_Attempt_Authorized T_Busy

Collect_Information collct fimeout

Collected_Information
invalid_information

Termination_Attempt_jAuthorized
Select_Facility

SS7 failure

. Available
presentation_failure

Facility_Selected_and|

Analyse_Information Present_Call
call_rejected
fote busy Analyzed_Information
Select_Route T_Alerting
route failure Route_Select Failure T_No_Answer -
- author_route_failure i
« Authorize_Call_Setup EllA T atve e T_Answer . T_Mid_Call
[J«* | Send_Call T_Re-answer
0_Mid [Call 0_Called_Party| Busy econnect
0_Term_Seized .
~ A T_suspend_failure T Suspended
l<<: 0_Alerting = T Disomea
0_Mid_Call 0_No_Answer isconnec
0_Mid_Call 0_Answer o L. .
——— OAde | 0_active felure (b) Terminating side part.

Calling Py Called|Party 0_Re-answer

0,_Suspend reconnect
—5 gl 0_suspend_failure legend:
0_Disconnect / .
0_Mid_Call Detection
S Point (DP)
(a) Originating side part. Point In

Control (PIC)

Fig. 3. The Basic Call State Model of the Intelligent Network (version CS 2, after [14]).

our mailbox number and then a passcode. At the end of both the mailbox number
and the passcode, we had to press the “#” button.

The interpretations of the “#” button were in conflict between these two
features. The calling card feature demanded that the call should be terminated.
The voice mail feature demanded that the call should be continued, and that
the authorization went on with the next step. This particular feature interaction
was resolved by Bell. The calling card feature required that the “#” button was
pressed at least two seconds to terminate the call.

A feature interaction occurs when the behaviour of one feature is changed
by another feature. This is a commonly accepted informal definition.

Not all feature interactions are undesired. Some features have increased value
together with other features. For example, a short code to re-dial the last number
dialled saves typing. This is even more helpful when one uses a (long) dialling
prefix that selects an alternative, cheaper long-distance carrier. Some features
are even intended to improve a system that has specific other features. (Of

“Objects, Agents and Features”, 2004, (©) Springer Verlag 5

course, this violates the “pure” feature oriented approach.) For example, a calling
number delivery blocking feature interacts with a calling number delivery feature.
The latter displays the caller’s number at the callee’s phone. The former prevents
a caller’s number to be displayed anywhere for privacy reasons.

Cameron et al. [16] have categorized the causes of feature interaction prob-
lems in their seminal benchmark paper: violation of feature assumptions, limita-
tions on network support, and intrinsic problems in distributed systems. Some
violated feature assumptions are on naming, data availability, the administra-
tive domain, call control, and the signalling protocol. Limitations on network
support occur because of limited customer premises equipment signalling capa-
bilities and because of limited functionalities for communications among net-
work components. Some intrinsic problems in distributed systems are resource
contention, personalized instantiation, timing and race conditions, distributed
support of features, and non-atomic operations.

A rather comprehensive survey of approaches for tackling feature interaction
problems was done recently by Calder et al. [17]. Despite some encouraging
advances, important problems still remain unsolved. The rapid change of the
telecommunications world even brings many new challenges.

A new view on the causes of feature interaction problems was a main result of
the recent seventh Feature Interaction Workshop [1]: in order to resolve a conflict
at a technical level, we often need to look at the social relations between users to
either disambiguate the situation or mediate the conflict. Zave [18] pointed out
that features should be purposes, not mechanisms. Gray et al. [19] found that
busy is a person’s state, not a device’s state — and the answer depends on who is
asking. We [20] showed that many feature interaction problems arise because the
users fail to abstract the system to the relevant aspects correctly. Other authors
went into similar directions. In a panel discussion, Logrippo compared feature
interaction resolution to legal issues.

3 Information Hiding Definitions

Information hiding helps to structure a large software system design into modules
such that it can be maintained. We now introduce some definitions from the
literature as a base for our further discussion.

A module in the information hiding sense [21, 22, 23] is a work assignment
to a developer or a team of developers. (There are many other meanings of this
word, we use this meaning only here.) Such a work assignment should be as self-
contained as possible. This reduces the effort to develop the system, it reduces the
effort to make changes to the system later, and it improves comprehensibility. A
successful software system will be changed many times over its life time. When
some design decision must be changed, a change should be necessary in one
module only. A design decision usually must be changed when some requirement
changes.

The secret of a module is a piece of information that might change. No other
module may rely on the knowledge of such a secret. Sometimes we distinguish

6 “Objects, Agents and Features”, 2004, (©) Springer Verlag

between a primary and a secondary secret. A primary secret is hidden informa-
tion that was specified to the software designer. A secondary secret is a design
decision made by the designer when implementing the module that hides the
primary secret.

The interface between modules is the set of assumptions that they make
about each other. This not only includes syntactic conventions, but also any
assumptions on the behaviour of the other modules. A developer needs to know
the interface of a module only in order to use its services in another module.

