
Applying Binarized Neural Networks on FPGAs
to an Autonomous Driving Problem

Technical Report

Felix Müller (5017732)
Niklas Krekel (5016745)
Pablo Navarro (5016953)
Raffael Kaehn (5016769)
Prof. Dr. Jan Bredereke

Bremen University of Applied Sciences
Faculty 4: Electrical Engineering and Computer Science

November 2, 2020 – March 31, 2021

Abstract
Autonomy of a moving vehicle requires continuous observations of the environment through a large
number of sensors. This leads to a substantial amount of data that has to be processed as close to
real time as possible. Artificial neural networks are a popular choice for problems like this, as they can
find important patterns in data quickly and at the same time interpret these findings in the required
context. Types of networks that use parameters with lower, fixed precision have been shown to require
less computational resources and memory, while remaining accurate. Combined with specialised hardware
like FPGAs, these networks promise reductions in latency and energy consumption.

Space exploration could benefit hugely from these improvements, as autonomy promises to reduce the
effects of signal delays introduced by huge distances between vehicle and operator. More confidence could
be put in a space probe’s decisions, reducing situations in which time is wasted by waiting for control
inputs from an operator. However, as space vehicles are among the most resource-constrained, harsh
and expensive computing environments imaginable, it is impractical to add a lot of computing power.
Quantized neural networks on FPGA hardware are therefore emerging as one solution to bring autonomy
to more space vehicles.

This work presents a real life approximation of an autonomous roving scenario. It uses existing research
results into binarized neural networks on FPGA hardware and combines it with actual low-power hardware
that approximates what would currently be available to a space mission. The same hardware package
also supplies the neural network with image data from a camera and translates its outputs into steering
commands. Those are then used in a control scheme for the actual vehicle. The whole setup is able to
find and identify a target object, work out its relative location and approach it, even if the target is not
stationary. This demonstrates the potential of using FPGAs for complex deep learning inference tasks,
reducing the requirements for computing power and energy consumption and therefore the applicability
of this research to resource-constrained environments like space exploration.

The proxy vehicle used to simulate a roving scenario

Page 2 of 50

Contents
1 Introduction 5

1.1 Research Context: Fast Digital Circuits for Artificial Intelligence in Space 5
1.2 Original Research Goals of This Project . 6
1.3 The Selected Application: an Autonomous Vehicle . 7

2 Fundamentals 7
2.1 Basic Principles of Neural Networks . 7

2.1.1 The Single-Layer Perceptron . 8
2.1.2 Multi-Layer Architectures . 8
2.1.3 Optimization . 9

2.2 Binarized Neural Networks . 10
2.2.1 Motivation . 11
2.2.2 Differences in the Inference Process . 11
2.2.3 Differences in the Optimization Process . 12

2.3 FINN-Framework . 13
2.4 Digilent Pynq-Z1 . 13
2.5 AXI4 . 14

3 Breakdown Into Subsystems 14
3.1 Subsystems . 14
3.2 Protocols . 15

3.2.1 Between Processing System and Programmable Logic 15
3.2.2 Between Processing System and Base Station 16
3.2.3 Between Programmable Logic and Hardware . 16
3.2.4 Between Processing System and Hardware . 16

4 Design of “Hardware” Subsystem 16
4.1 Vehicle Platform . 16
4.2 Camera . 17
4.3 Additional Peripherals . 17
4.4 Combined Vehicle . 17

5 Design of “Programmable Logic” Subsystem 18
5.1 Neural Network (BNN-PYNQ) . 18

5.1.1 AXI4-Lite . 19
5.1.2 AXI4 . 19

5.2 Motor Controller . 19
5.2.1 AXI4-Lite Interface . 19
5.2.2 GPIO Interface . 20

6 Design of “Processing System” Subsystem 20
6.1 Toolchain . 20

6.1.1 Xilinx Vitis . 21
6.1.2 GCC . 22
6.1.3 Selection . 22

6.2 Programming Language . 22
6.3 Vehicle Configuration . 22
6.4 Positioning With Tiling . 23

6.4.1 Tile and Frame Specification . 23
6.4.2 Tile Generation by ROI . 25
6.4.3 Tile Generation by Mapping . 27
6.4.4 Target Object Location . 29

