
A SURVEY OF
TIME AND SPACE PARTITIONING FOR SPACE AVIONICS

Jan Bredereke · City University of Applied Sciences Bremen
mailing address: Flughafenallee 10, 28199 Bremen, Germany

email: jan.bredereke@hs-bremen.de · phone: +49 421 5905 5490

ABSTRACT

We present a survey of the current state of the reseach
on time and space partitioning (TSP) for space avionics.
The availability of ever more powerful computers allows
to assign many control tasks to a single computer easily,
in principle. But in its naïve form, this would mean too
much effort and thus cost for demonstrating depend-
ability. For aircraft, there is already an approach to
solve this problem, the Integrated Modular Avionics
(IMA) architecture. For spacecraft, the basic problem
is similar. But in detail, the setting is different, though.
This paper compiles a survey and identifies relevant
research challenges.

Keywords: time and space partitioning, space avion-
ics, integrated modular avionics

1 INTRODUCTION

Avionics is the set of electronic systems, in particular
computers, on board of an aircraft or spacecraft. Such
systems must be dependable. There are significantly dif-
ferent levels of dependability, for example for the cabin
electronics of an aircraft and for its autopilot. The
higher the level required, the higher the effort neces-
sary for demonstrating dependability. The traditional
approach therefore provisions separate computer hard-
ware for each control task. The effort for demonstrating
dependability then follows from the level targeted, for
each task.

The availability of ever more powerful computers allows
to assign many control tasks to a single computer easily,
in principle. This would have the advantage of saving
considerable weight and thus cost for the aircraft or
spacecraft. But this idea, in its naïve form, would
mean too much effort and thus cost for demonstrating
dependability. A level demanded by one of the tasks
must be applied to all of them.

For aircraft, there is an approach for this already. The
Integrated Modular Avionics (IMA) architecture (see
Sect. 3 below) is a software and hardware platform
which isolates software programs from each other. The
dependability needs to be demonstrated at the highest

level only once, for the platform. This concept is used
in practice already for the aircraft Airbus A380, Airbus
A400M, and Boeing 787 Dreamliner.

For spacecraft, the basic problem is similar. We want
to run several tasks on a single computer (or a few
computers) for cost reasons, with dependability require-
ments that are high, too. But in detail, the setting is
different, though. There is already some research on
time and space partitioning of control tasks in space
craft. But there is not yet a concept proven in practice.

The aim of our paper is to compile a survey and to
identify some relevant research challenges. The paper
is an updated version of a longer, more comprehensive
technical report by us [Bre17].

2 SYSTEMS WITH MIXED DEPENDABIL-
ITY

In this section, we introduce to systems with mixed
dependability. We briefly introduce to the notions of
dependability and of mixed dependability first. We
then describe two mechanisms to handle mixed depend-
ability.

2.1 Dependability

The survey paper by Avižienis et. al. [Avi+04] provides
definitions for dependability in the domains of comput-
ing and communication systems. The original definition
of dependability is the ability to deliver service that
can be justifiably trusted. This definition stresses the
need for justification of trust. The alternate definition
that provides the criterion for deciding if the service
is dependable is: the dependability of a system is the
ability to avoid service failures that are more frequent
and more severe than is acceptable. The means to at-
tain dependability are fault prevention, fault tolerance,
fault removal, and fault forecasting.

All of these means to attain dependability require effort.
And this effort increases when a higher dependability
is demanded.



2.2 Mixed Dependability

A system with mixed dependability is a system where
components with different dependability levels coex-
ist on the same execution platform. Crespo et. al.
[Cre+14a] call this a “mixed criticality system” (MCS):
Increasing processing power makes it possible to integ-
rate more and more components on a single execution
platform. However, if at least some of the components
must be dependable, adequate validation (and often
certification) is necessary, such that validation costs can
become prohibitive for further integration. This trend
can be observed in many different domains. Examples
are the aeronautical domain, the space domain, the
automotive domain, and industry automation.

2.3 Handling Mixed Dependability

A general approach to this is to separate the compon-
ents on the single execution platform so well that only
the separation mechanism and the high dependability
components need to be validated for a high dependabil-
ity. Mechanisms to achieve such a separation comprise
a separation kernel and virtualization.

2.3.1 Separation Kernel

A separation kernel is a combination of hardware and
software for allowing multiple functions to be performed
on a common set of physical resources without inter-
ference [Cre+14a]. It was first proposed by Rushby
[Rus81], aiming at security problems.

According to Crespo et. al. [Cre+14a], the MILS archi-
tecture, developed by the MILS (Multiple Independent
Levels of Security and Safety) initiative [Alv+05], is a
separation kernel. In addition, the ARINC-653 stand-
ard [Aer05] uses these principles to define a baseline
operating environment for application software used
within Integrated Modular Avionics (IMA), based on
a partitioned architecture. Wie will describe IMA in
more detail in Sect. 3.

2.3.2 Virtualization

Crespo et. al. [Cre+14a] use virtualization as a separa-
tion mechanism. A hypervisor implements partitions
or virtual machines that are isolated from each other
in the temporal and spatial (i.e., storage) domains.

Different kinds of isolation must be considered
[Cre+14a, Sect. 2.1]:

Fault isolation: a fault in an application must not
propagate to other applications.

Spatial isolation: applications must execute in inde-

pendent physical memory address spaces.

Temporal isolation: the real-time behaviour of an
application must be correct independent of the
execution of other applications.

Crespo et. al. [Cre+14a, Sect. 2.1] propose a predefined
and static allocation of resources to partitions, in order
to achieve a separation that is sufficiently simple to allow
for separate validation. The resources comprise CPU
time, memory areas, IO ports, etc. Static allocation of
CPU time should be achieved by a cyclic scheduling
policy for partition execution.

Crespo et. al. [Cre+14a, Sect. 3] state that there is
some confusion of terminology on virtualization, and
they propose the following definitions: A type 1 hy-
pervisor (also named native or bare-metal hypervisor)
runs directly on the native hardware, while a type 2
hypervisor is executed on top of an operating system.
Full virtualization provides a complete re-creation of the
hardware behaviour of a native system to a guest sys-
tem, while para-virtualization requires the guest system
to be modified: Some machine instructions are replaced
by functions provided by the hypervisor. In full virtual-
ization, certain “conflicting” machine instructions must
be caught during runtime, in order to maintain the spa-
tial and temporal separation. They are then handled by
the hypervisor. With para-virtualization, in contrast,
no catching is necessary, and the handling can use more
information from the guest. This improves the perform-
ance greatly, and it simplifies the hypervisor. Of course,
the source code of the guest must be available for re-
compiling. Since the latter usually is not a problem
for mixed dependability systems, para-virtualization is
preferable here.

Conceived by the same research group, XtratuM (see
Sect. 4.4.1) is an open-source, type 1 hypervisor that
uses para-virtualization. It was designed specifically for
mixed-criticality systems.

Virtualization aims at presenting a virtual machine to
an application software which is exactly like the real
machine. However, it cannot hide one kind of difference:
the machine instructions are not executed evenly in
the time sense anymore. There are “holes” where other
partitions get time. The application software can notice
this when it interacts with the system’s environment.
This is relevant for real-time applications, for example
for control applications where the controlled system
does not stop while the application is on hold. Another
example is the interaction with peripheral devices which
change state by progress of time, such as timers.

The latency of an interrupt can become substantially
higher, i.e., until the partition of the interrupt is sched-
uled again. This can break assumptions about the
timing of interrupts made by an application or by an



operating system. For example, Ripoll et. al. [Rip+10,
Sect. 3.2] report that they used the RTEMS operating
system in a partition, and that the timer tick of the
RTEMS operating system was faster than the schedule
period of the partition. Therefore, they had to take
measures to ensure that accumulated clock ticks were
presented to the partition at the beginning of its time
slot.

2.3.3 Separation Kernel vs. Virtualization

Separation is a solution to the problem of mixed depend-
ability, and virtualization is one possible mechanism
to achive separation. Virtualization comprises more
than necessary to achive separation. For example, the
application in a (fully) virtualized machine cannot “see”
any differences (besides “holes in time”) to a dedicated
real machine. This is not necessary for separation.
Instead, we can provide some modification of a real
machine to the application, as long as it guarantees
separation. The approach of para-virtualization (com-
pare Sect. 2.3.2 above) goes a step into exactly this
direction.

