
1

Configuring Members of a Family of
Requirements Using Features

Jan Bredereke

Universität Bremen, FB 3· P.O. box 330 440· D-28334 Bremen· Germany
brederek@tzi.de· www.tzi.de/˜brederek

Abstract.
We explicitly consider entire families of software requirements; this enables us

to configure family members using features. Our goal is to avoid feature interaction
problems by a software engineering approach. Naive feature orientation does not
scale due to complexity problems. But we can structure a family of requirements
into requirements modules to make it easier to maintain. We then can configure
family members from these requirements modules. In this, we must distinguish
the notions of a requirements module and of a feature to avoid feature interaction
problems. We demonstrate our ideas by adding suitable constructs for families and
for features to the formalism Z, and by then specifying a family of LAN message
services and a set of features for it.

Keywords. feature interaction, software engineering, rigorous requirements,
information hiding, configuration management, Z

1. Introduction

Our goal is to avoid feature interaction problems by a software engineering approach.
Naive feature orientation does not scale due to complexity problems. We concentrate
on software requirements. All feature interaction problems are present already in the
requirements, if the requirements are sufficiently complete. We explicitly consider entire
families of requirements. Different family members have different sets of features. There
is a typical process pattern in which such a family evolves during its maintenance. We
also concentrate on rigorous software requirements. Rigorous requirements are necessary
to ensure the dependability of the software system. Telephone switching systems are an
example of particularly long-lived dependable software systems.

1.1. Naive Feature Orientation Does Not Scale

A feature-oriented description of a telephone switching system is attractive but also can
promote undesired feature interactions.

With naivefeature orientation, a feature extends a base system by anarbitrary incre-
ment of functionality. The increment is typically chosen to satisfy some new user needs.
This selection of user needs happens from a marketing perspective. In particular, the se-
lection is neither particularly aligned to the internal structure of the software system nor
to the organization of the system’s documented requirements.

2 Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005

There has been considerable research effort on feature composition operators. In par-
ticular, in the FIREworks project [1,2] (Feature Interactions in Requirements Engineer-
ing), various feature operators were proposed and investigated. These operators success-
fully reflect the practice of arbitrary changes to the base system. The theoretical back-
ground is the superimposition idea by Katz [3]: one specifies a base system and textual
increments, which are composed by a precisely defined (syntactic) composition operator.

It turns out that severe feature interaction problems appear if one applies a naive fea-
ture oriented approach to a large software system, such as a telephone switching system.
It is relatively easy to create a new feature on its own and make it work. But it becomes
extremely difficult to make all the potential combinations of the optional features work
as the users and providers expect. The telecom industry complains that features often
interact in an undesired way [4,5]. There are already hundreds of telephony features.
The combinations cannot be checked anymore because of their sheer number. Undesired
interactions annoy the telephone users, and the users are not willing to accept many of
them.

1.2. An Evolution Process Pattern for Maintaining Families of Requirements

We explicitly consider entire families of requirements; such a family evolves in a typical
process pattern during its maintenance. Initially, we analyze the domain (more or less
thoroughly), and we specify and then implement one or a few systems. Over time, cus-
tomers demand new or other features. Therefore, we specify explicitly and then imple-
ment more members of the family. Over more time, we iterate this many times.

In this process, implicit family members become explicitly specified. The initial anal-
ysis of the domain determines which systems are potential family members, and which
systems can never be part of the family. Also, the requirements of one family member,
or of a few, are specified explicitly in the beginning. We call these theexplicit family
members. We call the other potential family members theimplicit family members.

2. Information Hiding Requirements Modules

We can structure a family of requirements into requirements modules to make it easier
to maintain. Requirements modules mean encapsulation in the information hiding sense.
A requirements module is a set of properties that are likely to change together. We need
a hierarchy of requirements modules to structure a large number of requirements. But
existing formal languages such as the well-known formalisms Z and Object-Z do not
fully support hierarchical requirements structuring. We therefore extend the formalism Z
suitably; this extension is also a necessary base for our feature construct in Sect. 4 below.
We demonstrate our approach on an example, a family of LAN message services.

2.1. Information Hiding Definitions

Information hiding helps to structure a large software system design into modules such
that it can be maintained. We now introduce some definitions from the literature as a
base for our further discussion. We also point out that this section is about design, not yet
about requirements.

Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005 3

A modulein the information hiding sense [6,7] is a work assignment to a developer or
a team of developers. (There aremanyother meanings of this word, we use this meaning
only here.) Such a work assignment should be as self-contained as possible. This reduces
the effort to develop the system, it reduces the effort to make changes to the system later,
and it improves comprehensibility.

Thesecretof a module is a piece of information that might change. No other module
may rely on the knowledge of such a secret. Sometimes we distinguish between a primary
and a secondary secret. A primary secret is hidden information that was specified to the
software designer. A secondary secret is a design decision made by the designer when
implementing the module that hides the primary secret.

The interfacebetween modules is the set ofassumptionsthat they make about each
other. This not only includes syntactic conventions, but also any assumptions on the be-
haviour of the other modules. A developer needs to know the interface of a module only
in order to use its services in another module.

There can be ahierarchy of modules. We need it for large systems. Its structure is
documented in amodule guide. The module guide describes the module structure by
characterizing each module’s secrets.

A fundamentalcriterion for designing the module structureof a software system
is: identify the requirements and the design decisions that are likely to change, and en-
capsulate each as the secret of a separate module. If such a module is too large for one
developer, the approach must be applied recursively. This leads to making the most sta-
ble design decisions first and those most likely to change last. The three top-level mod-
ules for almost any software system should be the hardware/platform-hiding module, the
behaviour-hiding module and the software decision module. These modules must then
be decomposed recursively, depending on the individual system. The structure presented
in [7] might serve as a template.