There can be a hierarchy of modules. We need it for large systems. Its struc-
ture is documented in a module guide. The module guide describes the module
structure by characterizing each module’s secrets.

A fundamental criterion for designing the module structure of a software
system is: identify the requirements and the design decisions that are likely to
change, and encapsulate each as the secret of a separate module. If such a module
is too large for one developer, the approach must be applied recursively. This
leads to making the most stable design decisions first and those most likely to
change last. The three top-level modules for almost any software system should
be the hardware/platform-hiding module, the behaviour-hiding module and the
software decision module. These modules must then be decomposed recursively,
depending on the individual system. The structure presented in [23] might serve
as a template.

An abstraction of a set of entities is a description that applies equally well
to any one of them. An abstract interface is an abstraction that represents more
than one interface; it exactly and only consists of the assumptions that are in-
cluded in all of the interfaces that it represents. A device interface module is
a set of programs that translate between the abstract interface and the actual
hardware interface [24]. Having an abstract interface for a device allows to re-
place the device during maintenance by another, similar model with a different
hardware interface, without changing more than one module.

Object orientation allows to use information hiding by realizing modules
through the mechanism of the class.

Information hiding enables to design software for ease of extension and con-
traction. Design for change must include the identification of the minimal subset
that might conceivably perform a useful service, and it must include the search
for a set of minimal increments to the system [25]. The emphasis on minimality
stems from the desire to avoid components that perform more than one function.

The relation “uses” among programs (i.e., pieces of code) describes a cor-
rectness dependency. A program A uses B if correct execution of B may be
necessary for A to complete the task described in A’s specification. We can facil-
itate the extension and contraction of a software, if we design the uses relation
to be a hierarchy (i.e., loop-free), and if we restrict it as follows. A is allowed to
use B only when all of the following conditions hold: (1) A is essentially simpler
because it uses B. (2) B is not substantially more complex because it is not
allowed to use A. (3) There is a useful subset containing B and not A. (4) There
is no conceivably useful subset containing A but not B.

“Objects, Agents and Features”, 2004, (©) Springer Verlag 7

Information hiding is also a base for the design and development of program
families. A set of programs constitutes a family, whenever it is worthwhile to
study programs from this set by first studying the common properties of the
set and then determining the special properties of the individual family member
[26]. One worked-out approach is [27].

4 Requirements

We focus on the requirements of a software system for the discussion of feature
orientation. Feature interactions often already arise in the requirements docu-
ments. When these documents are a complete description of the behaviours and
of other interesting properties, then all feature interaction problems are present
in the requirements documents at least inherently. Therefore, they should be
tackled already there.

4.1 Families of Requirements

A family of requirements is a set of requirements specifications for which it pays
off to study the common requirements first and then the requirements present
in few or individual systems only. In particular, we are interested in families
of requirements where only a subset of the family is specified explicitly in the
beginning, and where more members are specified explicitly incrementally over
time.

A family of requirements means that we have several versions of require-
ments. Requirements can and should be put under configuration management
analogously to software. The “atomic objects” are properties.

The right size of the properties, when taken as the atomic objects of config-
uration management, depends on the size of the family. We must split up the
requirements specification into small properties when a family of requirements
has a large number of potentially specified members. We want to avoid to specify
the same aspect A in two different properties. This can happen if we specify two
aspects A, B in one property P; first and then need to specify A in another
property P, again, because there is a family member that has A but not B.

In case of doubt, we should make a property in the requirements as small
as possible while being useful. This is a safe strategy when we cannot overlook
the entire set of family members easily. Such a specified property will be much
smaller than the user of a new system or of a new feature usually thinks.

By small, we mean abstract in the above sense. A small property is part
of the requirements of as many useful potential systems as possible. The goal is
that each time a new member is specified, we will never need to copy and modify
any existing property. The new member will only exchange one or more entire
properties by one or more other properties.

When we have a large number of requirements and therefore of requirements
modules, we need some additional structure. It shall help the reader of a require-
ments document to find easily the module he/she is interested in. The above

8 “Objects, Agents and Features”, 2004, (©) Springer Verlag

kind of modules is not directly suitable. The above modules are a product of the
software design. Their secret can be a requirement or a design decision. Their
structure is a software design structure. Such artefacts of the software design do
not belong into the software requirements. But we can adapt the idea.

A requirements module is a set of properties that are likely to change to-
gether. A requirements module may be partitioned recursively into sub-modules.
Each sub-module then is a set of properties that are even more likely to change
together. By “likely to change together”, we mean that for many potentially
specified members of the family, either all the properties from the set are in-
cluded, or none. The likeliness increases with the number of family members
where this is true.

We propose to organize requirements by requirements modules. Those require-
ments should be grouped together that are likely to change together. It then be-
comes easier to specify another member of the family explicitly. It is likely that
we can take an already specified member, remove one requirements module, and
add another requirements module. The latter possibly also has been specified
explicitly already for another member.