A separation kernel imposes the use of the same oper-
ating system onto all applications, while virtualization
allows for different operating systems (or even bare-
metal applications without any operating system) in its
partitions. The latter can be a substantial advantage if
heterogeneous applications are to be integrated.

A separation kernel usually comprises more function-
ality (e.g., on communication, and maybe on multi-
threading) than a hypervisor used for virtualization.
Therefore, we suspect that the effort necessary for veri-
fying the time and space separation property is usually
higher for a separation kernel.

3 INTEGRATED MODULAR AVIONICS
(IMA) FOR AIRCRAFT

In this section, we give an overview of the Integrated
Modular Avionics (IMA) architecture which is used
for aircraft. We describe why it was developed, and
which are the key properties of its constituent data
network and of its operating system interface. Further-
more, we outline the extension to Distributed Modular
Electronics (DME).

Our overview draws on the well-written background
chapter of the dissertation thesis of Efkemann [Efk14,
Chap. 2]. A good source for further reading is Ott
[Ott07]. She gives a broad view on both architectures
and development processes, and there in particular on

testing processes.

3.1 From a Federated Architecture to the IMA
Architecture

Efkemann [Efk14, Chap. 2] presents the following over-
view of Integrated Modular Avionics (IMA) in his dis-
sertation thesis:

“The traditional federated aircraft controller architec-
ture [Fil03, p. 4] consists of a large number of different,
specialised electronics devices. Each of them is dedic-
ated to a special, singular purpose (e. g. flight control,
or fire and smoke detection) and has its own custom
sensor/actuator wiring. Some of them are linked to
each other with dedicated data connections. In the
Integrated Modular Avionics (IMA) architecture this
multitude of device types is replaced by a small number
of modular, general-purpose component variants whose
instances are linked by a high-speed data network. Due
to high processing power each module can host several
avionics functions, each of which previously required
its own controller. The IMA approach has several main
advantages:

• Reduction of weight through a smaller number of
physical components and reduced wiring, thereby
increasing fuel efficiency.

• Reduction of on-board power consumption by more
effective use of computing power and electrical
components.

• Lower maintenance costs by reducing the number
of different types of replacement units needed to
keep on stock.

• Reduction of development costs by provision of
a standardised operating system, together with
standardised drivers for the avionics interfaces most
widely used.

• Reduction of certification effort and costs via in-
cremental certification of hard- and software.

An important aspect of module design is segregation:
In order to host applications of different safety assur-
ance levels on the same module, it must be ensured
that those applications cannot interfere with each other.
Therefore a module must support resource partition-
ing via memory access protection, strict deterministic
scheduling and I/O access permissions. Bandwidth lim-
itations on the data network have to be enforced as
well.

The standard aircraft documentation reference for IMA
is ATA chapter 42. The IMA architecture is currently in
use in the Airbus A380, A400M, the future A350XWB,
and Boeing 787 Dreamliner aircraft. Predecessors of this



architecture can be found in so-called fourth-generation
jet fighter aircraft like the Dassault Rafale.”

3.2 AFDX Data Network

Efkemann [Efk14, Chap. 2.1] continues with an over-
view of the AFDX data network employed by the IMA
architecture:

“A data network is required for communication between
(redundant) IMA modules as well as other hardware.
This role is fulfilled by the Avionics Full DupleX
Switched Ethernet (AFDX) network. It is an imple-
mentation of the ARINC specification 664 [Aer09] and
is used as high-speed communication link between air-
craft controllers. It is the successor of the slower ARINC
429 networks [Aer04].

AFDX is based on 100 Mbit/s Ethernet over twisted-
pair copper wires (IEEE 802.3u, 100BASE-TX). This
means it is compatible with COTS Ethernet equipment
on layers 1 and 2 (physical layer and link layer). Eth-
ernet by itself is not suitable for real-time applications
as its timing is not deterministic. Therefore AFDX
imposes some constraints in order to achieve full de-
terminism and hard real-time capability.”

Ott [Ott07, Chap. 1.6.3] provides a substantially more
detailed overview of AFDX.

3.3 Operating System Interface ARINC 653

Efkemann [Efk14, Chap. 2.2] then introduces to the
operating system interface ARINC 653 of the IMA
architecture:

“[. . . ], an IMA module can host multiple avionics func-
tions. The interface between avionics applications and
the module’s operating system conforms to a standard-
ised API which is defined in the ARINC specification
653 [Aer05].”

Figure 1 shows the system architecture of an IMA mod-
ule.

Efkemann [Efk14, Chap. 2.2.1] details the partitioning
as follows:

“On the IMA platform, a partition is a fixed set of the
module’s resources to be used by an avionics application.
In particular, each partition is assigned a portion of
the module’s memory. The operating system ensures
that other partitions can neither modify nor access the
memory of a partition, similar to memory protection
in a UNIX-like operating system. Each partition also
receives a fixed amount of CPU time. The operating
system’s scheduler ensures that no partition can spend
CPU time allotted to another partition [Aer05, p. 13].

Two kinds of partitions reside on a module: Application

partitions contain application code that makes up (part
of) the implementation of an avionics function. System
partitions on the other hand provide additional module-
related services like data loading or health monitoring.

Inside a partition there can be multiple threads of exe-
cution, called processes. Similar to POSIX threads, all
processes within a partition share the resources alloc-
ated to the partition. Each process has a priority. A
process with a higher priority pre-empts any processes
with a lower priority. ARINC 653 defines a set of states
a process can be in (Dormant, Waiting, Ready, Run-
ning) as well as API functions for process creation and
management [Aer05, p. 18–25].”

3.4 Distributed Modular Electronics (DME)

Distributed Modular Electronics (DME) is an extension
of the IMA concept. It was developed in the SCAR-
LETT research project (SCAlable & ReconfigurabLe
elEctronics plaTforms and Tool). SCARLETT was
a joint European research and technology project of
airframers, large industrial companies, SMEs, and uni-
versities [SCA13].

According to Efkemann [Efk14, Chap. 2.5], “the DME
concept aims at the separation of processing power from
sensor/actuator interfaces, thereby reducing the number
of different component types to a minimum. This also
makes DME suitable for a wider range of aircraft types
by giving system designers the possibility to scale the
platform according to required hardware interfaces and
computing power.”

Figure 2 shows an example of a network of compon-
ents. The Core Processing Module (CPM) components
provide the computing power and host the avionics ap-
plications, but apart from AFDX they do not provide
any I/O hardware interfaces. Instead, the Remote
Data Concentrator (RDC) and Remote Power Control-
ler (RPC) components provide the required number of
sensor/actuator and bus interfaces. [Efk14, Chap. 2.5]

Efkemann continues: “The project also investigates
ways of increasing fault tolerance through different
reconfiguration capabilities, for example transferring
avionics functions from defective modules to other, still
operative modules. Finally, the design of a unified tool
chain and development environment has led to improve-
ments of the avionics software implementation process.
[. . . ]”

The ASHLEY project [ASH17] is a follow-up project to
the SCARLETT project.



core software
operating system

ARINC 653 APEX interface

partitioning scheduling communication

driver layer

hardware MMU I/O (AFDX, . . . )clock

partition 1 partition 2 . . . system partition 1application software

Figure 1: IMA module system architecture (after [Efk14, Fig. 2.2])

CPM CPM

switch switch

RDC RDC RDC RPC RPC

core processing modules
(computers, without any I/O except networks)

remote data concentrators
(for inputs)

remote power controllers
(for outputs)

2 redundant
AFDX networks

Figure 2: Distributed Modular Electronics (DME) architecture (after [Efk14, Fig. 2.3])

4 ADAPTION OF IMA FOR SPACE AVION-
ICS

4.1 Differences between the Aeronautical and
the Space Domain

There are significant differences between the aeronaut-
ical and the space domain, with respect to time and
space partitioning.

4.1.1 The Speed of Growth of Complexity

Windsor and Hjortnaes [WH09, Sec. IV.B] state that
the space domain mastered integrating applications on
a single CPU earlier than the aeronautical domain. This
was achieved by validating everything at the highest
integrity level. But this now becomes more and more

expensive due to the increasing complexity of mission
applications. The Central Flight Software (CFS) en-
compasses the Data Management (DMS) and the At-
titude & Orbital Control (AOCS) functional chains.
Recently, they are integrated on one computer instead
of independent computers linked by a data bus ([WH09,
Sec. V.A]). Similarly, the payload software consists of
several components of differing criticality: command
and control has a higher criticality than payload data
processing. These payload functions co-exist on one or
several on-board computers (OBCs) and are under the
responsibility of one or several organizations ([WH09,
Sec. V.B]).