An abstractionof a set of entities is a description that applies equally well to any one
of them. Anabstract interfaceis an abstraction that represents more than one interface;
it exactly and only consists of the assumptions that are included in all of the interfaces
that it represents. Adevice interface moduleis a set of programs that translate between
the abstract interface and the actual hardware interface [8]. Having an abstract interface
for a device allows to replace the device during maintenance by another, similar model
with a different hardware interface, without changing more than one module.

A family of requirements needs a module structure, too, but the above kind of mod-
ules is not directly suitable. The above modules are a product of the softwaredesign.
Their secret can be a requirement or a design decision. Their structure is a software
design structure. Such artefacts of the software design do not belong into the software
requirements. But we can adapt the idea.

2.2. Requirements Modules for Families of Requirements

A requirements moduleis a set of properties that are likely to change together. The like-
liness of change of a property in a family is determined by its abstractness. The abstract-
ness of a property in a family is determined by the share of the family in which the prop-
erty is included in. A requirements module is anabstract requirements specification. An
abstract requirements specification is a subset of properties of a single product. It will
hold equally well for several or even all products of the product space.

4 Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005

Each of the properties is anabstract requirement. The property holds for all mem-
bers of the family that include this property. This is in accordance with the definition of
“abstract” above. In principle, we could define a metric for the abstractness of a prop-
erty. One property is more abstract than another if it is always included when the other
is included, and at least for one more family member. We would need to assign concrete
numbers for a complete metrics. In practice however, we can estimate the abstractness of
a property only. However, we are only interested in qualitative, relative comparisons of
abstractness, anyway. This suffices for the following considerations.

We can regard the abstractness of a property as determining thelikeliness of its
change. When we step randomly from one family member to another one, the property
will be added or removed with a likeliness that depends directly on its abstractness. We
distinguish between the likeliness of change for a single property and the likeliness that a
set of properties changes together. There can be a set of properties that is either included
completely, or of which no element is included, for a large part of the family. In this case,
there is a strong correlation of being included or not. Both kinds of likeliness of change
are important for a suitable requirements module structure. Properties that change to-
gether should be arranged together, in the description of the family of requirements. And
the likeliness of change for a single property should determine whether other properties
depend on it or not. The rationale for arranging properties together that change together is
the historically proven success of the information hiding approach with design modules.

2.3. A Hierarchy of Requirements Modules

We need a hierarchy of requirements modules to structure a large number of require-
ments. When we have a large number of requirements and therefore of requirements
modules, we need some additional structure. It shall help the reader of a requirements
document to find easily the module he/she is interested in. We structure the requirements
modules analogously to the hierarchy of design modules [7].

2.4. Support for Requirements Modules and Families in Existing Formalisms

Existing formal languages such as the well-known formalisms Z [9,10] and Object-Z
[11] do not fully support structuring by hierarchical requirements modules and by re-
quirements families. Formal languages can be used to document requirements rigorously.
Rigorous requirements are necessary to ensure the dependability of the software system.
The formalism Z is a well-known notation to describe properties of an information sys-
tem precisely; however, we can express a module hierarchy and a family only informally.
Object-Z is the most popular of several extensions of Z that add object-oriented mecha-
nisms; however, it is not easier to express a module hierarchy in Object-Z than in plain
Z, and it ismoredifficult to express a family. This is due to the fact that the standard
object-oriented mechanisms have been added in Object-Z, but no package mechanism.
A package mechanism would have made the ease of expression in Object-Z similar to
plain Z. A host of other formal languages exists; we select Z here because it is compara-
bly widely used. None of these other languages fully support structuring by hierarchical
requirements modules, too.

Z is a formalization of set theory. Z allows to specify astate spaceand constraints
over it. Powerful mathematical operators help to express constraints concisely. There are

Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005 5

alsooperationsfor specifying changes to the state space. Operations usually constrain the
changes, one can express preconditions and postconditions. Operations can also have pa-
rameters. Z is standardized by the International Standardization Organization (ISO) [9].
Before this official standardization, Z was defined for many years by Spivey’s reference
manual [10].

Z offers basic support for modularity. A schema allows to group variables together.
A paragraph is the basic formal unit of structure for Z. A Z specification document con-
sists of interleaved passages of formal text and informal prose explanation. The formal
text consists of a sequence of paragraphs. A paragraph can be, for example, one type
definition, one axiomatic description, or one schema definition. Spivey’s Z already uses
paragraphs [10].

A section and a specification are higher-level formal units of structure. These are
extensions by the ISO standard. Aspecificationconsists ofsections, which in turn consist
of paragraphs. The section construct allows for a constraint-oriented, incremental style
of specification. Each section has a self-contained formal meaning. Any initial sequence
of sections can be taken as the set of requirements for a variant of the specified system.
Each further section adds more constraints on the system (and new declarations).

The parents construct serves to specify the dependency relation among sections. The
parents construct is part of the section construct. It lists the names of other sections of
which the current section is an extension.

There is no formal way to express a multi-level hierarchy of modules. That is, there
is no way to group related lower-level modules together into higher-level modules. It
can be done informally only. We can have a hierarchy of informal chapters, sections,
sub-sections and so on around the formal Z sections. But such an informal hierarchy is
already sufficient to arrange together the formal sections according to their likeliness of
change.

We can express a family of requirements by a suitable convention. For this, we use
the section construct together with the parents construct. The dependency relation is a
hierarchy, i. e., acyclic. We can use the convention that each bottom leaf section in the hi-
erarchy is one member of the family. Such a leaf section composes the desired properties
from other, non-bottom sections through its parent construct.