A criterion for the quality of the organization of the specified requirements
modules is how many modules must be changed for obtaining another family
member, on the average. These change costs must be weighted with the proba-
bility that the change actually occurs.

The above higher-level modules need to be decoupled. For example, there
might be family members that interface to a device of kind A, and other family
members that interface to a device of kind B. The behaviour of the system is
similar for both sets of family members, except for the details of the device.

Our solution is similar to the idea of abstract interfaces in design [24]. We
define abstract interfaces in abstraction modules. The advantage of having a
device interface requirements module that declares abstract variables and/or
events is that the properties of the behaviour modules need to depend only on
the stable properties in this module. For example, in telephony it is preferable
to base the behaviour on the abstract term of a connection request than on a
hook switch being closed by lifting a handset.

We want to have consistent configurations of the requirements document
only. When we construct a new configuration, we usually start with an existing,
consistent configuration and add and/or remove some properties. One of the
difficulties then is to take care of all dependencies among the properties. Fur-
ther additions and removals may be necessary. Maybe we even need to specify
some more properties explicitly. Only then we will arrive at another consistent
configuration of properties.

Localizing the changes into one or a few requirements modules helps a lot,
but it is not yet sufficient. A property can sometimes depend on other properties
from other modules. For example, if entire modules are added or removed, these
dependencies must be checked.

A property P, depends on a property Py, if Py is not well-formed without the
presence of P;. In particular, declarations cause dependencies. For example, Py

“Objects, Agents and Features”, 2004, (©) Springer Verlag 9

introduces a variable monitored by the system, such as the position of a button.
P, determines the system behaviour depending on the value of this variable. P,
would not make sense without the variable being declared.

The dependency relation must be explicit. Otherwise, any maintainer not
knowing the entire specification by heart must check all requirements for conse-
quences. This is not feasible for large specifications. Therefore, the dependencies
should be documented when they are created.

One goal of the explicit dependency hierarchy is that the specifier tries to
have as little dependencies as possible. For each dependency, the specifier should
check whether it is necessary.

Each property must be formulated such that is a minimal useful increment,
as discussed in in Sect. 4.1 above. The dependencies are, in our experience, a
good means to check this. A property that depends on many other properties is
probably not minimal and could be split up.

The requirements module hierarchy is quite different from the requirements
dependency hierarchy. We must take great care to not confuse them. A particular
mistake we must avoid is to force the requirements module hierarchy to be the
same as the dependency relation. In general, there is not necessarily a correlation
between two abstract requirements depending on each other, and being likely
to change together. The relationship of requirements modules and requirements
dependencies is similar to the relationship of design modules and the design
“uses” relation among programs. (See Sect. 3 above.)

Another mistake to avoid is to define the dependency relation between
(sub-)modules. The dependency relation is among properties, not among mod-
ules. Defining the dependency relation between modules instead of between prop-
erties would introduce additional, artificial dependencies.

4.2 Requirements Modules and Features

A feature is some increment relative to some baseline, and most features are
non-monotonous (see Sect. 2.1). Therefore, a feature consists of a set of added
properties and of a set of removed properties. In the language of configuration
management [28], a feature is a “change”, also called a directed delta. In our
particular setting with a set of optional (or mandatory) properties, a feature
consists of the set of names of properties that must be included and of the set
of names of properties that must be excluded. We may say that a feature is a
configuration rule.

A feature is not a requirements module. Many approaches use features as
requirements modules. But this creates maintenance problems. Features and
requirements modules are similar. Both concepts serve to group properties. But
there are two marked differences between features and requirements modules:

1. A requirements module is a set of properties (i.e., one set), while a feature
consists of both added and removed properties.

2. The properties of a module are selected because of their likeliness to change
together, averaged over the entire family, while the properties of a feature
are selected to fit the marketing needs of a single situation.

10 “Objects, Agents and Features”, 2004, (©) Springer Verlag

Forcing requirements modules and features to be the same is not advisable.
A feature fits the marketing needs of one occasion only, even though perfectly.
It is likely to not fit well for the remaining family members. A requirements
module supports the construction of all family members well, even though it
does not satisfy all the marketing needs of a particular occasion by itself. A few
other requirements modules will be concerned, too. In contrast, adding one more
feature on top of a large naively feature-oriented system will concern many other
features.

A requirements module provides an abstraction, while a feature is a config-
uration rule for such abstractions.

An example from telephony is the following:

— The 800 feature allows a company to advertise a single telephone number,
e.g., 1-800-123-4567. Dialling this number will connect a customer with the
nearest branch, free of charge. This feature should be composed of properties
from these three requirements modules: a module that provides addresses for
user roles, a module that translates a role address to a device address based
on the caller’s address, and, entirely independently, a module that charges
the callee. The feature removes the property that the caller is charged.

— The emergency call feature allows a person in distress to call a well-known
number (911 in the U.S.,; 110 in Germany and in some other European coun-
tries, ...) and be connected with the nearest emergency center. This feature
will include the properties from the three requirements modules above, and
of a few more. For example, there will be properties from a module that
allows the callee to identify the physical line the call comes from.

