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Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

(Naive) Feature Orientation

I base system plus separate features as needed
I arbitrary increments

I chosen from marketing perspective
I marketing cannot care about structure of software or

organization of requirements

I attractive!
I feature interaction problems

I needed: organize requirements for change
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

Concentrate on Requirements

I all feature interaction problems:
inherently present in requirements
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

Observation: Feature 6= Requirements Module

1. type mismatch:

requirements module: a set of properties = 1 set

feature: a set of changes
= added & removed props. = 2 sets

2. different grouping criterion for properties:

requirements module: likeliness of change,
averaged over entire family

feature: marketing needs of single situation
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Definition: Requirements Module

requirements module
a set of properties that are likely to change together

likeliness to change together

I properties hold / don’t hold for how many family members?
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Hierarchy of Requirements Modules

I handle really huge number of properties?
I configure many requirements conveniently?
I find requirement in large document?

I group them again and again: recursive structure!
I modules inside modules
I top-level modules: most stable
I leaf modules: most likely to change

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

feature

featurefeature

∗
∗

reqs. modulereqs. modulereqs. module

1

∗

featurefeaturefeature
feature

featurefeature

feature

featurefeature∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

feature

featurefeature

∗
∗

reqs. modulereqs. modulereqs. module
1

∗
featurefeaturefeature

feature

featurefeature

feature

featurefeature∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

feature

featurefeature

∗
∗

reqs. modulereqs. modulereqs. module
1

∗
feature

featurefeature

featurefeaturefeature
feature

featurefeature∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

feature

featurefeature

∗
∗

reqs. modulereqs. modulereqs. module
1

∗
feature

featurefeature

feature

featurefeature

featurefeaturefeature

∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

featurefeaturefeature

∗
∗

reqs. modulereqs. modulereqs. module
1

∗
feature

featurefeature

feature

featurefeature

feature

featurefeature

∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

featurefeaturefeature

∗
∗

reqs. modulereqs. modulereqs. module
1

∗
feature

featurefeature

feature

featurefeature

feature

featurefeature

∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

ZF: A Requirements Module Construct and
a Feature Construct for Z

I well-known formal language Z

+ explicit hierarchical modules

+ feature construct

+ type rules, for consistency

+ [explicit interfaces between requirements modules]
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Configuring Requirements Modules
Using Features in ZF

query
(definition of a family member,

based on features)

requirements family member
(selected requirements modules)

requirements module base
(sections, grouped into chapters)

configuration rule base
(definitions of features)

configurator
(transformation function)
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Formal Definition of ZF

I brief: in ICFI’05 paper

I in detail: in my book
(is on my Web page: Habilitation thesis)
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Example: A Family of LAN Message Services

idea
users on a LAN can send each other short messages

I example: “I cut birthday cake in 5 minutes”

less complex than full telephony

variabilities

I individual addressing
I message blocking
I message re-routing
I output on text console
I delayed messages
I . . .
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

The LAN Message Family Specification

1. chapter environment
1.1 chapter device interfaces
1.1.1 chapter communicating entities
1.1.1.1 private chapter user interface
1.1.1.1.1 section user base

parents comm base
. . .
1.1.1.1.2 private chapter graphical user interface
1.1.1.1.2.1 section gui comm base

parents comm base
. . .
1.1.1.1.2.2 private section gui io base

parents gui comm base, comm io base
. . .
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Complete Module Hierarchy and Dependencies
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legend: x y x depends on y

private (i.e., secret) module or property

public (i.e., interface) module or property
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Top-Level Requirements Modules
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function_
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Features of the LAN Messages Family, in ZF Syntax

feature note to all:
+ broadcast message delivery
+ text message base

(+) one line message

feature scroll text message:
+ multi line message
− one line message

(+) max lines1000 message
+ graphical user interface
− textual user interface

feature birthday cake picture:
+ broadcast message delivery
+ graphical message base
− text message only
+ graphical user interface

feature lunch alarm:
+ automated agent interface
+ broadcast message delivery

(+) text message base

feature deskPhoneXY hardware:
− graphical user interface
+ textual user interface
+ max lines2 message
+ pascal text string
+ pascal text string only
− c text string

. . .
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Family Members of the LAN Messages Family, in ZF

The “Lunch Phone” system:

lunch alarm } one input for configurator
deskPhoneXY hardware

The “Classic PC” edition:

note to all
multi line text message
standardPC hardware

The “Deluxe PC” edition:

lunch alarm
birthday cake picture
note to all
multi line text message
scroll text message
standardPC hardware
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

“Lunch Phone”: Base System + Two Features
base system:
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The LAN Message Services Specification
Features of the Family

“Lunch Phone”: Base System + Two Features
feature lunch alarm:
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The LAN Message Services Specification
Features of the Family

“Lunch Phone”: Base System + Two Features

feature deskphoneXY hardware:
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

“Lunch Phone”: Base System + Two Features

lunch phone = base + lunch alarm + deskphoneXY hardware:
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

An Inconsistent Configuration: Type Error in ZF

base system:
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

An Inconsistent Configuration: Type Error in ZF

feature birthday cake picture:
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Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family
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Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

An Inconsistent Configuration: Type Error in ZF

base + birthday cake picture + deskphoneXY hardware:
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Detecting Inconsistent Configuration Rules / Features

I some inconsistencies are made type errors
I important case:

include & exclude same property
I detect automatically
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The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Summary

I feature 6= requirements module

requirements module feature

a set of properties a set of changes
for long-lived family for single situation (marketing)
provides an abstraction a configuration rule

I applied to formalism Z
I configure specifications in Z
I detect inconsistent configurations as type errors

I Outlook
I associate code fragments to requirements
I policies and families
I application to other formalisms
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More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

Reserve Slides

More Examples for Type Rules and Semantics of ZF

Resolving Inconsistent Configuration Rules

Abstract Interfaces
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More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

More Examples for Type Rules and Semantics of ZF

+ ++ ++ +

+

and

+

and

both adding and removing a section adding a chapter

+

system
base

resulting
system

feature

system
base

resulting
system

+

removing a chapter

add,
essential

changeable
add,

remove public

private

modifying an interface sectionmodifying a private section

feature

feature

legend: selected

not selected
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More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

Resolving Inconsistent Configuration Rules

I reduce number of “hard” conflicts:
differentiate the strictness of rules

I essential property
I changeable property

I classification by original specifier
I priority is per feature
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More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

Interfaces Restrict Access

communicating_entities

messages

message_base

text_
message_

base

text_message_only

graphical_
message_

base
... ...

dependencyprivatepubliclegend:

Jan Bredereke Configuring Requirements Using Features



More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

Generating One Family Member

communicating_entities

messages

message_base

text_
message_

base

text_message_only

graphical_
message_

base
... ...

dependencyprivatepubliclegend:
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More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

The Access Rules for Modules in ZF

private (i.e., secret) module or property

public (i.e., interface) module or propertyx y x depends on y

a secret can depend on a secret only if they are siblings

anything can depend on an interface an interface never depends on a secret

legend:
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