The complexity problems hit the space domain later
than the aeronautical domain. We suppose the reason is
that the space domain must use slower and therefore less



powerful computers due to the harsh radiation environ-
ment in space (compare Sect. 4.1.6 below). Therefore,
the space domain only recently reached the critical
region of complexity.

Windsor et. al. [WDD11] provide some concrete num-
bers on complexity for the Airbus A380: its IMA plat-
form is composed of up to 30 IMA modules of 8 dif-
ferent types, hosting 21 avionics functions which were
developed by 10 function suppliers. In contrast, the
IMA-SP architecture envisioned by Windsor et. al. will
have less computing nodes (e.g., central on board com-
puter, payload computer, and intelligent sensors and
actuators), connected to a less powerful network based
on SpaceWire or MIL-STD-1553B), and hosting fewer
functions developed by small numbers of suppliers.

4.1.2 Scale of Communication Demands

The space domain appears to have significantly smaller
demands on communication. Even though the Interna-
tional Space Station (ISS) features a complexity similar
to that of an airplane, a typical satellite or launcher
is much simpler; compare the end of the previous sec-
tion. Accordingly, only a few hardware nodes need
to be connected, with less bandwith. Windsor et. al.
[WDD11] even explicitly consider the communication
bus optional for the IMA-SP platform, for the case of
a single hardware node. We add that the necessary
redundancy against hardware failures nevertheless de-
mands at least two hardware nodes. Depending on the
redundancy concept, there might be little demand for
them to communicate, however.

4.1.3 Online/Offline Maintenance

All aeronautical software maintenance is performed off-
line, while the aircraft ist at the ground safely. In
contrast, spacecraft operations require the system to
be active ([WH09, Sec. VI.B].

Usually, a spacecraft is launched with the complete
mission definition implemented in the flight software,
from a pre-launch support mode to payload operations
phase [WH09, Sect. V.D]. However, there is interest for
adding new applications to extend the mission. This has
been done in a few cases, but with extensive validation
effort. And in the commercial satellite market, operat-
ors would like to have the in-flight capability to safely
upload private payload applications to their spacecraft
without the involvement of the manufacturer.

We add that the redundancy of multiple computer hard-
ware may be used to take one of the computers offline
in order to install a new software version. But this
can be done for a short period of time only. And the
new software version must be already validated fully.

We have devised such an update process for the first
in-space flight software update of the main computers
of the European Columbus module which is part of the
International Space Station [Bre08].

The IMA concept of the aeronautical domain requires
substantial offline effort for reconfiguring communic-
ation paths. The virtual links (VLs) of the AFDX
network are static. When the network routing shall
be changed, each node affected must be accessed by a
technician in order to apply this software update. This
approach of IMA cannot be applied in the space domain,
where physical access is impossible in nearly all cases.

4.1.4 Pronounced Mission Phases

Satellites have more pronounced mission phases than
aircraft. Aircraft operate in different modes on ground,
during ascent, cruise, and decent. Switches between
these modes can occur rapidly. Long-lived satellites
have longer-lasting and more predictable mission phases,
such as ascent, orbit insertion, orbital payload operation,
and deorbiting.

This offers the opportunity to reconfigure the computing
resources between mission phases. At least, no comput-
ing time needs to be allocated to functions not active
in the current mission phase. Since there is plenty of
time after orbit insertion, the software even could be
updated from ground, compare Sect. 4.1.3 above. See
also [WDD11, page 8A6-4].

All of this does not apply to launchers, which are short-
lived, of course.

4.1.5 Availability of a Hardware-Based Memory Pro-
tection Unit

In the space domain, only the most recent space quali-
fied microprocessors (e.g., LEON2/3) have some kind
of memory management unit (MMU) available [WH09,
Sect. VI.E]. The Leon2 processor provides two memory
write protection registers only. This is not sufficient if
security is relevant, too. The Leon3 processor has a
full MMU and also provides read-protection [Mas+10a].
(Sect. 4.4.1 below provides more details of the Leon
processors.)

4.1.6 Radiation

In the space environment, the high level of hard radi-
ation causes frequent malfunctions or even the perman-
ent destruction of electronic circuits. This radiation
could be shielded by a substantially massive casing only.
Its launch weight usually prohibits this solution. The
effect of radiation can be reduced by using electronic
circuits with larger chip structures, too. However, lar-



ger chip structures also mean less functionality per chip
and less speed. Therefore, less powerful computers can
be used in space than on ground.

The atmosphere of the Earth shields most of this ra-
diation, even for aircraft at high altitudes. Therefore,
the restriction does not apply to the aeronautical do-
main. Accordingly, aeronautical hardware such as IMA
modules cannot simply be taken and used in the space
domain.

Higher computing power may be obtained in the space
domain by giving up reliability and availability for some
tasks, to a certain degree. For example, a radiation-
hard, but slow computer can take care of the vital tasks
of the spacecraft, while a much faster “number cruncher”
computer can perform payload data processing, for ex-
ample video encoding, even though it will crash a few
times a day. In order to not affect the vital system
adversely, such a number cruncher needs a bus inter-
face with validated high dependability, only. However,
such an approach with differentiated hardware does not
match well the idea of interchangeable IMA hardware
components.

4.2 The Original IMA-SP Project

Integrated Modular Avionics for Space (IMA-SP) was a
project of the European Space Agency (ESA). It aimed
at incorporating the benefits of time and space parti-
tioning, based upon the aeronautical IMA concept, into
the spacecraft avionics architecture. Windsor and Hjort-
naes [WH09] motivate the benefits of IMA-SP in general,
and they give an overview of the approach chosen, but
yet without concrete experiences and without a defined,
concrete architecture. Windsor et. al. [WDD11] provide
such an architecture and some experimental applica-
tions of it.

The IMA-SP architecture is a two-layer architecture,
consisting of a System Executive layer and an applic-
ation layer [WH09]. The System Executive includes a
software kernel responsible for partition scheduling and
communication services as well as handling hardware
signals. Memory partitioning is ensured either by a
Memory Management Unit (MMU) or by a (simpler)
Block Protection Unit (BPU). A BPU prohibits access
to memory (at a minimum, write access) outside of a
partition’s defined memory areas. Partitions are sched-
uled on a fixed, cyclic basis. The order of partition
activation is defined at configuration time using config-
uration tables. This provides a deterministic scheduling
scheme. Tasks within a partition can be scheduled stat-
ically or dynamically. Temporal and spatial partitioning
therefore ensures each partition uninterrupted access
to common resources and non-interference during their
assigned time period.

IMA-SP defines the role of the system integrator expli-
citly [WH09, Sect. III.D]. They are responsible for the
system design including the detailed on-board resource
allocation; and they are responsible for the final integra-
tion and configuration of the components. Furthermore,
there are the role of the platform supplier and the role
of the application supplier.

A communication bus is optional for the IMA-SP plat-
form, for the case of a single hardware node [WDD11].
This reflects the significantly smaller demands on com-
munication in the space domain compared to the aero-
nautical domain, see Sect. 4.1.2 above.

The IMA-SP approach customizes its architecture quite
specifically to the requirements of the space domain,
[WDD11]. We think that these “user requirements”
must make the resulting architecture rather specific for
a narrow application area. The IMA-SP project appar-
ently did not do a generalization step by identifying
common requirements of the aeronautical domain and
the space domain first, before adding the space specific
requirements. Instead, the project put an emphasis
on preserving long-proven ideas, approaches, and even
hardware from the space domain. Therefore, it has be-
come less visible which conceptual changes are necessary
for the transfer of IMA from the aeronautical domain
to the space domain, and what are just customizations
to a specific application area. The aeronautical domain
dared a more radical change of its ways when introdu-
cing IMA, compared to what the IMA-SP project is
prepared to do.

We even think that the approach is tailored more to
satellites than to launchers. Launchers have no op-
portunity to do flight software maintenance, and often
there is no time for recovery from a safe mode.

The services of the TSP abstraction layer were derived
from the ARINC 653 [Aer05] API of the IMA architec-
ture [WDD11]. In this, re-use of existing space concepts,
which are similar to ARINC 653, took precedence over
the (literal) incorporation of the ARINC 653 specific-
ation. Windsor et. al. describe the similarities and
differences in detail [WDD11].