6.5 Vehicle Control . 29

Page 3 of 50

6.5.1 Vehicle Dynamics . 30
6.5.2 Control Modes . 31
6.5.3 Control Parameters . 34
6.5.4 Control Loop . 35

7 Design of “Base Station” Subsystem 36
7.1 Toolchain . 36
7.2 Components . 37

7.2.1 Network . 37
7.2.2 Video . 37
7.2.3 Input . 37

8 Evaluation 38
8.1 Integration Tests . 38
8.2 Measurements . 39
8.3 Analysis . 39

9 Conclusion & Outlook 40

References 41

A Illustrations 42

B Hardware Registers 43

C Network Dataframes 45
C.1 Vehicle to Base Station . 45
C.2 Base Station to Vehicle . 45

D Building and Running the Subystems 47
D.1 Make . 47

D.1.1 Targets . 47
D.2 PS . 47
D.3 PL . 48
D.4 BS . 48

E Vehicle Network Configuration 49
E.1 Ethernet . 49
E.2 WiFi . 49

F Working Together Remotely 50

Page 4 of 50

1 Introduction
written by Jan Bredereke

We report on the practical application of a binarized neural network (BNN) implemented in a field
programmable gate array (FPGA); it is used for real-time visual object recognition that supports the
autonomous steering of a model car vehicle. This work was undertaken in the context of our research on
fast digital circuits for artificial intelligence in space. On-board computers of space vehicles are restricted
to comparatively slow hardware because of space radiation. An FPGA can boost the computing power of
a neural network while still being radiation-tolerant. The project was part of the course “Embedded Sys-
tems” at the City University of Applied Sciences Bremen, supervised by Jan Bredereke. The participants
were given the challenge to implement a neural network on an FPGA with computational capabilities
that are comparable to an FPGA usable in space. Furthermore, the implementation should be as fast as
achievable. They chose an application which also requires autonomous computing and an independent
power supply. This application is the aforementioned real-time visual object recognition used for the
autonomous steering of a model car vehicle.

In the remainder of this chapter, we describe more details of the research context, of the original research
goals of this project and of the application selected. In Chap. 2, we present an overview on the relevant
fundamentals of neural networks and their implementation on FPGAs. Chapter 3 describes our design
decisions on breaking down the application into subsystems. These are in turn discussed in the following
chapters. In Chap. 8, we evaluate the speed gain of our approach. Chapter 9 concludes this report and
gives an outlook on future work.

1.1 Research Context: Fast Digital Circuits for Artificial Intelligence in Space

written by Jan Bredereke

On-board computers of space vehicles perform basic control as well as payload data processing. The basic
control tasks are crucial for the safety of the craft. A satellite often costs hundreds of millions of Euros,
and it must not be lost. Radiation not blocked by Earth’s atmosphere would make current processor chips
fail soon. This does not happen for special processors with structures at least 65 nm wide. These special
processors are sufficiently robust; but their computation power is accordingly much smaller than that of
processors manufactured at the current 16 nm or 10 nm scale. An extremely small number of these special
processors is produced, only. Therefore, often they are not realized using application specific integrated
circuits (ASICs), but by programmable standard hardware (FPGAs). Radiation-hardend versions of some
FPGAs are available, featuring a suitable size of their structure (and other measures against radiation
effects).

There is an increasing demand for on-board computing power. An example is on-board image processing,
for, e.g., autonomous rovers on other celestial bodies or for swarms of small satellites with little bandwidth
towards a ground station each. Neural networks are an approach that allows the autonomous classification
of of visual objects. However, they require abundant computing power. Therefore, they are often run on
particularly potent special hardware. This hardware is definitely unsuitable for the space environment.