We can extract a single member of the family into a separate document automati-
cally, with some limitations. We must use the above convention that the leaves in the
dependency hierarchy of sections each specify one family member. We then can indicate
the family member desired through the name of the corresponding leaf section. A suit-
able tool can follow the dependency relation in order to identify all sections included in
this family member. The tool then can copy the document with the family into another
document, while deleting those sections that are not included. A limitation is that we can-
not select the appropriate informal text automatically. In particular, if there are higher-
level, informal chapters, any informal closing remarks of the first section are merged
inseparably with any following informal chapter heading.

Object-Z [11] is the most popular of several extensions of Z that add object-oriented
mechanisms; however, it is not easier to express a module hierarchy in Object-Z than
in plain Z, and it ismoredifficult to express a family. Object-Z offers a basic support
for modularity, too, but it is different from the one in plain Z. Object-Z does not pro-
vide the formal section construct from the ISO standard; Object-Z is based on the old
version of Z by Spivey. Object-Z is similar to plain Z in that there is no formal way to

6 Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005

express a multi-level hierarchy of modules. (Note that inheritance does not group classes
together.) Object-Z offers no easy way to express a family of requirements formally; it
falls back behind plain ISO Z with this respect. Accordingly, there is no mechanizable
way to extract a single member of a family into a separate document.

2.5. Adding Support for Requirements Modules to the Formalism Z

We extend the formalism Z by a hierarchical module structure and by explicit interfaces
between requirements modules. This extension is also a necessary base for our feature
construct in Sect. 4 below. Explicit interfaces between requirements modules help to con-
trol dependencies between them. A property that is likely to change should not be de-
pended upon by properties from other modules; distinguishing between interface proper-
ties and secret properties of a module is a mechanism to avoid this.

To achieve a formal hierarchical module structure, we add a “chapter” construct on
top of the existing “section” construct of Z. A chapter groups sections together. It may
also group other chapters together. This allows for a full hierarchy of chapters, sub-
chapters, and sections. A chapter is different from a section in that it has no parents con-
struct. This is because the dependency relation should be defined over individual proper-
ties, i. e., sections, not over higher-level modules, i. e., chapters.

To achieve explicit interfaces, we allow to prefix a section or a chapter with the new
keyword “private”. We add a suitable type inference rule to restrict the access to private
sections and chapters. Otherwise, the definition of the semantics remains unchanged. We
call the extended language ZCI.

Syntax. We modify the BNF grammar of plain Z [9] at the top level as follows:

Specification = { Chapter | Section }
| { Paragraph } ;

Chapter = ZED, [private] , chapter, NAME, END, { Section } ,

ZED, endchapter, [NAME] , END

| ZED, [private] , chapter, NAME, END, { Chapter } ,

ZED, endchapter, [NAME] , END;

Section = ZED, [private] , section, NAME,

parents, [NAME, { ,-tok , NAME}] , END, { Paragraph }
| ZED, [private] , section, NAME, END, { Paragraph } ;

Paragraph = . . .

We add one context-sensitive rule to the syntactic grammar: the optionalNAMEafter
the token “endchapter”, if it exists, must be the same as theNAMEafter the corresponding
token “chapter”. The repetition of theNAMEis intended to improve readability when a
chapter is long and the reader might have lost a part of the context.

All specifications in Z are also specifications in ZCI (with the same meaning). The
only exceptions are those specifications in Z that use the three new keywords “chapter”,
“endchapter”, and “private”. These specifications are not legal in ZCI anymore.

Lexis and Mark-Up. The lexical analysis phase groups Z characters to tokens. The lexis
specifies a function from sequences of Z characters to sequences of tokens. We add the
three new alphabetic keywords and associated tokens to the lexis.

Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005 7

A mark-up allows to represent all of the many characters of Z on machines that
have only a small character set. The definitive representation of Z characters is in 16-bit
Unicode [12]. A mark-up is a mapping to the Unicode representation. As for plain Z,
there is a mark-up for the typesetting system LATEX [13] and a light-weight one for email.
In the LATEX mark-up of ZCI, the input “\begin{zchapter} ” is converted to the Z
characterZEDCHAR, and the input “\end{zchapter} ” is converted to the Z character
ENDCHAR. The lexis then converts the Z characterZEDCHARto the tokenZEDand the
Z characterENDCHARto the tokenEND. The mark-up input “\CHAPTER” is converted
to the string “chapter”, followed by a space. In context, a ZCI chapter heading thus looks
like:

\begin{zchapter}
\CHAPTER NAME
\end{zchapter}

Furthermore, the mark-up input “\ENDCHAPTER” is converted to the string
“endchapter”.

We suggest that the LATEX environmentzchapter might provide a suitable au-
tomatic, hierarchical chapter numbering scheme when typesetting. We implemented a
LATEX style that follows this suggestion.

Type Inference Rules.We add a type inference rule for chapter names. It takes care
that the chapter hierarchy is consistent, and that chapter names are different from section
names. We also add a second type inference rule for chapter names. It restricts the access
to private sections and chapters. The detailed formal rules can be found in [14].

Semantics. The definition of the semantics of plain Z remains unchanged; there is no
formal meaning for a chapter beyond the access restrictions it imposes.

2.6. Example: A Family of LAN Message Services

We demonstrate our approach on an example, a family of LAN message services. We
specified this family in the language ZF. ZF is a further extension of the language ZCI;
we will define ZF in Sect. 4 below. Please ignore the keyword “default” for now. The
full specification is in [14]. Figure 1(a) shows some of the formal chapter and section
headings. The complete specification has 28 sections on 19 pages.