Windsor et. al. [WDD11] report on three use cases
which the IMA-SP study planned to investigate. Wind-
sor presents some results in a talk at ADCSS 2012
[Win12]. Silva et. al. [SCS12] report on the develop-
ment of an input/output component for IMA-SP, by
GMV, Portugal. The original IMA-SP project ended
in December 2012.

4.3 IMA-SP Follow-Up Projects

Hardy et. al. [HHC14] report on a follow-up assessment
study on partitioning and maintenance of flight software



in IMA-SP.

The IMA-SP System Design Toolkit project is a follow-
up project to the original IMA-SP project. Hann et. al.
[Han+15] describe its first phases (2014 to 2015).

Hann et. al. [Han+16] describe preparation activities for
the future IMA separation kernel qualification. Also for
IMA separation kernel qualification, Butterfield et. al.
[But+16] perform a case study on the formal verification
of small aspects of an IMA separation kernel.

SAVOIR (space avionics open interface architecture) is
an initiative by the European Space Agency (ESA)
which aims at improving the ways in which the
European space community builds avionics sub-systems.
It it geared towards satellites, thus excluding launchers.
The initiative defined a reference avionics architecture
for spacecraft platform hardware and software in gen-
eral. The reference architecture either uses a “classic”
execution platform or an execution platform providing
time and space partitioning. SAVOIR is organized in
specialized working groups. Two of them are SAVOIR-
FAIRE on the software reference architecture in general
and SAVOIR-IMA on the TSP based software reference
architecture. [Hjo14] Panunzio et. al. [PL16] provide
their view regarding the way forward for the definition
of the SAVOIR communication architecture. Sandin
reports on the new generation SAVOIR on-board com-
puter [DAS17].

4.4 Virtualization Solutions Suitable for Space
Avionics

In this section, we survey virtualization solutions suit-
able for space avionics. They are the bare-metal hyper-
visor XtratuM and the partition management kernel
AIR.

4.4.1 XtratuM: a Hypervisor for Safety-Critical Em-
bedded Systems

XtratuM is a bare-metal hypervisor which implements
para-virtualization and dedicated device techniques
[Pei+10; Mas+09; Cre+09]. It was designed to achieve
time and space partitioning for safety-critical embedded
systems.

We already presented the notions of virtualization
in general, of a bare-metal hypervisor, and of para-
virtualization in Sect. 2.3.2 above.

Figure 3 shows an overview of the XtratuM architec-
ture [Pei+10]. XtratuM executes in the supervisor
mode of the processor. The applications execute in the
user mode, each in its own partition. The hypervisor
XtratuM applies a static scheduling scheme to grant
execution time of the processor to the partitions. This

achieves the separation of the partitions in the time
domain. Each partition gets its statically determined
share of the execution time. No user partition can
overrun or change the schedule. Timer interrupts are
caught and handled by the hypervisor.

Similarly, the hypervisor XtratuM allocates areas of
memory to the partitions. It catches any illegal access
to memory addresses outside a partition’s memory space.
To be precise, this is true only for processors providing
suitable hardware support. The Leon2 processor does
not have a memory management unit (MMU), which
could translate virtual memory addresses into physical
memory addresses. The Leon2 provides two memory
write protection registers only. Therefore, XtratuM can
enforce write protection among partitions, but not read
protection. This is sufficient in order to meet safety
requirements, but it is not sufficient to enforce secur-
ity against malicious software in a partition. On pro-
cessors providing a MMU, such as the Leon3 processor,
XtratuM provides read protection, too [Mas+10a]. The
Leon processors are designed for and used in a space
environment, in particular with an increased level of
radiation.

A peripheral device can be associated to a specific par-
tition. In this case, no other partition may access this
peripheral device. This is similar to memory protection.

Some partitions may be special, these are called system
partitions or supervisor partitions, in contrast to the
user partitions. The system partitions are allowed to
manage the other partitions, for example by stopping
and resuming them via calls to the hypervisor. How-
ever, since these partitions run in the user mode of the
processor, too, they cannot break the time and space
isolation described above.

The XtratuM hypervisor provides a hardware abstrac-
tion to the partitions similar to the aeronautical ARINC
653 standard [Aer05] API of the IMA architecture (com-
pare Sect. 3.3). However, these two interfaces have
several differences. The most notable difference is that
communication in the IMA architecture is based on
the fast AFDX data network (compare Sect. 3.2), while
XtratuM does not prescribe any particular network tech-
nology. There even can be no inter-computer network
at all. This is probably due to the difference between
the aircraft and the spacecraft domain, that commu-
nication demands are often lower in the latter domain,
compare Sect. 4.1.2 above.

Each partition appears as a normal, dedicated computer
to the software running in it. Accordingly, a partition
can contain a bare application (no operating system at
all, just an infinite loop), a general-purpose operating
system, or a real-time operating system. In case there
is some operating system, an application in a partition
may have several processes/threads, as usual. The



Figure 3: The XtratuM architecture, taken from [Pei+10, Fig. 1].

para-virtualization approach requires an adaption of the
software inside the partitions, however: some privileged
machine instructions in the lower layer of the operating
system (or in the bare application) must be substituted
by calls to the hypervisor, as discussed in Sect. 2.3.2.

Operating systems that have been ported to XtratuM
include LithOS and RTEMS (see Sect. 4.4.2 on
RTEMS below), and also Linux, PaRTiKle, and ORK+
[FEN+13]. The real-time operating system LithOS
[Mas+10b] was designed to provide an ARINC 653 in-
spired API. LithOS adds multi-process support, commu-
nication between processes, and a process scheduler to
the services provided by XtratuM. However, there is still
no mandatory AFDX network with LithOS. Similarly,
PaRTiKle is an open source real-time kernel for embed-
ded systems, distributed under the terms of the GNU
Public License; PaRTiKle has been initially developed
by the University of Valencia, Spain [FEN+13]. ORK+
(Open Ravenscar Kernel) is a small, high performance
real-time kernel that provides restricted tasking support
for Ada programs [FEN+13].

The processors on which XtratuM has been implemen-
ted include the Intel x86 processor family, supporting
multiprocessors [Mas+09; Cre+09], the Leon2 processor
[Pei+10], the Leon3 processor [Mas+10a], the Leon4
processor [Cre+14a; MCC12], and the ARM Cortex
R4 [Cre+14a]. The MultiPARTES project adapted
XtratuM to deal with heterogeneous multicore architec-
tures, see Sect. 4.6 below.

XtratuM is open software distributed under the Gnu
Public Licence version 3. Some ancillary tools are sold

under a proprietary licence by FentISS [Fen18], a spin-
off of the University of Valencia, Spain.

The configuration of a specific software image must be
described in a central configuration file. XtratuM’s
system integration tools compile this configuration file
together with the application software images into the
system software image. This image then is loaded onto
the processor an run.

The central XtratuM configuration file is in XML format
and can be written by hand. Alternatively, the configur-
ation file can also be generated using the Xoncrete tool.
Xoncrete is a graphical tool to assist the system designer
when configuring the resources (memory, communica-
tion ports, devices, processor time, etc.) allocated to
each partition. It has two parts: a resource editor and
a scheduling analysis tool [Bro+10]. The scheduling
analysis tool provides support for the complexities of
hierarchical scheduling (i.e., scheduling the partitions
and scheduling tasks inside the partitions) [Bro+10;
Rip+10].

4.4.2 AIR: A Partition Management Kernel Based on
RTEMS

The AIR and AIR-II projects developed a partition
management kernel based on the RTEMS operating
system kernel.

RTEMS RTEMS (Real-Time Executive for Multipro-
cessor Systems) is a real-time operating system kernel.



Originally designed for military applications, it is now
used in a wide area of application domains, including
the space domain, in particular. It is open software
distributed under a license close to the GNU General
Public License. RTEMS provides multi-tasking, inter-
task communication, different kinds of scheduling, and
support for homogeneous and heterogeneous multipro-
cessor systems. [RTE16]

RTEMS is not a partitioning kernel. Thus, it does not
support time and space partitioning. However, RTEMS
can be and has been used as a real-time operating
system inside a partition. (For example, Ripoll et. al.
report on a use of RTEMS inside XtratuM [Rip+10],
and Hardy et. al. [HHC14] report on another such use
of RTEMS in XtratuM.)