— The follow-me call forwarding feature allows a person to register with any
phone line and receive all calls to his/her personal number there. This feature
includes properties from the above module which provides addresses for user
roles. The other modules are not needed. Instead, we need properties from
a module that translates a role address according to a dynamic user prefer-
ence. We also need properties from a further module to set user preferences
dynamically.

Successful marketing needs features such as the above ones. A “user role address”
feature would probably sell much worse than the ubiquitous 800 feature. But the
above reuse of requirements modules would not be possible in a naive feature-
oriented approach.

Two features might easily be incompatible, i.e., the features interact ad-
versely, because one feature includes a certain property while the other feature
excludes it. The features, seen as configuration rules, contradict each other.

A solution is to have different configuration priorities for the properties of
a feature. We distinguish (at least) the essential properties and the changeable
properties of a feature. An essential property is necessary to meet the expecta-
tions evoked by the feature’s name. A changeable property is provided only in
order to make the requirements specification complete and predictable for the
user. For example, a call forwarding feature can be recognized no matter what

“Objects, Agents and Features”, 2004, (©) Springer Verlag 11

the requirements say on whether a the forwarding target can be set by press-
ing a button sequence or by, e.g., speech recognition. We therefore propose that
the specifier of a feature documents explicitly which properties are essential and
which are changeable.

5 Evaluation of Other Work with Respect to
Requirements Encapsulation

5.1 Naive Feature Orientation and Requirements Encapsulation
Violations

Naive feature orientation supports families of requirements, but does not orga-
nize the requirements into requirements modules as discussed above. This leads
to feature interaction problems. We now show in our canonical example, the In-
telligent Network, where the above encapsulation guidelines for the requirements
are violated.

The specification of the Intelligent Network is oriented along execution steps.
It is hard to specify a property of the IN without saying a lot about the exact
sequencing of steps. The Basic Call Process consists of explicit automata with
explicit triggering points, and the Service Independent Building Blocks of a
feature are chained together by the explicit sequencing of the Global Service
Logic. This violates the principle of making any single requirement as small and
abstract as possible, and composing the base system and the features from these
atomic properties.

The Service Independent Building Blocks (SIBs) provided in the standard
[29] are designed to be general in the sense that they offer a lot of functionality.
For example, the Charge SIB performs a special charging treatment for a call,
and the Algorithm SIB applies a mathematical algorithm to data to produce a
data result. Any details of the operations are controlled by run-time parame-
ters. Any concrete system requirements document must specify which charging
or calculating operations these SIBs support, respectively. From then on, it is
likely that there will come up another operation not yet supported. This will
require a change of the SIB concerned. This in turn threatens to break all other
features using this SIB. SIBs therefore are usually not a unit of most abstract
requirement.

The Basic Call Process itself violates the principle of making any single re-
quirement as small and abstract as possible. It specifies many different aspects at
the same time, as could be seen above. Instead of allowing for small requirements
to be taken out and in, a monolithic specification provides hooks for changes of
its behaviour. Few properties of its behaviour will be valid for all sets of fea-
tures. It is hard to design a feature on top of this monolithic base system that
will not break for some combination of features. If the base system would consist
of smaller, explicitly stated properties with explicitly stated dependencies, then
it would be easier to see which features are affected when a new feature removes
a certain property.

12 “Objects, Agents and Features”, 2004, (©) Springer Verlag

One example is the step from the two-party call to the n-party session. The
Basic Call Process is written in terms of the two-party call. Nevertheless, the In-
telligent Network allows to combine several call legs. The n-party call is necessary
for such features as Consultation Call, Conference Call, and Call Forwarding.
Many features and SIBs are designed with the two-party call in mind, though.
For example, the Screen SIB compares a data value against a list. If it is used
to specify originating call screening, the screening can fail. Call Forwarding can
translate the dialled number several times before making a connection. A single
instance of the Screen SIB will check only one of the numbers. Even though the
Basic Call Process insinuates that there is exactly one terminating side (Fig. 3),
this property is not true for all systems.

The user interface is likely to change, nevertheless its concerns are spread
out. This is so despite there being a User Interaction SIB that is intended to
perform the user interaction for one feature. Most of the IN features need to
interact with a user. This interaction must be possible through a scarce physi-
cal interface: twelve buttons, a hook switch, and a few signal tones. Ten of the
buttons are used already by the base system. Physical signals must therefore
be reused in different modes of operation. But the definitions of several features
implicitly assume exclusive access to the user’s terminal device. There is no sin-
gle requirement that specifies the scheme how multiple features coordinate the
access. The above interaction between a calling card feature and a voice mail
feature is a consequence. Both features assume exclusive access to the “#” but-
ton. Details of the user interface are specified at the bottom of the requirements,
even though they are likely to change. We discuss this in more detail in [30, 31].