The basic idea of such a service is that computer users on a local area network (LAN)
can send each other short messages that are displayed immediately. These systems can
have less or more functionality. A very simple version just unconditionally opens a graph-
ical window at the receiving side and displays one line of text. This can be convenient to
alert one’s colleagues on the same floor that one will cut a birthday cake in five minutes.
Other family members can support individual addressing, message blocking, message
re-routing, output on a text console, delayed messages, and so on. Therefore, all these
aspects are likely to change from one family member to another.

At the top level, the specification is divided into the requirements on the behaviour
of the software system to build and into the requirements on its environment. The en-
vironment comprises the communicating entities, the messages they want to exchange,
and the existing hardware and software that that can be made use of. The specification
of the behaviour of the software system describes what the system does to the communi-

8 Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005

1. chapter environment
1.1 chapter computingplatform
1.1.1 chapter datatypes
. . .
1.1.1.2 chapter textstrings
1.1.1.2.1 section textstring base
. . .
1.1.1.2.2 private default section ctext string
. . .
endchapter textstrings
1.1.1.3 chapter graphimages
1.1.1.3.1 section graphimage base
. . .
endchapter graphimages
endchapter data types
. . .

endchapter computingplatform
1.2 chapter deviceinterfaces
. . .
1.2.2 chapter communicatingentities
1.2.2.1 chapter messages
. . .
endchapter messages
. . .
1.2.2.8 private default chapter userinterface
1.2.2.8.1 section userbase
. . .
1.2.2.8.2 private default chapter graphicaluser interface
1.2.2.8.2.1 section guicommbase
. . .
1.2.2.8.2.2 private default section guiio base
. . .
endchapter graphical user interface
1.2.2.8.3 private chapter textualuser interface
. . .
endchapter textual user interface
endchapter userinterface
. . .
endchapter communicatingentities
endchapter deviceinterfaces
endchapter environment
2. chapter systembehaviour
2.1 chapter functiondrivers
2.1.1 chapter messagedelivery
. . .
2.1.1.2 private default section timelymessagedelivery
. . .
2.1.1.3 private default section correctmessagedelivery
. . .
2.1.1.4 private default section broadcastmessagedelivery
. . .
endchapter messagedelivery
endchapter functiondrivers
. . .

endchapter systembehaviour

(a) Some of the formal chapter and section headings in the
requirements module base. We omitted the “parents” construct
and all of the actual contents of the sections.

feature note to all:
+ broadcastmessagedelivery
+ text messagebase
(+) one line message

feature scroll text message:
+ multi line message
− one line message
+ graphicaluser interface
− textual user interface

feature birthday cake picture:
+ broadcastmessagedelivery
+ graphicalmessagebase
− text messageonly
+ graphicaluser interface

feature lunch alarm:
+ automatedagentinterface
+ broadcastmessagedelivery
(+) text messagebase

feature deskPhoneXYhardware:
− graphicaluser interface
+ textual user interface
+ max lines2 message
+ pascaltext string
− c text string

. . .

(b) Some of the feature defini-
tions in the configuration rule
base.

The “Lunch Phone” system:
lunch alarm
deskPhoneXYhardware

The “Classic PC” edition:
note to all
multi line text message
standardPChardware

The “Deluxe PC” edition:
lunch alarm
birthday cakepicture
note to all
multi line text message
scroll text message
standardPChardware

(c) Some queries for family
members.

Figure 1. Extract of the specification of a family of LAN message services in [14].

Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005 9

cating entities and the messages, without referring to any details of the existing hardware
or software. We expect that changes in the hardware devices will happen independently
from changes to the high-level behaviour of the system. For example, a change from a
textual user interface to a graphical user interface will be independent of whether there
is a message broadcast scheme or an individual message addressing scheme.

3. Configuring Family Members Using Features

We can configure family members from requirements modules; in this, we must distin-
guish the notions of a requirements module and of a feature to avoid feature interaction
problems. A feature is a set of changes, not a requirements module. A selected config-
uration of requirements must be consistent; we can reconcile some inconsistencies by
configuration priorities.

3.1. A Feature Is Not a Requirements Module

A feature is a set of changes, not a requirements module. We meanchangein the sense
of software configuration management [15], i. e., directed delta that is a sequence of (ele-
mentary) change operations which, when applied to one version, yields another version.
Features and requirements modules are similar. Both concepts serve to group properties.
But there are marked differences [16]. Examples from telephony support our claim that
a feature often affects different requirements modules of a well-designed requirements
module hierarchy. The telephony system sketched in the examples avoids many kinds of
undesired feature interactions.

There are two marked differences between features and requirements modules:

1. A requirements module is a set of properties (i.e.,oneset), while a feature consists
of both added and removed properties.

2. The properties of a module are selected because of their likeliness to change to-
gether,averagedover the entire family, while the properties of a feature are se-
lected to fit the marketing needs of asingle situation.

Forcing requirements modules and features to be the same is not advisable. A feature
fits the marketing needs of one occasion only, even though perfectly. It is likely to not fit
well for the remaining family members. A requirements module supports the construction
of all family members well, even though it does not satisfy all the marketing needs of a
particular occasion by itself. A few other requirements modules will be concerned, too.
In contrast, adding one more feature on top of a large naively feature-oriented system will
concern many other features. A requirements module provides an abstraction, while a
feature is a configuration rule for such abstractions. A feature is an entire set of changes,
not only one change. This is because a feature usually should be made up of changes to
different requirements modules.

Examples from telephony support our claim that a feature often affects different
requirements modules of a well-designed requirements module hierarchy.