AIR The European Space Agency studies AIR and
AIR-II (ARINC Interface in RTOS – Industrial Initi-
ative) developed several components for time and space
partitioning [RF07b; RF07a]. They comprise [Sch11]

• a partition management kernel,

• support libraries, drivers, etc.

• operating system APIs to be used inside of a par-
tition,

• a configuration and compilation tool chain, and

• analysis tools.

Figure 4 shows the AIR architecture. It allows to
sepate applications into different partitions, each with
their own memory space and own time budget. Inter-
partition communication is by queueing ports and
sampling ports. All this is similar to XtratuM, see
Sect. 4.4.1 above. But there are differences, too.

The preferred operating system to be used inside a parti-
tion (“personality”) is RTEMS, possibly extended by the
ARINC 653 API (“APEX”). The partition management
kernel internally uses RTEMS as a hardware abstrac-
tion layer, too. Therefore, there are close links from
AIR to RTEMS, even though any operating system can
be run inside a partition, or even a bare application.
[Sch11]

The AIR project used RTEMS version 4.6.6 [RF07a].

Only the so-called “system” partitions may access hard-
ware devices and thus perform input/output. The cor-
responding drivers run in kernel mode, but are sched-
uled as “co-partitions”. Co-partitions share execution
windows with their client partitions, up to a pre-defined
percentage (“sharing quota”), iff critical tasks have ter-
minated (“sharing barrier”). Efficient inter-partition
communication via shared memory is possible, too.
[Sch11]

The partition management kernel is a micro-kernel.
There are no kernel threads. Instead, the concurrency
of drivers is implemented through the co-partitions,
which are scheduled with their client partitions. [Sch11]

Silva et. al. [SCS12, Sect. 3.1] note that the co-partition
approach is more efficient than having regular partitions
for input/output, but that this comes not without a cost.
A system that allows a partition to be pre-empted before
the end of its execution window in order to perform
I/O operations is more difficult to analyse, qualify, and
in perspective, to fully guarantee as predictable.

The studies were performed by GMV, Portugal, together
with the University of Lisbon, Portugal, and Thales-
Alenia Space. The initial target processor architecture
was Sparc-Leon. [Sch11]

Santos et. al. [San+08] describe in detail the implement-
ation of an ARINC 653 API on an underlying POSIX
layer. The AIR-II consortium decided not to implement
an entirly new in-partition operating system to provide
ARINC 653 API services to hosted applications, but
instead to build the ARINC 653 API on top of available
real-time operating systems.

4.5 Separation Kernels Suitable for Space
Avionics

In this section, we survey separation kernels suitable
for space avionics. These comprise PikeOS, VxWorks
653, and LynxSecure.

4.5.1 PikeOS

PikeOS is a separation kernel for real-time systems in
safety-relevant and security-relevant domains, such as
the aeronautical domain and the space domain [SYS18].
Alternatively, it also can be viewed as a virtualization
solution plus an optional guest operating system. Fig-
ure 5 shows the architecture of PikeOS. PikeOS is a
commercial product by Sysgo, Germany.

According to the product overview [SYS18], the PikeOS
Hypervisor runs on x86 as well as ARM, PowerPC,
SPARC, or V8/LEON and can be adapted to other
CPU types. The virtualization concept supports multi-
core architectures. PikeOS is completely developed
according to safety standards such as DO-178B/C, IEC
61508, EN 50128, ISO 26262 or IEC 62304. The avail-
able guest operating systems, runtime enviroments and
APIs are: PikeOS, Linux, Android, ARINC 653, AUTO-
SAR, RTEMS, legacy RTOS, POSIX, Realtime Java,
ADA, and others. Optimized implementations such as
ARINC 664 (AFDX) and CAN are available for PikeOS
Native partitions. There is a development tool chain
called CODEO. It is an Eclipse-base IDE with config-
uration tools, remote debugging with operating system



Figure 4: The AIR architecture (taken from [Sch11]).

awareness, target monitoring, remote application de-
ployment, and timing analysis tools.

4.5.2 VxWorks 653

VxWorks 653 is a real-time operating system for safety-
critical domains, such as the aeronautical domain, sup-
porting IMA standards, in particular the ARINC 653
standard [PK15]. VxWorks 653 is that member of
the VxWorks real-time operating system family that
provides a separation kernel. Figure 6 shows the archi-
tecture of VxWorks 653. VxWorks 653 is a commercial
product by Wind River, which is a subsidiary of Intel.

According to a white paper by the manufacturer [PK15],
there is a module operating system providing global re-
source management, scheduling, and health monitoring.
There is also a VxWorks partition operating system
providing scheduling and resource management within
a partition. There is no mention of running bare-metal
applications without any operating system inside a par-

tition. Accordingly, a guest operating system inside
a partition appears to need adaptions to run under
VxWorks 953. VxWorks 653 provides an option for
priority preemptive scheduling of partitions. This per-
mits slack stealing by allowing designated partitions
to consume what would otherwise be idle time in the
defined ARINC schedule. The VxWorks 653 3.0 Multi-
core Edition supports multi-core processors. However,
certification of this is still under review by authorities
in both the FAA and EASA. The operating system
comes with a tool chain including an Eclipse-based
workbench, the simulator Simics, and further develop-
ment, system configuration, and debugging tools. The
white paper also mentions some security related mech-
anism of VxWorks 953, but no comprehensive security
concept. VxWorks 653 is used for many avionics sys-
tems and safety-critical applications, including systems
of the Boeing 787 Dreamliner and of the Airbus A330.



Figure 5: PikeOS architecture (taken from [SYS18, Fig. 1])

4.5.3 LynxSecure

LynxSecure is a real-time operating system for security-
relevant systems with a separation kernel [Lyn17]. Its
emphasis is mainly on security and only to a lesser
extent on safety. It supports multi-core processing. Fig-
ure 7 shows the architecture of LynxSecure. LynxSecure
is a commercial product by Lynx Software Technologies,
CA, USA.

4.6 Extensions for Multi-Core Processors

The MultiPARTES project (Multi-cores Partitioning
for Trusted Embedded Systems) adapted the hyper-
visor XtratuM [Cre+09] to deal with heterogeneous
multicore architectures [TCA13]. Besides the adaption
of XtratuM, the project also defined a development
methodology and provided supporting tools.

The hardware platform consists of two different sys-
tems: a dual core x86 based processor (Atom Core Duo
at 1.7 GHz) and an FPGA with several synthesized
LEON3 processors. The x86 subsystem provides com-
parably high computation capabilities, and the LEON3
processors provide a hardware base for time-predictable
computations.

Therefore, the challenges of multi-core CPUs to time
partitioning (compare Sect. 5 below) have been respon-
ded to by simply using several independent LEON3
CPUs for the time critical computations. However,

these LEON3 CPUs have been integrated onto a single
FPGA chip (and under a single hypervisor) at least,
thus reducing weight and other resource demands.

Crespo et. al. [Cre+14b] describe the multi-core version
of the hypervisor XtratuM, and they report on its per-
formance. However, they measure the speed of the x86
cores only; and they don’t investigate the worst-case
impact one core might have on the other through the
shared cache. This would be required to predict the
worst-case execution time safely. Therefore, the x86
cores don’t appear to be intended for hard real-time
computations.

The DASIA 2017 conference dedicated an entire panel
session and several papers to multicore processors
[DAS17].

5 RESEARCH CHALLENGES

In this section, we collect some open problems in the
area of time and space partitioning. They deserve
further research.

5.1 CPU-Related Challenges for Time Parti-
tioning

Current CPUs pose challenges to time partitioning.
They are, in particular, the intricacies of multi-core
CPUs and of direct memory access.

Current multi-core CPUs make it difficult to achieve



Figure 6: VxWorks 653 architecture (taken from [PK15, Fig. 2])

true time partitioning. A cache shared between CPU
cores causes a dependency of the worst-case execution
time of a piece of code running on one core on the
behaviour of code running on another core. Several
research projects already investigate this subject. Some
of them are listed by Crespo et. al. [Cre+14a, Sect. 2.3]
(even though none of them primarily addresses the space
domain).

A DMA controller can slow down the CPU by contend-
ing for the memory bus. Therefore, a non-real-time
partition can affect a real-time partition adversely in
this way. As Crespo et. al. [Cre+14b] demonstrate,
even CPU cores can contend for the memory bus in a
similar way.

