
The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Configuring Members of a Family of
Requirements Using Features

Jan Bredereke

Universität Bremen, Germany

June 29, 2005

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Motivation: Family of Systems
first system:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Motivation: Family of Systems
some change:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Motivation: Family of Systems
second system:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Motivation: Family of Systems

another change:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Motivation: Family of Systems

third system:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Outline

The Problem: Feature != Requirements Module

Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

(Naive) Feature Orientation

I base system plus separate features as needed
I arbitrary increments

I chosen from marketing perspective
I marketing cannot care about structure of software or

organization of requirements

I attractive!
I feature interaction problems

I needed: organize requirements for change

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

(Naive) Feature Orientation

I base system plus separate features as needed
I arbitrary increments

I chosen from marketing perspective
I marketing cannot care about structure of software or

organization of requirements

I attractive!
I feature interaction problems

I needed: organize requirements for change

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

(Naive) Feature Orientation

I base system plus separate features as needed
I arbitrary increments

I chosen from marketing perspective
I marketing cannot care about structure of software or

organization of requirements

I attractive!
I feature interaction problems

I needed: organize requirements for change

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

Concentrate on Requirements

I all feature interaction problems:
inherently present in requirements

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

Which Structure for Requirements?

family

familyfamily

systemsystemsystem

one family
member

1
∗

reqs. module

reqs. modulereqs. module
a set of properties

likely to change
together

∗
∗

propertypropertyproperty

1
∗

1

∗

family

familyfamily

system

systemsystem

1
∗

feature

featurefeature
a set of
changes

∗
∗

property

propertyproperty

∗
∗

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

Which Structure for Requirements?

familyfamilyfamily

systemsystemsystemone family
member

1
∗

reqs. module

reqs. modulereqs. module
a set of properties

likely to change
together

∗
∗

propertypropertyproperty

1
∗

∗

∗

family

familyfamily

system

systemsystem

1
∗

feature

featurefeature
a set of
changes

∗
∗

property

propertyproperty

∗
∗

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

Which Structure for Requirements?

familyfamilyfamily

systemsystemsystemone family
member

1
∗

reqs. modulereqs. modulereqs. module
a set of properties

likely to change
together

∗
∗

propertypropertyproperty

1
∗

∗

∗

family

familyfamily

system

systemsystem

1
∗

feature

featurefeature
a set of
changes

∗
∗

property

propertyproperty

∗
∗

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

Which Structure for Requirements?

familyfamilyfamily

systemsystemsystemone family
member

1
∗

reqs. modulereqs. modulereqs. module
a set of properties

likely to change
together

∗
∗

propertypropertyproperty

1
∗

∗

∗

familyfamilyfamily

systemsystemsystem

1
∗

featurefeaturefeature

a set of
changes

∗
∗

propertypropertyproperty

∗
∗

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

Which Structure for Requirements?

familyfamilyfamily

systemsystemsystemone family
member

1
∗

reqs. modulereqs. modulereqs. module
a set of properties

likely to change
together

∗
∗

propertypropertyproperty

1
∗

∗

∗

familyfamilyfamily

systemsystemsystem

1
∗

featurefeaturefeature
a set of
changes

∗
∗

propertypropertyproperty

∗
∗

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

Which Structure for Requirements?

familyfamilyfamily

systemsystemsystemone family
member

1
∗

reqs. modulereqs. modulereqs. module
a set of properties

likely to change
together

∗
∗

propertypropertyproperty

1
∗

∗

∗

familyfamilyfamily

systemsystemsystem

1
∗

featurefeaturefeature
a set of
changes

∗
∗

propertypropertyproperty

∗
∗

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Naive Feature Orientation
Feature != Requirements Module

Observation: Feature 6= Requirements Module

1. type mismatch:

requirements module: a set of properties = 1 set

feature: a set of changes
= added & removed props. = 2 sets

2. different grouping criterion for properties:

requirements module: likeliness of change,
averaged over entire family

feature: marketing needs of single situation

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Outline

The Problem: Feature != Requirements Module

Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Definition: Requirements Module

requirements module
a set of properties that are likely to change together

likeliness to change together

I properties hold / don’t hold for how many family members?

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Hierarchy of Requirements Modules

I handle really huge number of properties?
I configure many requirements conveniently?
I find requirement in large document?