• The 800 feature allows a company to advertise a single telephone number, e.g.,
1-800-123-4567. Dialling this number will connect a customer with the nearest
branch, free of charge.

10 Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005

This feature should be composed of properties from these three requirements mod-
ules: a module that provides addresses for user roles (example: the above 800
number for the pizza delivery role), a module that translates a role address into a
device address based on the caller’s address, and, entirely independently, a module
that charges the callee. The feature removes the property that the caller is charged.

• The emergency call feature allows a person in distress to call a well-known num-
ber (911 in the U.S., 110 in Germany and in some other European countries, . . .)
and be connected with the nearest emergency center.
This feature will include the properties from the three requirements modules
above, and from a few more. For example, there will be properties from a module
that allows the callee to identify the physical line the call comes from. Of course,
this feature also removes the property that the caller is charged.

• The follow-me call forwarding feature allows a person to register with any phone
line and receive all calls to his/her personal number there.
This feature includes properties from the module in the first example that provides
addresses for user roles. The other modules are not needed. Instead, we need prop-
erties from a module that translates a role address according to a dynamic user
preference. We also need properties from a further module to enable the user to
set his or her preferences dynamically.

Successful marketing needs features such as the above ones. A “user role address”
feature would probably sell much worse than the ubiquitous 800 feature. Nevertheless,
structuring the system only into the above features would not have been good. We could
not have reused requirements modules across features, as we have done above. This
would have been the naive feature-oriented approach.

The telephony system sketched in the examples above avoids many kinds of unde-
sired feature interactions. There is only one module that translates a role address into
a device address. A consistent distinction between user roles and devices is important.
For example, the well-known undesired feature interactions between call forwarding and
terminating call screening disappear as soon as we make clear whether the screening acts
on the device that made the connection or whether it acts on the user who initiated the
session. The latter, of course, needs that users explicitly register with devices. If devices
are screened, the phone should ring, if users are screened, the phone should not ring.
The description of the features will make clear to the customers what they can expect.
A naive feature oriented system adds the translation in the call forwarding feature only,
with entailing confusion and grief.

3.2. Configuration Priorities

Differentiating the strictness of configuration rules helps to reconcile inconsistencies; we
propose to distinguish between the essential properties and the changeable properties of
a feature. Conflicting feature definitions that demand to both include and to exclude a
property are an important special case of an inconsistent configuration. Such an incon-
sistency is an adverse feature interaction. For example in our family of LAN message
services in Figure 1, the feature noteto all demands the property oneline message to
be included, while the feature scrolltext message demands this property to be excluded.

A solution is to have different configuration priorities for the properties of a feature.
We found that not all properties of a feature are equally important. Some properties are

Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005 11

definitely necessary to meet the expectations evoked by the feature’s name. But other
properties are provided only in order to make the requirements specification complete
and predictable for the user. For example, the feature noteto all can be recognized no
matter what the requirements say on how many lines a note can have.

We therefore propose that the specifier of a feature documents explicitly which prop-
erties areessential propertiesand which arechangeable properties. If a feature demands
the inclusion of a changeable property, but another feature demands the exclusion of this
property, then the property is excluded without the configuration being inconsistent. The
attributation of a priority is per feature, not per property. A property can be essential for
one feature and be just ancillary for another feature. We will introduce such a distinction
of priorities for the formalism Z in Sect. 4 below.

4. Adding a Feature Construct to the Formalism Z

We complete our support for families of requirements in the formalism Z by adding a
suitable feature construct; it allows to specify a configuration. We illustrate our approach
by presenting some features for our family of LAN message services from Sect. 2.6
above.

We could specify family members in plain Z by an informal convention, but we
cannot extend the convention to features. In Section 2.4, we found that we can extract
a single member of the family into a separate document automatically. We must use
the convention that the leaves in the dependency hierarchy of sections each specify one
family member. But the extension of this convention does not work, that the sections
above the leaf sections serve to specify features. We can use this extended convention
to specify the properties that a feature includes. But we cannot express that a feature
excludes some other properties. There is no means for non-monotonous extensions. But
a feature is inherently non-monotonous [17]. Most features really change the behaviour
of the base system.

We define an extension of the formalism Z for families of requirements; it includes
a construct to specify a feature. We call the language ZF. We define the language by a
transformation that maps the specification of a family of requirements to an individual
family member, depending on a list of selected features. In the terms of software con-
figuration management [15], we will use two-level intertwined intensional versioning. A
feature is a list of sections added and a list of sections removed. The list of added sections
is differentiated into essential and into changeable sections. The list of removed sections
is not differentiated.

We define the language ZF by a transformation from ZF to ZCI (as defined in
Sect. 2.5). A description of a family member in the language ZF consists of three parts
(Fig. 2): the requirements module base, the configuration rule base, and a query. The
requirements module base contains all sections that potentially can be part of a family
member, grouped into chapters. The configuration rule base contains the definitions of
all features. A query is a list of those features that are selected for the family member
desired.

We therefore define the language ZF in three independent parts. We leave to the dis-
cretion of the specifiers to maintain these parts. For example, they can keep the module
base in a LATEX include file, and the rule base in another LATEX include file. The specifiers

12 Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005

query
(definition of a family member,

based on features)

requirements family member
(selected requirements modules)

requirements module base
(sections, grouped into chapters)

configuration rule base
(definitions of features)

configurator
(transformation function)

Figure 2. The three parts defining a family member in the language ZF.

can combine the two files into a family document for printing through the include mech-
anism of LATEX. Any generated family member will contain parts of the module base, but
no parts of the rule base. The latter is not interesting for the users of the family member
document. The rules could even be confusing. The query can be formulated, for example,
ad-hoc as input on the command line of the configurator tool.