5.2 Approaches with Improved Requirements Encapsulation

There are many approaches that encapsulate requirements better. We now sketch
some of them in the light of requirements encapsulation. Even if some of these
approaches use the word “feature”, mostly they mean a module that encapsulates
a secret. However, none distinguishes features and modules explicitly.

The CoRE (Consortium Requirements Engineering) method [32, 33, 34] al-
lows to specify requirements for avionic and other safety-critical systems. A ma-
jor goal is to plan for change by using information hiding for the requirements.
CoRE is based on the functional documentation (four-variable model) approach
[35]. It adds additional structure to the requirements document by grouping
variables, modes and terms into classes. This borrows from object-orientation.
A class has an interface section and an encapsulated section. Entities not needed
by other classes are hidden syntactically inside the encapsulated section. The ap-
plication of CoRE to a Flight Guidance System rendered valuable experience.
The authors found that the requirements for the user interface should have been
separated from the requirements for the essential nature of the system, since the
user interface is more likely to change. Furthermore, they found in particular
that planning for change in a single product is not the same as planning for
change in a product family [32]. The requirements should have been organized
entirely different for the latter.

“Objects, Agents and Features”, 2004, (©) Springer Verlag 13

The Tina initiative (Telecommunication Information Network Architecture)
[36, 37], the Race project (Research and technology development in Advanced
Communications technologies in Europe), and the Acts project (Advanced Com-
munications Technologies & Services) developed and improved a new service
architecture for telecommunications. These projects have added most of the in-
teresting new abstractions explicitly to the resulting architecture. For example,
the explicit distinction between a user and a terminal device splits up the host of
properties that can be associated with a directory number in the Intelligent Net-
work. Therefore, the requirements of the base system are more structured than
for the Intelligent Network. The drawback is that the architecture is quite far
away from the structure of current systems, and a transition would be expensive
[30].

The DFC (Distributed Feature Composition) virtual architecture is proposed
by Jackson and Zave [38]. It is implemented in an experimental IP telecommuni-
cation platform called BoxOS [39]. It allows to compose features in a pipe-and-
filter network. The filter boxes are relatively simple. This is in accordance with
the principle of small requirements. Also, several new abstractions are explicitly
supported, for example multi-party sessions and the distinction among users,
the different roles they play, and the different terminal devices they may use. A
strong point of BoxOS is that it can inter-operate with the existing telephone
network. However, part of its functionality is lost for these calls, naturally.

An Agent Architecture is outlined by Zibman et. al. [40]. It separates sev-
eral concerns explicitly. There are four distinct types of agents: user agents,
connection agents, resource agents, and service agents. This separates user and
terminal concerns. The terminal resource agent encapsulates the user interface
details, such as the signal syntax. The distinct user and connection agents sepa-
rate call and connection concerns. The user agents bring the session abstraction
with them. The connection agents coordinate multiple resource agents. The re-
source agent separates resource management from both session control and from
the services. It was a design goal that the introduction of new services should
not require modifications of existing software. Therefore POTS is represented
by a single service agent even though POTS really comprises several distinct
concerns.

Aphrodite is an agent-based architecture for Private Branch Exchanges that
has been implemented recently [41]. Each entity, device and application service is
represented as an agent. Agents are therefore abstractions. The often-changing
details of the behaviour of an agent are specified as policies. Policies can be
changed easily since they are stored as data in a table. It is an explicit goal to
make features small. For example, “transfer” is no longer a feature, but made up
of three different smaller features: “invoke transfer”, “try transfer”, and “offer
transfer”. Another stated goal is to make the assumptions explicit that features
make. Also, many new abstractions are already incorporated in the base system
as “internal features”.

14 “Objects, Agents and Features”, 2004, (©) Springer Verlag

family of requirements requirements specification
family (o) family
members - member
‘ features Z> features
b sections sections
extension of CSP-0OZ plain CSP-0Z

Fig. 4. Generating family members from a family document.

6 An Approach with Families of Rigorous Software
Requirements

We have investigated how explicit families of software requirements can facilitate
the maintenance task. We showed how the user interface can be encapsulated in
a requirements specification of a family of telephone systems [31]. We applied
the above requirements encapsulation guidelines in a case study on telephone
switching requirements [42, 43].

In [31], we showed how the user interface can be encapsulated in a require-
ments specification of a family of telephone systems. We proposed to distinguish
a syntactic and a semantic level of user interaction. The behavioural requirements
should be specified at the semantic level only. Semantic signals should reflect a
user’s decision to perform some action, or a user’s perception that some other
user or the system has decided to perform some action. Examples for semantic
signals could be “VoiceMailLogin” (for voice mail) and “ReleaseAndReconnect”
(for credit card calling). These semantic signals must eventually be mapped to
syntactic signals like “flash hook”, “#”, signal tones, and so on. The mapping
should be encapsulated into only one design module, the user interface mod-
ule. We sketched how such a user interface module could be integrated into the
current Intelligent Network architecture.

In [42, 43], we applied the above requirements encapsulation guidelines in a
case study on telephone switching requirements. We used a constraint-oriented
specification style. All constraints are composed by logical conjunction. We made
each constraint as small as usefully possible.