5.2 Challenges for Real-Time Property Proofs

Proving real-time properties poses many challenges, in-
cluding those from processor architecture, virtualization,
and distributed computing.

Conventional processor architectures aim to optimize
the average-case performance. However, when valid-
ating real-time properties, the worst-case performance
matters. Consequently, hard real-time tasks require an

entirely different processor architecture design.

Timing anomalies occur in complex processor architec-
tures, and they complicate real-time property proofs
greatly. Selecting or designing a processor architecture
for space use that is not susceptible to timing anom-
alies may prove useful for achieving acceptable real-time
performance and validating it.

Virtualization poses additional challenges when perform-
ing a real-time property proof. Virtualization cannot
hide that the machine instructions are not executed
evenly in the time sense anymore. Any real-time prop-
erty proof must account for this. If the hypervisor
employs a static cyclic scheduling, this can be done.

The interplay between the scheduling of a hypervisor or
of a separation kernel on the one hand with the schedul-
ing of a communication bus on the other hand poses its
own difficulties, with respect to the according real-time
property proofs. See, e.g., Silva et. al. [SCS12].

Distributed Modular Electronics (DME, compare Sect.
3.4) and other approaches which combine time and
space partitioning with distribution add corresponding
challenges to proving real-time properties. In general,
there will not even exist a global scheduling cycle, such



Figure 7: LynxSecure architecture (taken from [Lyn16, Fig. 3])

that the local scheduling latencies will add up with
their worst-case values. Brocal et. al. [Bro+10] and
Ripoll et. al. [Rip+10] present work on a special case,
in the context of the Xoncrete tool for the XtratuM
hypervisor.

We performed a case study on grid computing using
space hardware [B+14]. However, grid computing in-
trinsically is a best effort approach, and therefore prob-
ably is no viable way for providing high-speed real-time
computing.

6 SUMMARY

We presented a survey of the current state of the reseach
on time and space partitioning for space avionics. There
is already a body of existing work, it has been presented
in Sect. 4. But substantial research challenges remain
to be tackled, as shown in Sect. 5.

REFERENCES

[Aer04] Aeronautical Radio, Inc. Digital Information Trans-
fer System (DITS), Part 1, Functional Description,
Electrical Interface, Label Assignments and Word
Formats. ARINC Specification 429P1-17 Mark 33.
May 2004.

[Aer05] Aeronautical Radio, Inc. Avionics Application Soft-
ware Standard Interface, Part 1 – Required Services.
ARINC Specification 653P1-2. Dec. 2005.

[Aer09] Aeronautical Radio, Inc. Aircraft Data Network,
Part 7, Avionics Full-Duplex Switched Ethernet.
ARINC Specification 664P7-1. Sept. 2009.

[Alv+05] Jim Alves-Foss et al. ‘The MILS Architecture
for High-Assurance Embedded Systems’. In: Intl.
Journal of Embedded Systems 2 (3-4 Feb. 2005),
pp. 239–247.

[ASH17] ASHLEY project website. ASHLEY Consortium.
2017. url: http://www.ashleyproject.eu/ (visited
on 20/06/2018).

[Avi+04] Algirdas Avižienis et al. ‘Basic Concepts and Tax-
onomy of Dependable and Secure Computing’. In:
IEEE Trans. on Dependable and Secure Computing
1.1 (Jan.–Mar. 2004).

[B+14] Andreas Bergmeier, Peer Kampa, Jan Bredereke
et al. Grid-Computing in der Raumfahrt. German.
Project report. Univ. of Applied Sciences Bremen,
Germany, 2nd Feb. 2014.

[Bre08] Jan Bredereke. Flight SW Transition to Cycle 11.
ESO-IT-TN-0116. Version 2. Internal technical note.
Astrium GmbH. 26th Aug. 2008.

[Bre17] Jan Bredereke. A Survey of Time and Space
Partitioning for Space Avionics. Tech. rep. Ver-
sion 1.1. City University of Applied Sciences Bre-
men, 16th Feb. 2017. urn:nbn:de:gbv:46-00105751-
11. url: http : / / homepages . hs - bremen . de /
~jbredereke/downloads/bredereke- tsp- space-
avionics-tr-2017.pdf.

[Bro+10] Vicent Brocal et al. ‘Xoncrete: a scheduling tool for
partitioned real-time systems’. In: 5th Intl. Conf.
and Exhibition on Embedded Realtime Software and
Systems, ERTSS-2010. (Toulouse, France). Ed. by
Gérard Ladier and Jean-Luc Maté. 19th–21st May
2010. url: http://www.fentiss.com/documents/
xoncrete_overview.pdf.

[But+16] Andrew Butterfield et al. ‘Towards Formal Verific-
ation of Interrupts and Hypercalls’. In: Proc. of
DASIA 2016 Data Systems In Aerospace. (Tallinn,
Estonia, 10th–12th May 2016). Ed. by L. Ouwe-
hand. SP-736. ESA Spacebooks Online, Aug. 2016.

http://www.ashleyproject.eu/
http://nbn-resolving.de/urn:nbn:de:gbv:46-00105751-11
http://nbn-resolving.de/urn:nbn:de:gbv:46-00105751-11
http://homepages.hs-bremen.de/~jbredereke/downloads/bredereke-tsp-space-avionics-tr-2017.pdf
http://homepages.hs-bremen.de/~jbredereke/downloads/bredereke-tsp-space-avionics-tr-2017.pdf
http://homepages.hs-bremen.de/~jbredereke/downloads/bredereke-tsp-space-avionics-tr-2017.pdf
http://www.fentiss.com/documents/xoncrete_overview.pdf
http://www.fentiss.com/documents/xoncrete_overview.pdf


url: http://adsabs.harvard.edu/abs/2016ESASP.
736E..22B.

[Cre+09] A. Crespo et al. ‘XtratuM: an open source hyper-
visor for TSP embedded systems in aerospace’. In:
Proc. of DASIA 2009 Data Systems In Aerospace.
(Istanbul, Turkey, 26th–29th May 2009). Ed. by L.
Ouwehand. SP-669. ESA Spacebooks Online, Aug.
2009. url: http://www.fentiss.com/documents/
dasia09.pdf.

[Cre+14a] Alfons Crespo et al. ‘Mixed Criticality in Control
Systems’. In: Preprints of the 19th World Congress
of the International Federation of Automatic Con-
trol. (Cape Town, South Africa). 24th–29th Aug.
2014.

[Cre+14b] A. Crespo et al. ‘Multicore partitioned systems
based on hypervisor’. In: 19th IFAC World Con-
gress. (Cape Town, South Africa, 24th–29th Aug.
2014). Ed. by E. Boje et al. Vol. 47. Elsevier, Dec.
2014, pp. 12293–12298.

[DAS17] Proc. of DASIA 2017 Data Systems In Aerospace.
(Gothenburg, Sweden, 30th May–1st June 2017).
Still in preparation. Eurospace.

[Efk14] Christof Efkemann. ‘A Framework for Model-based
Testing of Integrated Modular Avionics’. PhD
thesis. Univ. of Bremen, Germany, 6th Aug. 2014.
urn:nbn:de:gbv:46-00104131-10.

[FEN+13] FENTISS et al. Tool chain implementation. Ver-
sion v1.0. MultiPARTES project. Feb. 2013. url:
https : / / alfresco . dit . upm . es / multipartes /
public/MPT-D4.3-V10-final.pdf.

[Fen18] Homepage of FentISS. Fent Innovative Software
Solutions. 2018. url: http://www.fentiss.com/
(visited on 20/06/2018).

[Fil03] Bill Filmer. ‘Open systems avionics architectures
considerations’. In: Aerospace and Electronic Sys-
tems Magazine, IEEE 18 (9 Sept. 2003), pp. 3–10.
doi: 10.1109/MAES.2003.1232153.

[Han+15] Mark Hann et al. ‘System Design Toolkit for Integ-
rated Modular Avionics for Space’. In: Proc. of
DASIA 2015 Data Systems in Aerospace. (Bar-
celona, Spain, 19th–21st May 2015). ESA Special
Publication ESA SP-732. Sept. 2015.

