A Survey of Time and Space Partitioning for Space Avionics Presentation at DASIA 2018

Jan Bredereke

31st May 2018

The Basic Idea of TSP Motivation

Time and Space Partitioning (TSP) - Why?

several computing tasks with mixed dependability requirements on a single computer in order to save weight

Overview A Survey of Time and Space Partitioning for Space Avionics

1 Systems with Mixed Dependability

- 2 Integrated Modular Avionics (IMA) for Aircraft
- 3 Adaption of IMA for Space Avionics
- 4 Some Research Challenges

The Notion of Dependability

Systems with Mixed Dependability

Dependability (Avižienis et al. 2004)

"the ability of a system to avoid service failures that are more frequent and more severe than is acceptable"

dependability: must be validated

The Problem with Mixed Dependability

Systems with Mixed Dependability

several computing tasks on a single computer

- with mixed dependability requirements
- most critical task: determines criticality of *all* software on this computer
 - example: danger of writing into memory of another task

consequence

- for all tasks: degree of effort for validation of dependability
 = degree of the most critical task
- high costs for development and maintenance, if many tasks on a computer which all might impair each other

Solutions Systems with Mixed Dependability

	separation kernel	virtualization
idea	a kind of operating system + hardware support	hypervisor + hardware support
effect on task	appears to be alone on computer + operating system	appears to be alone on bare computer (except for "holes in CPU time")
validation effort for task	as required for this task	
validation effort for kernel/hypervisor	like for the most critical task, but only once	
amount of latter validation effort	medium	small
operating system support	yes	no

Overview A Survey of Time and Space Partitioning for Space Avionics

1 Systems with Mixed Dependability

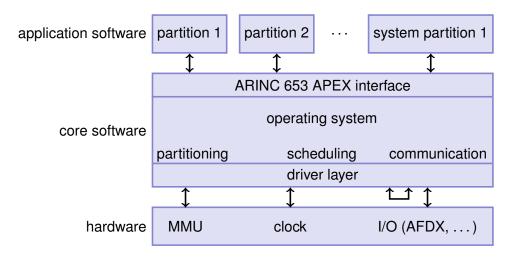
- 2 Integrated Modular Avionics (IMA) for Aircraft
- 3 Adaption of IMA for Space Avionics
- 4 Some Research Challenges

Motivation: Evolution of the Avionics Architecture

Integrated Modular Avionics (IMA) for Aircraft

trend to sharing computer hardware:

feasible because of ever faster computers (often: 1 computer much faster than needs of 1 application)


saves weight on aircraft and thus saves cost

trend to general-purpose computing modules:

saves on development and on worldwide stock of replacement units and thus saves cost

System Architecture of an IMA module

Integrated Modular Avionics (IMA) for Aircraft

Summary of Overview Integrated Modular Avionics (IMA) for Aircraft

Integrated Modular Avionics

- few, standardized computing modules
- 1 standardized type of bus (fast, real-time)
- 1 standardized IMA operating system interface (with partitioning) (separation kernel approach)

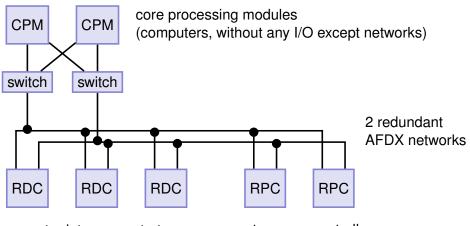
Used in Practice Integrated Modular Avionics (IMA) for Aircraft

- Airbus A380
- Airbus A400M
- Airbus A350XWB
- Boeing 787 Dreamliner

. . . .

Extension/Research: Distributed Modul Avionics (DME) Integrated Modular Avionics (IMA) for Aircraft

idea


IMA:

each sensor/actuator hard-wired to 1 IMA module

DME:

separate processing power from sensor/actuator interfaces (thus reducing the number of component types to a minimum)

System Architecture of Distributed Modular Electronics (DME) Integrated Modular Avionics (IMA) for Aircraft

remote data concentrators (for inputs)

remote power controllers (for outputs)

1 Systems with Mixed Dependability

- 2 Integrated Modular Avionics (IMA) for Aircraft
- 3 Adaption of IMA for Space Avionics
- 4 Some Research Challenges

Differences Between the Aeronautical and the Space Domain Adaption of IMA for Space Avionics

- the speed of growth of (software) complexity
- scale of communication demands (among computers)
- online/offline maintenance
- pronounced mission phases
- radiation
- availability of a hardware-based memory protection unit

more details: see my full paper

The Original IMA-SP Project Adaption of IMA for Space Avionics

- IMA-SP: "'Integrated Modular Avionics for Space"' research project of the European Space Agency (ESA)
- motivation similar to IMA
- but tailored for space domain: slower processors because of radiation less complex systems (compare above)
- original project ended 2012
- several follow-up projects (more on them: see my full paper)

The IMA-SP Platform Adaption of IMA for Space Avionics

- adoption of the basic IMA concept, addition of space-specific requirements, removal of the standardized communication via AFDX
- result: a rather specific platform

(not even suitable for launchers, suitable for satellites only)

the sum of "user requirements" results in an architecture for a rather narrow application area

example:

additional services for communication via shared memory are mandatory in IMA-SP, instead of optional

- apparently no generalization step by an up-front investigation of the common requirements of the aeronautical and the space domain
- emphasis: preserving long-proven ideas, approaches, and even hardware from the (satellite) space domain

Extensions for Multi-Core Processors: The MultiPARTES Project Adaption of IMA for Space Avionics

"Multi-cores Partitioning for Trusted Embedded Systems"

- adapts the XtratuM hypervisor for multi-core processors
- reason: nearly all modern processors are multi-core
- more details: see my full paper

problem:

verification of real-time properties very hard with multi-core, because of common resources (e.g., cache)

 solution brings limited progress, only: simply several independent Leon3 CPUs on a single FPGA chip, under a single hypervisor, at least

1 Systems with Mixed Dependability

- 2 Integrated Modular Avionics (IMA) for Aircraft
- 3 Adaption of IMA for Space Avionics
- 4 Some Research Challenges

Research Challenges Some Research Challenges

Research Challenges for Time Partitioning

- multi-core CPUs
- direct memory access (DMA)

Research Challenges for Real-Time Property Proofs

- worst-case performance and processor architecture
- timing anomalies and processor architecture

refs to some work on this: see my full paper

References

- Avižienis, Algirdas et al. (2004). "Basic Concepts and Taxonomy of Dependable and Secure Computing". In: *IEEE Trans. on Dependable and Secure Computing* 1.1.
- Rushby, John (1981). "The Design and Verification of Secure Systems". Reprint of a paper presented at the 8th ACM Symposium on Operating System Principles, Pacific Grove, CA, USA, 14–16 Dec. 1981. In: ACM Operating Systems Review 15.5, pp. 12–21.