4.1. Syntax

Requirements module base.We define the syntax by a context-free grammar in BNF.
The grammar is completely separate from the grammar of Z (and of ZCI). The start
symbol is the family. A family consists of chapters and sections that serve as requirements
modules.

Family = { Chapter | Section } ;

A chapter and a section are defined similar to the definition in ZCI, with two ex-
ceptions. There can be the additional keyword “default”. And the body of a section con-
sists of informal text only, with respect to the transformation. We have no rule for a
“Paragraph ”. Any ZCI paragraphs are just informal text. We will associate it to the
preceding token. Therefore, any ZCI paragraph will be part of the section whose heading
immediately precedes it.

Chapter = ZEDCHAR, [private, [default]] , chapter, NAME, ENDCHAR,

{ Chapter | Section } ,

ZEDCHAR, endchapter, [NAME] , ENDCHAR;

Section = ZEDCHAR, [private, [default]] , section, NAME,

[parents, [NAME, { ,-tok , NAME}]] , ENDCHAR;

The keyword “default” serves to specify the parts of the base system. The base sys-
tem consists of all interface sections/chapters and of all private sections/chapters that are
marked as “default”.

Configuration rule base. The BNF start symbol is the list of features. A feature is a list
of sections added and a list of sections removed. The list of added sections is differenti-
ated into essential and into changeable sections. A feature has a name.

FeatureList = { Feature } ;

Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005 13

Feature = ZEDCHAR, feature, NAME, : , ENDCHAR,

ZEDCHAR, { FeatAddEss | FeatAddChg | FeatRemove } ,

ENDCHAR;

FeatAddEss = + , NAME;

FeatAddChg = (-tok , + ,)-tok , NAME;

FeatRemove = − , NAME;

The add list and the remove list can also refer to entire chapters instead of individual
sections. This is an abbreviation. We will define below adding a chapter to be equivalent
to adding all its default sections.

Query. A family member is specified by a list of feature names.

FamilyMember = ZEDCHAR, { NAME} , ENDCHAR;

4.2. Lexis and Mark-Up

The lexical analysis phase groups Z characters to tokens. For each of the three parts
of a family member description, the lexis specifies a function that maps sequences of
Z characters to sequences of tokens. We only have alphabetic keywords. They are the
ones in the syntax definition. For the requirements module base, the lexis also specifies
a second function. This second function attributes each token with the sub-sequence of
input Z characters that were grouped into this token. We will need these sub-sequences
to compose the output of the translation to a family member.

The mark-up is straightforward. Details can be found in [14]. Analogous to the lexis,
there is also a second mapping for the requirements module base that attributes each Z
character with the sub-sequence of input LATEX/email characters that were grouped into
this Z character. Any informal text is associated to the preceding formal Z character,
again.

4.3. Type Inference Rules

Some type inference rules provide general consistency and furthermore adherence to our
intended restrictions on essential sections and chapters. This enables suitable type checks
on the specification of the family and on any query.

For the requirements module base, we adapt the applicable type inference rules from
ZCI on chapters and sections (omitting the rules on parents). Additionally, we demand
that multiple appearances of a chapter name are marked consistently as “default”. This
gives us some general consistency. The formal rules can be found in [14].

For the configuration rule base, we define four obvious consistency rules: C1) All
features must have distinct names. C2) Feature names are in the same name space as
section and chapter names; hence they all must be different. C3) Each section and chapter
name may appear only once in the list of a feature. C4) All section and chapter names
that appear in the list of a feature must be defined in the requirements module base.

For the query, we define one general consistency rule and one restriction rule: Q1) All
feature names in the query must be defined in the configuration rule base. Q2) For all
feature names in the query, no feature may remove a section or chapter that is listed
among the essential sections and chapters of some feature of this query.

14 Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005

Note that being essential doesnot propagate from a chapter to all of its sections.
A chapter may be marked as essential, but nevertheless some of its default sections can
be removed. Note furthermore that a feature may remove a section that is needed as a
parent by another, included section. We leave this consistency check to the definition of
ZCI, where it is performed anyway. Similarly, we do not check the access restrictions to
private sections and chapters here.

4.4. Semantics

The semantics is the transformation that maps the three parts to an individual family
member. We define the result of the transformation by the following steps. We start out
with a base system consisting of everything that is either an interface or marked as de-
fault. To be more precise, the set of base sections is the set of all those sections which
are not marked as “private”, and for which none of its enclosing chapters is marked as
“private”. Again, the formal definitions can be found in [14].

We then add all the sections that the features in the query demand; and for the chap-
ters that the features in the query demand, we also add all their non-“private” sections.
This means adding both the essential and the changeable sections/chapters.

We next remove all the sections that the features in the query demand to be removed;
and for the chapters that shall be removed, we remove all their sections. The result is the
set of sectionsSof the family member.

After having determined the set of sections of the family member, we can define the
set of chapter headingsC of the family member. We keep only those chapter headings
for which at least one section exists.

The final step is the definition of the output sequence of Z characters (and mark-up).
The output is the same as the requirements module base, but with some parts removed.
The order of the output characters is otherwise the same as in the requirements module
base. We need the association of the syntax grammar non-terminals “Chapter ” and
“Section ” to their corresponding input from the lexis and from the mark-up. We re-
move all Z characters associated to syntax grammar non-terminals “Section ”, where
the corresponding section name is not inS, and we remove all Z characters associated
to syntax grammar non-terminals “Chapter ”, where the corresponding chapter name is
not inC. Additionally, we remove all Z characters associated to any token “default”. Note
that all informal text blocks are associated to some formal text; they are also removed
suitably where necessary.