We specified the requirements in the formalism CSP-OZ [44, 45|, which we
extended by means to specify a family of requirements. All family members are
specified in one document. A family member is composed of a list of features.
A feature consists of a set of modules and of a list of modules “to remove”.
A module is represented in CSP-OZ by the formal construct of a section. Each
module, i.e., section, holds one abstract requirement. Figure 4 gives an overview.
The formalism forces the specifier of any section to state on which other sections
it depends. There can be a dependency because the section uses a definition from
the other section.

“Objects, Agents and Features”, 2004, (©) Springer Verlag 15

family document
mark—up for LaTeX

genFamMem

error & warning
messages
| ‘ uses—hierarchy ‘ ‘ extract & transform ‘
I
I
! filter for LaTeX
|
I

hierarchy graph (spemflcatlon in plain CSP— OZ}

calculations & checks

danCl v1suahzatlon cspozTC type checker

Fig. 5. Data flow structure of the genFamMem tool.

Our formalism also forces the original specifier of a feature to state whether a
property is essential for the feature or not. A feature’s changeable properties can
be removed from the system by another feature through a suitable operator. This
allows for non-monotonous changes. But only entire properties, i.e., sections, can
be removed and added.

There is a formal semantics both for CSP-OZ [44] and for our additional
family construct [46].

We implemented a supporting tool [42, 46]. The tool generates individual
family members from the family document as needed, it extracts and displays the
dependencies among sections and among features, and it performs type checks
on the family constructs. Figure 5 shows its data flow structure. Our formalism
imposes some type rules. For example, a section must not be removed if another
section from another feature depends on it. Some kinds of feature interactions
therefore become type errors. The tool also checks further, heuristic rules that
indicate probable feature interaction problems.

We specified the requirements for a telephone switching system in a case
study [42, 43]. The case study currently comprises about 40 pages of commented
formal specification, with about 50 sections in nine features, including the base
system. The communication between the users and the system was specified in
terms of semantic signals entirely, as discussed above.

The specification introduces the three notions of “telephone device”, “hu-
man”, and “user role” explicitly and early. As a consequence, the well-known
feature interaction problems between call screening and call forwarding vanish.
Call screening now appears as two different features: device screening and user
screening. Similarly, call forwarding is differentiated into a re-routing when a

human moves to another device, and into the transfer of a user role to another

16 “Objects, Agents and Features”, 2004, (©) Springer Verlag

human. All combinations of screening and forwarding now work without adverse
interactions.

Nevertheless, our tool found a problem between the two screening features.
Its heuristic check issued a warning that both features remove the same section.
And indeed, a manual inspection showed that the new constraints introduced
by the two features (as a replacement for the removed section) contradicted
each other. We then could resolve the issue by specifying explicitly the joined
behaviour at this point.

7 Discussion

Our focus on requirements roots in the basic engineering principle of design by
documentation. Engineers draw blueprints before construction, and they keep
them up-to-date. Accordingly, we document requirements explicitly, including
the information necessary for changing them.

The organization of the requirements affects the ease of their maintenance.
Feature orientation meets the needs of marketing. But naive feature orientation
does not scale. We transferred the information hiding principle from design to
requirements. Modules of abstract requirements are a base for families of re-
quirements. Families of requirements are our approach to feature orientation.

We found that a feature is not the same as a requirements module. A require-
ments module provides an abstraction, while a feature is a configuration rule for
such abstractions, chosen for marketing. Without this distinction, it becomes
harder to express abstractions with long-term value.

A policy is very similar to a feature in the sense that it is a kind of configu-
ration rule (see, e.g., Reiff-Marganiec [47] in this book). The difference is that a
feature typically is provisioned statically by a service provider, while a policy is
intended to be defined dynamically by a user at run-time. Reiff-Marganiec [47]
does not elaborate on the structure of the underlying communications layer of
his policy architecture. It would be interesting research to extend our work to
dynamically configured policies.

Legacy systems pose a challenge for the application of our ideas on require-
ments structuring. We proposed concrete improvements for the encapsulation of
the user interface in the Intelligent Network [31], see the start of Sect. 6. But
a general prerequisite is that rigorous requirements are documented explicitly.
Already this can be difficult for a legacy system. However, the current migration
to Voice over IP now offers the chance to conceive the requirements for such new
systems as a family from the start.

A requirements module is a useful abstraction of the family of requirements.
This returns us to our observation at the recent Feature Interaction Workshop
(see the end of Sect. 2.2): it is important to consider the abstract purposes, not
only the concrete mechanisms. Formulating good common abstractions explicitly
is crucial.

Common abstractions need a domain with bounded change. These bounds
can be hard to determine in the telephony domain. Take the example of the

“Objects, Agents and Features”, 2004, (©) Springer Verlag 17

UMTS mobile network a few years ago. Everybody in the field would have
agreed vigorously that the bandwidth downstream should be much higher than
upstream. Today, many envisioned services require a symmetric bandwidth dis-
tribution.