I group them again and again: recursive structure!
I modules inside modules
I top-level modules: most stable
I leaf modules: most likely to change

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

feature

featurefeature

∗
∗

reqs. modulereqs. modulereqs. module

1

∗

featurefeaturefeature
feature

featurefeature

feature

featurefeature∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

feature

featurefeature

∗
∗

reqs. modulereqs. modulereqs. module
1

∗
featurefeaturefeature

feature

featurefeature

feature

featurefeature∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

feature

featurefeature

∗
∗

reqs. modulereqs. modulereqs. module
1

∗
feature

featurefeature

featurefeaturefeature
feature

featurefeature∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

feature

featurefeature

∗
∗

reqs. modulereqs. modulereqs. module
1

∗
feature

featurefeature

feature

featurefeature

featurefeaturefeature

∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

featurefeaturefeature

∗
∗

reqs. modulereqs. modulereqs. module
1

∗
feature

featurefeature

feature

featurefeature

feature

featurefeature

∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Features as Configuration Rules for Req. Modules

familyfamilyfamily

systemsystemsystem

1
∗

featurefeaturefeature

∗
∗

reqs. modulereqs. modulereqs. module
1

∗
feature

featurefeature

feature

featurefeature

feature

featurefeature

∗
∗

∗

∗

propertypropertyproperty

1
∗

a set of properties
likely to change
together

a set of
changes

⇐?⇒

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

ZF: A Requirements Module Construct and
a Feature Construct for Z

I well-known formal language Z

+ explicit hierarchical modules

+ feature construct

+ type rules, for consistency

+ [explicit interfaces between requirements modules]

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Configuring Requirements Modules
Using Features in ZF

query
(definition of a family member,

based on features)

requirements family member
(selected requirements modules)

requirements module base
(sections, grouped into chapters)

configuration rule base
(definitions of features)

configurator
(transformation function)

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Features as Configuration Rules for Requirements Modules
The Formalism ZF

Formal Definition of ZF

I brief: in ICFI’05 paper

I in detail: in my book
(is on my Web page: Habilitation thesis)

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Outline

The Problem: Feature != Requirements Module

Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Example: A Family of LAN Message Services

idea
users on a LAN can send each other short messages

I example: “I cut birthday cake in 5 minutes”

less complex than full telephony

variabilities

I individual addressing
I message blocking
I message re-routing
I output on text console
I delayed messages
I . . .

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

The LAN Message Family Specification

1. chapter environment
1.1 chapter device interfaces
1.1.1 chapter communicating entities
1.1.1.1 private chapter user interface
1.1.1.1.1 section user base

parents comm base
. . .
1.1.1.1.2 private chapter graphical user interface
1.1.1.1.2.1 section gui comm base

parents comm base
. . .
1.1.1.1.2.2 private section gui io base

parents gui comm base, comm io base
. . .

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Complete Module Hierarchy and Dependencies

environment

computing_platform

data_types

characters

text_strings

graph_
images

distrib
uted_
proc

essing

device_interfaces

time

communicating_entities

messages

user_interface

graphical_
user_

interface

textual_
user_

interface

automated_
agent_

interface

system_behaviour

function_drivers

message_delivery shared_
services

character_base

text_string_base

c_text_
string

c_text_
string_

only

pascal_
text_
string

pascal_
text_

string_
only

graph_
image_

base

time_
base

time_
milli

seconds

message_base

text_
message_

base

text_
message_

only

graph
ical_

message_
base

comm_base

comm_
params_

base

comm_
behav
iour

comm_io_base

comm_
io_

params_
base

comm_
io_

behaviour

user_
base

gui_
comm_

base

gui_
io_
base

tui_
comm_

base

agent_
base

message_delivery_reord

timely_
message_
delivery

correct_
message_
delivery

broadcast_
message_
delivery

legend: x y x depends on y

private (i.e., secret) module or property

public (i.e., interface) module or property

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Top-Level Requirements Modules

environment

computing_platform

data_
types

distrib
uted_
proc

essing

device_interfaces

time

commun
icating_
entities

system_behaviour

function_
drivers

message_
delivery

shared_
services

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Features of the LAN Messages Family, in ZF Syntax

feature note to all:
+ broadcast message delivery
+ text message base

(+) one line message

feature scroll text message:
+ multi line message
− one line message

(+) max lines1000 message
+ graphical user interface
− textual user interface

feature birthday cake picture:
+ broadcast message delivery
+ graphical message base
− text message only
+ graphical user interface

feature lunch alarm:
+ automated agent interface
+ broadcast message delivery

(+) text message base

feature deskPhoneXY hardware:
− graphical user interface
+ textual user interface
+ max lines2 message
+ pascal text string
+ pascal text string only
− c text string

. . .