4.5. Example: Some Features for the Family of LAN Message Services

We illustrate our approach by presenting some features for our family of LAN message
services from Sect. 2.6 above. Figure 1(b) shows some of the feature definitions, and
Figure 1(c) contains some queries for family members that are specified using features.
The complete requirements module base in [14] contains more feature definitions; also
not all requirements modules referenced here are shown in Figure 1(a).

Note that the feature deskPhoneXYhardware means that the system uses the hard-
ware of the office desk phones of brand XY instead of computer terminals. These phones
only have a small text display with two lines. The associcated software platform is re-
stricted to the language Pascal.

Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005 15

4.6. Graphical Illustration of Configuring a System Using Features

Figure 3 illustrates how we configure a system using features. We take our LAN mes-
sage service family, again. The figure contains scaled-down versions of the requirements
module hierarchy and of the dependency relation. The four sub-figures show the base
system, two features, and the resulting complete system.

The base system of our family is in Figure 3(a). The black boxes mark those sections
which are part of the “plain” family member that has no features.

The changes by the feature lunchalarm are in Figure 3(b). An automated alarm clock
informs everybody when it is time for the lunch break. By default, the alarm is a short
text message. A bold frame marks those sections and chapters which the feature adds on
top of the base system. A dashed frame means that this addition is not essential and could
be overruled by another feature. (Note that this particular non-essential section addition
does not change anything, because the section is a default in the base system anyway.
This is due to our wish to express our intention behind the feature lunchalarm better.)

The changes by the feature deskPhoneXYhardware are in Figure 3(c). A bold cross
marks those sections and chapters which the feature explicitly removes.

The final configuration of the “Lunch Phone” system is in Figure 3(d). It consists of
the above two features. Compare also the formal descriptions of the features and of the
“Lunch Phone” system in Figure 1.

5. Discussion

We presented an approach to configure members from a family of requirements using
features. A family of requirements is a set of requirements specifications for which it pays
off to study the common requirements first; we have several versions of requirements
in the sense of configuration management. Our goal is to avoid feature interaction prob-
lems by a software engineering approach. Naive feature orientation does not scale due to
complexity problems. But we can structure a family of requirements into requirements
modules to make it easier to maintain. We then can configure family members from these
requirements modules. In this, we must distinguish the notions of a requirements mod-
ule and of a feature to avoid feature interaction problems. A feature is a set of changes,
not a requirements module. A family member is defined by three parts: the requirements
module base, the configuration rule base, and a query. We see a feature as a configuration
rule. A specific selection of feature names then constitutes a query. We demonstrated our
ideas by adding suitable constructs for families and for features to the formalism Z, and
by then specifying a family of LAN message services and a set of features for it.

Our approach is applicable to other formalisms, too. Not by chance, this paper does
not show any actual Z formulas from our specification in [14]. Only the formal means for
structuring and configuring are relevant here. However, the underlying formalism must
support a constraint-oriented specification style. This allows to split the requirements into
small, independent properties.

We already have experience with one other formalism, CSP-OZ [18,19]. We report
two insights from this earlier work. First, we did not yet distinguish between a require-
ments module and a feature. This had the disadvantages discussed above. Second, plain
CSP-OZ [20,21] provides two independent constructs for grouping requirements; this

16 Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005

(a) The base system.

(b) The feature lunchalarm.

(c) The feature deskphonehardware.

(d) The complete “Lunch Phone” system.

legend: selected

not selected

add,
essential changeable

add, remove

Figure 3. Configuring a system using features in the LAN message service family.

Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005 17

complicated our extension. Plain CSP-OZ has the class construct from object orientation.
But CSP-OZ also has the section construct from ISO Z. The latter was adopted together
with the detailed definition of the syntax and semantics of Z which only the ISO stan-
dard provides. Consequently, our extension ended up having two similar, but nevertheless
different means for grouping requirements, too.

We based our extension on the section construct of CSP-OZ and not on the class
construct, because the latter cannot group together certain parts of a specification. The
class construct construct comes from Object-Z [11]. Object-Z, and thus CSP-OZ, allows
all the different kinds of paragraphs of Z to be used, outside of any class. A paragraph can
be, for example, one type definition, one axiomatic description, or one schema definition.

The class construct did not interwork too well with the section construct. There were
many sections that contained exactly one class. This turned out to be syntactic clutter. We
removed it by defining a shorthand notation in our extension of CSP-OZ. The shorthand
allows to use a class in the places where a section can occur, too. A syntactic transforma-
tion then implicitly adds a suitable section heading for such a class [18,22]. This short-
hand fixed the problem at the surface, but conceptually it is not entirely satisfactory. Our
current formalism ZF does not have this problem anymore. ZF does not build on Object-
Z, only on ISO Z. It is an interesting research question how our requirements configura-
tion means can be integrated seamlessly with object-oriented requirements analysis.

Configuring requirements family members needs tool support; some tools already
exist, more are planned. We have written a LATEX style for typesetting specifications in
ZF. We have implemented and used a configurator and a type checker for a predecessor
of ZF; we now plan the same for the current ZF, following the precise specification here
(and in more detail in [14]). We can exploit the experience with the checker and generator
tool [22] that we already wrote for our extension of CSP-OZ discussed above. We already
use the free toolCADiZ [23] for general type checking.CADiZ is for plain (ISO-)Z, but
we have written a simple transformator from ZCI to plain Z.