A prerequisite for any information hiding approach is our ability to predict
the likeliness of changes to some degree. This holds both for information hiding
in design and for information hiding in requirements. For requirements, we must
put the most stable properties at the bottom of the requirements dependency
partial order, and those most likely to change at the top. We don’t know how to
prepare for completely unanticipated changes.

References

[1] DANIEL AMYOT AND LuiGl LOGRIPPO, editors. “Feature Interactions in Telecom-
munications and Software Systems VII”. I0OS Press, Amsterdam (June 2003).

[2] MUFFY CALDER AND EVAN MAGILL, editors. “Feature Interactions in Telecom-
munications and Software Systems VI”. 1I0S Press, Amsterdam (May 2000).

[3] KRISTOFER KIMBLER AND L. G. BouMA, editors. “Feature Interactions in
Telecommunications and Software Systems V”. I0S Press, Amsterdam (Septem-
ber 1998).

[4] PETRE DiNI, RAOUF BOUTABA, AND LUIGI LOGRIPPO, editors. “Feature Interac-
tions in Telecommunication Networks IV”. I0S Press, Amsterdam (June 1997).

[5] KoNng ENG CHENG AND TADASHI OHTA, editors. “Feature Interactions in
Telecommunications III”. I0S Press, Amsterdam (1995).

[6] L. G. BouMA AND HUGO VELTHUUJSEN, editors. “Feature Interactions in
Telecommunications Systems”. I0S Press, Amsterdam (1994).

[7] ITU-T. “Q.12xx-Series Intelligent Network Recommendations” (2001).

[8] JAMES J. GARRAHAN, PETER A. RUsso, KENICHI KiTAMI, AND ROBERTO KUNG.
Intelligent Network overview. IEEE Commun. Mag. 31(3), 30-36 (March 1993).

[9] JosE M. DURAN AND JOHN VISSER. International standards for Intelligent Net-
works. IEEE Commun. Mag. 30(2), 34-42 (February 1992).

[10] STEPHEN GILMORE AND MARK RYAN, editors. “Proc. of Workshop on Language
Constructs for Describing Features”, Glasgow, Scotland (15-16 May 2000). ES-
PRIT Working Group 23531 — Feature Integration in Requirements Engineering.

[11] STEPHEN GILMORE AND MARK D. RYAN, editors. “Language Constructs for
Describing Features”. Springer (2001).

[12] SHMUEL KATz. A superimposition control construct for distributed systems. ACM
Trans. Prog. Lang. Syst. 15(2), 337-356 (April 1993).

[13] ITU-T, Recommendation Q.1203. “Intelligent Network — Global Functional Plane
Architecture” (October 1992).

[14] ITU-T, Recommendation Q.1224. “Distributed Functional Plane for Intelligent
Network Capability Set 2: Parts 1 to 4” (September 1997).

[15] HUuGO VELTHULJSEN. Issues of non-monotonicity in feature-interaction detection.
In Cheng and Ohta [5], pages 31-42.

[16] E. JANE CAMERON, NANCY D. GRIFFETH, YOW-JIAN LIN, ET AL.. A feature
interaction benchmark in IN and beyond. In Bouma and Velthuijsen [6], pages
1-23.

18

[17]

[18]
[19]
[20]
21]
22]

[23]

[24]

[25]
[26]

[27]

[28]
[29]
[30]
31]

[32]

[33]

[34]

[35]

[36]

[37]

“Objects, Agents and Features”, 2004, (©) Springer Verlag

Murry CALDER, MARIO KOLBERG, EVAN H. MAGILL, AND STEPHAN REIFF-
MARGANIEC. Feature interaction: a critical review and considered forecast. Comp.
Networks 41, 115-141 (2002).

PAMELA ZAVE. Feature disambiguation. In Amyot and Logrippo [1], pages 3-9.
ToMm GRAY, RAMIRO LISCANO, BARRY WELLMAN, ANABEL QUAN-HAASE,
T. RADHAKRISHNAN, AND YONGSEOK CHOI. Context and intent in call pro-
cessing. In Amyot and Logrippo [1], pages 177-184.

JAN BREDEREKE. On preventing telephony feature interactions which are shared-
control mode confusions. In Amyot and Logrippo [1], pages 159-176.

DAviD LORGE PARNAS. On the criteria to be used in decomposing systems into
modules. Commun. ACM 15(12), 1053-1058 (1972). Reprinted in [48].

Davip M. WEIss. Introduction to [21]. In Hoffman and Weiss [48], pages 143—144.
DAviD LORGE PARNAS, PAUL C. CLEMENTS, AND DAvID M. WEIss. The modular
structure of complex systems. IEEE Trans. Softw. Eng. 11(3), 259-266 (March
1985). Reprinted in [48].