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Family Members of the LAN Messages Family, in ZF

The “Lunch Phone” system:

lunch alarm } one input for configurator
deskPhoneXY hardware

The “Classic PC” edition:

note to all
multi line text message
standardPC hardware

The “Deluxe PC” edition:

lunch alarm
birthday cake picture
note to all
multi line text message
scroll text message
standardPC hardware

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

“Lunch Phone”: Base System + Two Features
base system:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

“Lunch Phone”: Base System + Two Features
feature lunch alarm:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

“Lunch Phone”: Base System + Two Features

feature deskphoneXY hardware:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

“Lunch Phone”: Base System + Two Features

lunch phone = base + lunch alarm + deskphoneXY hardware:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

An Inconsistent Configuration: Type Error in ZF

base system:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

An Inconsistent Configuration: Type Error in ZF

feature birthday cake picture:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

An Inconsistent Configuration: Type Error in ZF

feature deskphoneXY hardware:

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

An Inconsistent Configuration: Type Error in ZF

base + birthday cake picture + deskphoneXY hardware:

� � �
� � �

� �
� �

� � �
� � �

� �
� �

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Detecting Inconsistent Configuration Rules / Features

I some inconsistencies are made type errors
I important case:

include & exclude same property
I detect automatically

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Summary

I feature 6= requirements module

requirements module feature

a set of properties a set of changes
for long-lived family for single situation (marketing)
provides an abstraction a configuration rule

I applied to formalism Z
I configure specifications in Z
I detect inconsistent configurations as type errors

I Outlook
I associate code fragments to requirements
I policies and families
I application to other formalisms

Jan Bredereke Configuring Requirements Using Features



The Problem: Feature != Requirements Module
Solution: Configuring Requirements Modules in Z

Example: A Family of LAN Message Services

The LAN Message Services Specification
Features of the Family

Summary

I feature 6= requirements module

requirements module feature

a set of properties a set of changes
for long-lived family for single situation (marketing)
provides an abstraction a configuration rule

I applied to formalism Z
I configure specifications in Z
I detect inconsistent configurations as type errors

I Outlook
I associate code fragments to requirements
I policies and families
I application to other formalisms

Jan Bredereke Configuring Requirements Using Features



More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

Reserve Slides

More Examples for Type Rules and Semantics of ZF

Resolving Inconsistent Configuration Rules

Abstract Interfaces

Jan Bredereke Configuring Requirements Using Features



More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

More Examples for Type Rules and Semantics of ZF

+ ++ ++ +

+

and

+

and

both adding and removing a section adding a chapter

+

system
base

resulting
system

feature

system
base

resulting
system

+

removing a chapter

add,
essential

changeable
add,

remove public

private

modifying an interface sectionmodifying a private section

feature

feature

legend: selected

not selected

Jan Bredereke Configuring Requirements Using Features



More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

Resolving Inconsistent Configuration Rules

I reduce number of “hard” conflicts:
differentiate the strictness of rules

I essential property
I changeable property

I classification by original specifier
I priority is per feature

Jan Bredereke Configuring Requirements Using Features



More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

Interfaces Restrict Access

communicating_entities

messages

message_base

text_
message_

base

text_message_only

graphical_
message_

base
... ...

dependencyprivatepubliclegend:

Jan Bredereke Configuring Requirements Using Features



More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

Generating One Family Member

communicating_entities

messages

message_base

text_
message_

base

text_message_only

graphical_
message_

base
... ...

dependencyprivatepubliclegend:

Jan Bredereke Configuring Requirements Using Features



More Examples for Type Rules and Semantics of ZF
Resolving Inconsistent Configuration Rules

Abstract Interfaces

The Access Rules for Modules in ZF

private (i.e., secret) module or property

public (i.e., interface) module or propertyx y x depends on y

a secret can depend on a secret only if they are siblings

anything can depend on an interface an interface never depends on a secret

legend:

Jan Bredereke Configuring Requirements Using Features


	The Problem: Feature != Requirements Module
	Naive Feature Orientation
	Feature != Requirements Module

	Solution: Configuring Requirements Modules in Z
	Features as Configuration Rules for Requirements Modules
	The Formalism ZF

	Example: A Family of LAN Message Services
	The LAN Message Services Specification
	Features of the Family

	More Examples for Type Rules and Semantics of ZF
	Resolving Inconsistent Configuration Rules
	Abstract Interfaces