This is ongoing work. Besides having more tool support, we want to gather more ex-
perience with specifying and configuring families of requirements in ZF. We already col-
lected considerable experience with a large case study in our extension of CSP-OZ. We
specified the requirements for a telephone switching system [18,19]. The case study com-
prises about 40 pages of commented formal specification, with about 50 sections in nine
features/modules, including the base system. The structure of the specification avoided
the feature interactions between, e. g., call forwarding and terminating call screening,
and our type checker tool pointed us to a contradiction between features. An interesting
question for further research is how we can associate code fragments to requirements
written in a constraint-oriented style, such that we can also configure all or a part of the
implementation automatically from a code base, using features.

References

[1] STEPHEN GILMORE AND MARK RYAN , editors. “Proc. of Workshop on Language Con-
structs for Describing Features”, Glasgow, Scotland (15–16 May 2000). ESPRIT Working
Group 23531 – Feature Integration in Requirements Engineering.

[2] STEPHEN GILMORE AND MARK D. RYAN , editors. “Language Constructs for Describing
Features”. Springer (2001).

[3] SHMUEL KATZ. A superimposition control construct for distributed systems.ACM Trans.
Prog. Lang. Syst.15(2), 337–356 (April 1993).

18 Accepted for ICFI’05 – Int’l Conf. on Feature Interactions 2005

[4] DANIEL AMYOT AND LUIGI LOGRIPPO, editors. “Feature Interactions in Telecommunica-
tions and Software Systems VII”. IOS Press, Amsterdam (June 2003).

[5] M UFFY CALDER AND EVAN MAGILL , editors. “Feature Interactions in Telecommunications
and Software Systems VI”. IOS Press, Amsterdam (May 2000).

[6] DAVID LORGE PARNAS. On the criteria to be used in decomposing systems into modules.
Commun. ACM15(12), 1053–1058 (1972). Reprinted in [24].

[7] DAVID LORGEPARNAS, PAUL C. CLEMENTS, AND DAVID M. WEISS. The modular struc-
ture of complex systems.IEEE Trans. Softw. Eng.11(3), 259–266 (March 1985). Reprinted
in [24].

[8] K ATHRYN HENINGER BRITTON, R. ALAN PARKER, AND DAVID L. PARNAS. A procedure
for designing abstract interfaces for device interface modules. In “Proc. of the 5th Int’l. Conf.
on Software Engineering – ICSE 5”, pages 195–204 (March 1981). Reprinted in [24].

[9] “Information Technology – Z Formal specification notation – Syntax, type system and se-
mantics”. ISO/IEC 13568:2002(E) (July 2002).

[10] JOHN M ICHAEL SPIVEY. “The Z notation: a reference manual”. Series in Computer Science.
Prentice-Hall, New York, 2nd edition (1995).

[11] GRAEME SMITH . “The Object-Z Specification Language”. Kluwer Academic Publishers
(2000).

[12] “ISO/IEC 10646-1:1993 Information Technology – Universal Multiple-Octet Coded Charac-
ter Set (UCS) – Part 1: Architecture and Basic Multilingual Plane” (1993).

[13] FRANK M ITTELBACH , M ICHEL GOOSSENS, JOHANNES BRAAMS, DAVID CARLISLE,
AND CHRIS ROWLEY. “The LATEX Companion”. Addison-Wesley, 2nd edition (April 2004).

[14] JAN BREDEREKE. “Maintaining Families of Rigorous Requirements for Embedded Software
Systems”. Habilitation thesis, University of Bremen, Germany (2005).To appear.

[15] REIDAR CONRADI AND BERNHARD WESTFECHTEL. Version models for software configu-
ration management.ACM Comput. Surv.30(2), 232–282 (June 1998).

[16] JAN BREDEREKE. On feature orientation and on requirements encapsulation using families of
requirements. In MARK D. RYAN , JOHN-JULES CH. MEYER, AND HANS-DIETER EHRICH,
editors, “Objects, Agents, and Features”, volume 2975 of “LNCS”, pages 26–44. Springer
(2004).

[17] HUGO VELTHUIJSEN. Issues of non-monotonicity in feature-interaction detection. In
KONG ENG CHENG AND TADASHI OHTA, editors, “Feature Interactions in Telecommunica-
tions III”, pages 31–42. IOS Press, Amsterdam (1995).

[18] JAN BREDEREKE. A tool for generating specifications from a family of formal require-
ments. In MYUNGCHUL K IM , BYOUNGMOON CHIN , SUNGWON KANG, AND DANHYUNG

LEE, editors, “Formal Techniques for Networked and Distributed Systems”, pages 319–334.
Kluwer Academic Publishers (August 2001).

[19] JAN BREDEREKE. Families of formal requirements in telephone switching. In Calder and
Magill [5], pages 257–273.

[20] CLEMENS FISCHER. Combination and implementation of processes and data: from CSP-
OZ to Java. PhD thesis, report of the Comp. Sce. dept. 2/2000, University of Oldenburg,
Oldenburg, Germany (April 2000).

[21] CLEMENS FISCHER. CSP-OZ: a combination of Object-Z and CSP. In HOWARD BOWMAN

AND JOHN DERRICK, editors, “Formal Methods for Open Object-Based Distributed Systems
(FMOODS’97)”, volume 2, pages 423–438. Chapman & Hall (July 1997).

[22] JAN BREDEREKE. “genFamMem 2.0 Manual – a Specification Generator and Type Checker
for Families of Formal Requirements”. University of Bremen (October 2000). www.tzi.de/
˜brederek/genFamMem.

[23] IAN TOYN ET AL .. “CADiZ reference manual”. University of York, Heslington, York, Eng-
land (2002).

[24] DANIEL M. HOFFMAN AND DAVID M. WEISS, editors. “Software Fundamentals – Col-
lected Papers by David L. Parnas”. Addison-Wesley (March 2001).