KATHRYN HENINGER BRITTON, R. ALAN PARKER, AND DAVID L. PARNAS. A
procedure for designing abstract interfaces for device interface modules. In “Proc.
of the 5th Int’l. Conf. on Software Engineering — ICSE 5”7, pages 195-204 (March
1981). Reprinted in [48].

DaAvID LORGE PARNAS. Designing software for ease of extension and contraction.
IEEE Trans. Softw. Eng. SE-5(2), 128-138 (March 1979). Reprinted in [48].
DAvID LORGE PARNAS. On the design and development of program families.
IEEE Trans. Softw. Eng. 2(1), 1-9 (March 1976). Reprinted in [48].

Davip M. WEIiss AND CHI TAU ROBERT LAI “Software Product Line Engineering
— a Family-Based Software Development Process”. Addison Wesley Longman
(1999).

REIDAR CONRADI AND BERNHARD WESTFECHTEL. Version models for software
configuration management. ACM Comput. Surv. 30(2), 232-282 (June 1998).
ITU-T, Recommendation Q.1223. “Global Functional Plane for Intelligent Net-
work Capability Set 2” (September 1997).

JAN BREDEREKE. Maintaining telephone switching software requirements. IEEE
Commun. Mag. 40(11), 104-109 (November 2002).

JAN BREDEREKE. Avoiding feature interactions in the users’ interface. In Kimbler
and Bouma [3], pages 305-317.

STEVEN P. MILLER. Specifying the mode logic of a flight guidance system in
CoRE and SCR. In “Second Workshop on Formal Methods in Software Practice”,
Clearwater Beach, Florida, USA (4-5 March 1998).

STEVEN P. MILLER AND KARL F. HOECH. Specifying the mode logic of a flight
guidance system in CoRE. Technical Report WP97-2011, Rockwell Collins, Inc.,
Avionics & Communications, Cedar Rapids, IA 52498 USA (November 1997).
STUART R. FAULK, JR. JAMES KIRBY, LiSA FINNERAN, AND ASSAD MoINI. Con-
sortium requirements engineering guidebook. Tech. Rep. SPC-92060-CMC, ver-
sion 01.00.09, Software Productivity Consortium Services Corp., Herndon, Vir-
ginia, USA (December 1993).

DAvID LORGE PARNAS AND JAN MADEY. Functional documents for computer
systems. Sci. Comput. Programming 25(1), 41-61 (October 1995).

MARCEL MAMPAEY AND ALBAN COUTURIER. Using TINA concepts for IN evo-
lution. IEEE Commun. Mag. 38(6), 94-99 (June 2000).

C. ABARCA ET AL.. Service architecture. Deliverable, TINA-Consortium, URL
http://www.tinac.com/ (16 June 1997). Version 5.0.

“Objects, Agents and Features”, 2004, (©) Springer Verlag 19

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

MICHAEL JACKSON AND PAMELA ZAVE. Distributed feature composition: A
virtual architecture for telecommunications services. IEEE Trans. Softw. Eng.
24(10), 831-847 (October 1998).

GREGORY W. BonD, Eric CHEUNG, K. HAL PURDY, PAMELA ZAVE, AND
J. CHRISTOPHER RAMMING. An open architecture for next-generation telecom-
munication services. ACM Transactions on Internet Technology 4(1) (February
2004). To appear.

ISRAEL ZIBMAN ET AL.. Minimizing feature interactions: an architecture and
processing model approach. In Cheng and Ohta [5], pages 65-83.

DEBBIE PINARD. Reducing the feature interaction problem using an agent-based
architecture. In Amyot and Logrippo [1], pages 13-22.

JAN BREDEREKE. A tool for generating specifications from a family of formal
requirements. In MYUNGCHUL KiM, BYOUNGMOON CHIN, SUNGWON KANG, AND
DANHYUNG LEE, editors, “Formal Techniques for Networked and Distributed Sys-
tems”, pages 319-334. Kluwer Academic Publishers (August 2001).

JAN BREDEREKE. Families of formal requirements in telephone switching. In
Calder and Magill [2], pages 257-273.

CLEMENS FISCHER. Combination and implementation of processes and data: from
CSP-0OZ to Java. PhD thesis, report of the Comp. Sce. dept. 2/2000, University
of Oldenburg, Oldenburg, Germany (April 2000).

CLEMENS FISCHER. CSP-OZ: a combination of Object-Z and CSP. In HOWARD
BowMAN AND JOHN DERRICK, editors, “Formal Methods for Open Object-Based
Distributed Systems (FMOODS’97)”, volume 2, pages 423-438. Chapman & Hall
(July 1997).

JAN BREDEREKE. “genFamMem 2.0 Manual — a Specification Generator and Type
Checker for Families of Formal Requirements”. University of Bremen (October
2000). URL http://www.tzi.de/ brederek/genFamMem/.

STEPHAN REIFF-MARGANIEC. Policies: Giving users control over calls. In this
book.

DANIEL M. HOFFMAN AND DAVID M. WEIss, editors. “Software Fundamentals —
Collected Papers by David L. Parnas”. Addison-Wesley (March 2001).