[Han+16] Mark Hann et al. ‘Qualification Strategy and Plan
for Integrated Modular Avionics for Space Separa-
tion Kernel’. In: Proc. of DASIA 2016 Data Systems
In Aerospace. (Tallinn, Estonia, 10th–12th May
2016). Ed. by L. Ouwehand. SP-736. ESA Space-
books Online, Aug. 2016. url: http://adsabs.
harvard.edu/abs/2016ESASP.736E..23H.

[HHC14] Johan Hardy, Martin Hiller and Philippe Creten.
‘Partitioning and Maintenance of Flight Software in
Integrated Modular Avionics for Space’. In: TEC-
ED & TEC-SW Final Presentation Days 2014.
ESA ESTEC. 21st–22nd May 2014. url: https://
indico.esa.int/indico/event/57/contribution/
4/material/slides/0.pdf.

[Hjo14] Kjeld Hjortnaes. ‘Introduction to SAVOIR’. In: 8th
ESA Workshop on Avionics, Data, Control and
Software Systems, ADCSS 2014. (Noordwijk, The
Netherlands). Ed. by Kjeld Hjortnaes, Alain Ben-
oit and Philippe Armbruster. 27th–29th Oct. 2014.
url: https://indico.esa.int/indico/event/53/
session/1/contribution/3/material/1/.

[Lyn16] LynxSECURE. Software security driven by an em-
bedded hypervisor. Product Datasheet. Last version
with figure on architecture. Lynx Software Techno-
logies, Inc. San Jose, CA, USA, 2016. url: http:
//www.lynx.com/pdf/LynxSecureDatasheetFinal.
pdf (visited on 09/06/2016).

[Lyn17] LynxSECURE. Software security driven by an
embedded hypervisor. Product Datasheet. Lynx
Software Technologies, Inc. San Jose, CA, USA,
2017. url: http : / / www . lynx . com /
pdf / LynxSecureDatasheetFinal . pdf (visited on
20/06/2018).

[Mas+09] M. Masmano et al. ‘XtratuM: a Hypervisor for
Safety Critical Embedded Systems’. In: 11th Real-
Time Linux Workshop. (Dresden, Germany). 2009.

[Mas+10a] Miguel Masmano et al. ‘XtratuM for LEON3: an
Open Source Hypervisor for High Integrity Sys-
tems’. In: 5th Intl. Conf. and Exhibition on Embed-
ded Realtime Software and Systems, ERTSS-2010.
(Toulouse, France). Ed. by Gérard Ladier and Jean-
Luc Maté. 19th–21st May 2010. url: www.fentiss.
com/documents/xtratum-leon3.pdf.

[Mas+10b] M. Masmano et al. ‘LithOS: a ARINC-653 guest
operating [sic!] for XtratuM’. In: 12th Real-Time
Linux Workshop. (Nairobi, Kenia). 27th Oct. 2010.
url: http://www.xtratum.org/files/lithos-
2010.pdf.

[MCC12] Miguel Masmano, Alfons Crespo and Javier Cor-
onel. XtratuM Hypervisor for LEON4. Volume
2: XtratuM User Manual. Polytechnical Univer-
sity of Valencia, Spain. Nov. 2012. url: http :
/ / microelectronics . esa . int / gr740 / xm - 4 -
usermanual-047d.pdf (visited on 20/06/2018).

[Ott07] Aliki Ott. ‘System Testing in the Avionics Domain’.
PhD thesis. Univ. of Bremen, Germany, Oct. 2007.
urn:nbn:de:gbv:46-diss000108814.

[Pei+10] S. Peiró et al. ‘Partitioned Embedded Architecture
based on Hypervisor: the XtratuM approach’. In:
8th European Dependable Computing Conference,
EDCC-8 2010. (Valencia, Spain). IEEE Computer
Society. 28th–30th Apr. 2010.

[PK15] Paul Parkinson and Larry Kinnan. Safety-Critical
Software Development for Integrated Modular
Avionics. Rev. 10/2015. White Paper. Wind River
Systems, Inc. Oct. 2015. url: http : / / www .
windriver.com/whitepapers/safety- critical-
software - development - for - integrated -
modular - avionics / wp - safety - critical -
software - development - for - integrated -
modular-avionics.pdf (visited on 20/06/2018).

[PL16] Marco Panunzio and Patricia Lopez-Cueva. ‘The
SAVOIR Communication Architecture: Current
Results and Way Forward’. In: Proc. of DASIA
2016 Data Systems In Aerospace. (Tallinn, Estonia,
10th–12th May 2016). Ed. by L. Ouwehand. SP-736.
ESA Spacebooks Online, Aug. 2016. url: http://
adsabs.harvard.edu/abs/2016ESASP.736E..44P.

[RF07a] José Rufino and Sérgio Filipe. AIR Project Fi-
nal Report. Tech. rep. DI-FCUL TR–07–35. Comp.
Sce. Dept. of the University of Lisbon, Portugal,
Dec. 2007. url: http://air.di.fc.ul.pt/air/
downloads/07-35.pdf.

http://adsabs.harvard.edu/abs/2016ESASP.736E..22B
http://adsabs.harvard.edu/abs/2016ESASP.736E..22B
http://www.fentiss.com/documents/dasia09.pdf
http://www.fentiss.com/documents/dasia09.pdf
http://nbn-resolving.de/urn:nbn:de:gbv:46-00104131-10
https://alfresco.dit.upm.es/multipartes/public/MPT-D4.3-V10-final.pdf
https://alfresco.dit.upm.es/multipartes/public/MPT-D4.3-V10-final.pdf
http://www.fentiss.com/
http://dx.doi.org/10.1109/MAES.2003.1232153
http://adsabs.harvard.edu/abs/2016ESASP.736E..23H
http://adsabs.harvard.edu/abs/2016ESASP.736E..23H
https://indico.esa.int/indico/event/57/contribution/4/material/slides/0.pdf
https://indico.esa.int/indico/event/57/contribution/4/material/slides/0.pdf
https://indico.esa.int/indico/event/57/contribution/4/material/slides/0.pdf
https://indico.esa.int/indico/event/53/session/1/contribution/3/material/1/
https://indico.esa.int/indico/event/53/session/1/contribution/3/material/1/
http://www.lynx.com/pdf/LynxSecureDatasheetFinal.pdf
http://www.lynx.com/pdf/LynxSecureDatasheetFinal.pdf
http://www.lynx.com/pdf/LynxSecureDatasheetFinal.pdf
http://www.lynx.com/pdf/LynxSecureDatasheetFinal.pdf
http://www.lynx.com/pdf/LynxSecureDatasheetFinal.pdf
www.fentiss.com/documents/xtratum-leon3.pdf
www.fentiss.com/documents/xtratum-leon3.pdf
http://www.xtratum.org/files/lithos-2010.pdf
http://www.xtratum.org/files/lithos-2010.pdf
http://microelectronics.esa.int/gr740/xm-4-usermanual-047d.pdf
http://microelectronics.esa.int/gr740/xm-4-usermanual-047d.pdf
http://microelectronics.esa.int/gr740/xm-4-usermanual-047d.pdf
http://nbn-resolving.de/urn:nbn:de:gbv:46-diss000108814
http://www.windriver.com/whitepapers/safety-critical-software-development-for-integrated-modular-avionics/wp-safety-critical-software-development-for-integrated-modular-avionics.pdf
http://www.windriver.com/whitepapers/safety-critical-software-development-for-integrated-modular-avionics/wp-safety-critical-software-development-for-integrated-modular-avionics.pdf
http://www.windriver.com/whitepapers/safety-critical-software-development-for-integrated-modular-avionics/wp-safety-critical-software-development-for-integrated-modular-avionics.pdf
http://www.windriver.com/whitepapers/safety-critical-software-development-for-integrated-modular-avionics/wp-safety-critical-software-development-for-integrated-modular-avionics.pdf
http://www.windriver.com/whitepapers/safety-critical-software-development-for-integrated-modular-avionics/wp-safety-critical-software-development-for-integrated-modular-avionics.pdf
http://www.windriver.com/whitepapers/safety-critical-software-development-for-integrated-modular-avionics/wp-safety-critical-software-development-for-integrated-modular-avionics.pdf
http://adsabs.harvard.edu/abs/2016ESASP.736E..44P
http://adsabs.harvard.edu/abs/2016ESASP.736E..44P
http://air.di.fc.ul.pt/air/downloads/07-35.pdf
http://air.di.fc.ul.pt/air/downloads/07-35.pdf


[RF07b] José Rufino and Sérgio Filipe. AIR Project Sum-
mary Report. Tech. rep. DI-FCUL TR–07–36. Comp.
Sce. Dept. of the University of Lisbon, Portugal, Dec.
2007. url: air.di.fc.ul.pt/air/downloads/07-
36.pdf.

[Rip+10] I. Ripoll et al. ‘Configuration and Scheduling Tools
for TSP Systems Based on XtratuM’. In: Proc. of
DASIA 2010 Data Systems in Aerospace. (Bud-
apest, Hungary). 1st–4th June 2010. url: http:
//www.xtratum.org/files/dasia2010.pdf.

[RTE16] RTEMS C User’s Guide. Version RTEMS 4.10.2.
2016. url: https://docs.rtems.org/releases/
rtemsdocs-4.10.2/share/rtems/html/c_user/
index.html (visited on 20/06/2018).

[Rus81] John Rushby. ‘The Design and Verification of Se-
cure Systems’. Reprint of a paper presented at the
8th ACM Symposium on Operating System Prin-
ciples, Pacific Grove, CA, USA, 14–16 Dec. 1981.
In: ACM Operating Systems Review 15.5 (1981),
pp. 12–21.

[San+08] Sérgio Santos et al. ‘A Portable ARINC 653 Stand-
ard Interface’. In: 27th Digital Avionics Systems
Conference, DASC 2008. (St. Paul, MN, USA). Ed.
by John Moore. 26th–30th Oct. 2008, 1.E.2-1–1.E.2-
7. url: http : / / ieeexplore . ieee . org / stamp /
stamp.jsp?arnumber=4702767.

[SCA13] SCARLETT project website. SCARLETT Consor-
tium. 2013. url: http://www.scarlettproject.eu/
(visited on 20/06/2018).

[Sch11] Tobias Schoofs. AIR – Overview. Presentation. Lis-
bon, Portugal: GMV, 2011. url: http : / / www .
gmv.com/export/sites/gmv/DocumentosPDF/air/
Presentation_GMV-AIR-1.1.pdf.

[SCS12] Cláudio Silva, João Cristóvão and Tobias Schoofs.
‘An I/O Building Block for the IMA Space Refer-
ence Architecture’. In: Proc. of DASIA 2012 Data
Systems In Aerospace. (Dubrovnic, Croatia, 14th–
16th May 2012). Ed. by L. Ouwehand. SP-701. ESA
Spacebooks Online, Aug. 2012. url: http://www.
gmv.com/export/sites/gmv/DocumentosPDF/air/
Paper_DASIA_2012.pdf.

[SYS18] PikeOS 4.2. RTOS with Hypervisor-Functionality.
Rel. 1.3. Product Overview. SYSGO. Klein-
Winternheim, Germany, 2018. url: https://www.
sysgo.com/fileadmin/user_upload/www.sysgo.
com / redaktion / downloads / pdf / data - sheets /
SYSGO-Product-Overview-PikeOS.pdf (visited on
20/06/2018).

[TCA13] Salvador Trujillo, Alfons Crespo and Alejandro
Alonso. ‘MultiPARTES: Multicore for Mixed-critic-
ality virtualization Systems’. In: 16th Euromicro
Conference on Digital System Design. (Santander,
Spain). 4th–6th Sept. 2013. url: http://www.dit.
upm.es/~str/papers/pdf/trujillo&13a.pdf (vis-
ited on 20/06/2018).

[WDD11] James Windsor, Marie-Hélène Deredempt and Re-
gis De-Ferluc. ‘Integrated Modular Avionics for
Spacecraft – User Requirements, Architecture and
Role Definition’. In: 30th Digital Avionics Sys-
tems Conference, DASC 2011. (Seattle, WA, USA).
IEEE/AIAA. 16th–20th Oct. 2011, 8A6-1–8A6-16.

[WH09] James Windsor and K. Hjortnaes. ‘Time and Space
Partitioning in Spacecraft Avionics’. In: Third IEEE
Int’l Conf. on Space Mission Challenges for In-
formation Technology, SMC-IT 2009. (Pasadena,
CA, USA). 19th–23rd July 2009, pp. 13–20. doi:
10.1109/SMC-IT.2009.11.

[Win12] James Windsor. ‘Integrated Modular Avionics for
Space. IMA4Space’. In: 6th ESA Workshop on
Avionics, Data, Control and Software Systems,
ADCSS 2012. 23rd Oct. 2012. url: http : / /
congrexprojects.com/docs/12c25_2310/sa1440_
deredept.pdf?sfvrsn=2 (visited on 20/06/2018).

air.di.fc.ul.pt/air/downloads/07-36.pdf
air.di.fc.ul.pt/air/downloads/07-36.pdf
http://www.xtratum.org/files/dasia2010.pdf
http://www.xtratum.org/files/dasia2010.pdf
https://docs.rtems.org/releases/rtemsdocs-4.10.2/share/rtems/html/c_user/index.html
https://docs.rtems.org/releases/rtemsdocs-4.10.2/share/rtems/html/c_user/index.html
https://docs.rtems.org/releases/rtemsdocs-4.10.2/share/rtems/html/c_user/index.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4702767
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4702767
http://www.scarlettproject.eu/
http://www.gmv.com/export/sites/gmv/DocumentosPDF/air/Presentation_GMV-AIR-1.1.pdf
http://www.gmv.com/export/sites/gmv/DocumentosPDF/air/Presentation_GMV-AIR-1.1.pdf
http://www.gmv.com/export/sites/gmv/DocumentosPDF/air/Presentation_GMV-AIR-1.1.pdf
http://www.gmv.com/export/sites/gmv/DocumentosPDF/air/Paper_DASIA_2012.pdf
http://www.gmv.com/export/sites/gmv/DocumentosPDF/air/Paper_DASIA_2012.pdf
http://www.gmv.com/export/sites/gmv/DocumentosPDF/air/Paper_DASIA_2012.pdf
https://www.sysgo.com/fileadmin/user_upload/www.sysgo.com/redaktion/downloads/pdf/data-sheets/SYSGO-Product-Overview-PikeOS.pdf
https://www.sysgo.com/fileadmin/user_upload/www.sysgo.com/redaktion/downloads/pdf/data-sheets/SYSGO-Product-Overview-PikeOS.pdf
https://www.sysgo.com/fileadmin/user_upload/www.sysgo.com/redaktion/downloads/pdf/data-sheets/SYSGO-Product-Overview-PikeOS.pdf
https://www.sysgo.com/fileadmin/user_upload/www.sysgo.com/redaktion/downloads/pdf/data-sheets/SYSGO-Product-Overview-PikeOS.pdf
http://www.dit.upm.es/~str/papers/pdf/trujillo&13a.pdf
http://www.dit.upm.es/~str/papers/pdf/trujillo&13a.pdf
http://dx.doi.org/10.1109/SMC-IT.2009.11
http://congrexprojects.com/docs/12c25_2310/sa1440_deredept.pdf?sfvrsn=2
http://congrexprojects.com/docs/12c25_2310/sa1440_deredept.pdf?sfvrsn=2
http://congrexprojects.com/docs/12c25_2310/sa1440_deredept.pdf?sfvrsn=2

	Introduction
	Systems with Mixed Dependability
	Dependability
	Mixed Dependability
	Handling Mixed Dependability
	Separation Kernel
	Virtualization
	Separation Kernel vs. Virtualization


	Integrated Modular Avionics (IMA) for Aircraft
	From a Federated Architecture to the IMA Architecture
	AFDX Data Network
	Operating System Interface ARINC 653
	Distributed Modular Electronics (DME)

	Adaption of IMA for Space Avionics
	Differences between the Aeronautical and the Space Domain
	The Speed of Growth of Complexity
	Scale of Communication Demands
	Online/Offline Maintenance
	Pronounced Mission Phases
	Availability of a Hardware-Based Memory Protection Unit
	Radiation

	The Original IMA-SP Project
	IMA-SP Follow-Up Projects
	Virtualization Solutions Suitable for Space Avionics
	XtratuM: a Hypervisor for Safety-Critical Embedded Systems
	AIR: A Partition Management Kernel Based on RTEMS

	Separation Kernels Suitable for Space Avionics
	PikeOS
	VxWorks 653
	LynxSecure

	Extensions for Multi-Core Processors

	Research Challenges
	CPU-Related Challenges for Time Partitioning
	Challenges for Real-Time Property Proofs

	Summary