Just executing an already trained neural network (i.e., “inference”) requires orders of magnitude less
computing power than to train the network. By doing the training on ground in advance, at least
some image processing applications get into reach. Furthermore, the execution of a neural network
inherently is a massively parallel task, and therefore highly suitable for an FPGA. Additionally, a neural
network performing an image processing task can tolerate a certain rate of transient failures without
damaging the result substantially. Space radiation causes such transient failures. In contrast, a CPU
executing sequentially will often be completely thrown off its execution path by a single event upset.
The disturbance in a neural network may well remain local and diminish the quality of the result only
gradually.

Page 5 of 50

Payload data processing does not put as high a demand on reliability as processing for basic control. Here,
radiation-tolerant chips are used, too, instead of radiation-hardend chips. They suffer brief temporary
failures, but they provide a comparably higher computing power.

1.2 Original Research Goals of This Project

written by Jan Bredereke

This section describes the original research goals of this project, as proposed by the supervisor. The
participants’ actual research work done, presented in the remainder of this report, delved into some of
the aspects proposed much deeper and more successful than expected. But naturally it could not cover
all of the interesting aspects identified before the project, thus leaving room for further work into many
directions.

A goal of this project is to explore the feasibility of executing pre-trained neural networks on an FPGA;
where the computing power of the FPGA is similar to that of a radiation-tolerant FPGA. The participants
shall fathom the trade-off between the computing power necessary and the computing capacity available
on a suitable FPGA. Many different approaches for optimization might help. Lowering the reliability of
the individual neurons by reducing the structural size below the safe limit, as sketched above, is only
one of them. Several further approaches exist for executing pre-trained neural networks on comparatively
slow CPUs. This is because neural networks gain increasing importance in the embedded systems area,
for example on smart phones.

A preceding project in this area took place in the winter term 2019/20, supervised by Jan Bredereke, too
[9]. The participants successfully realized a tool chain for the hardware and software development for
executing neural networks on an FPGA. They investigated many different tools which offered interesting
approaches. But in the end, most were not sufficiently documented, not sufficiently mature, or unsuitable
for the project. Using the tools finally chosen, the participants could demonstrate their tool chain in
practice. They did this for the “hello world” of the neural networks, the xor function. They described the
neural network in Python, trained it suitably, and then implemented the trained network on an FPGA.
This implementation of the neural network turned out to be faster by a factor of 1000, compared to an
implementation on a radiation-tolerant microcontroller using Python. A PYNQ-Z1 board serves as the
hardware platform. It contains the system-on-chip (SoC) Zynq-7020 comprising a microcontroller and an
FPGA Artix-7, coupled to the microcontroller. Suitable libraries facilitate to program the microcontroller
in Python substantially. Tensorflow and Keras cover the software side.

The participants of the current project had the opportunity to choose from a range of ideas for their
work. The coupling of the digital circuit in the FPGA to the microcontroller was rather simplistic. They
could investigate and implement more powerful concepts for bulkier input data which do not fit on the
SoC-internal AXI bus in a single clock cycle. Furthermore, the software/hardware interface between the
software in Python and the internal AXI bus could be accelerated. Or they could dispose of the software in
Python entirely, which pre-processed the input data. In parallel, they should identify and realize suitable
more complex neural networks. Visual object recognition lent itself as an application here. As soon
as more than the entire FPGA hardware is used for a computational cycle, the computation must be
serialized in part. Pipelining should be applied here, in particular. The hardware usage per computational
cycle could be optimized, too. This could be done by using only as many neurons as really required, or
by reducing the width of the data types used to what is minimally necessary. For the latter, binarized
neural networks were a promising approach, for example the framework BNN-PYNQ (FINN) [17].

Other, simpler tasks than classifying images could be approached, too. Good ideas for other autonomous
classifying tasks or for autonomous control tasks on board of satellites or rovers would have their own
merit as a project result.

A possible task with less input signal bandwidth would be the distinction of a few short audio signals.
Potential applications of (substantially) extended versions of the audio signal detection would be on-board
voice recognition [10] and the detection of critical changes in the mechanical structure of a satellite using

Page 6 of 50

a microphone. For example, these could be an imminent failure of a motor for pointing the solar array
towards the sun, an imminent failure of a gyroscope (a spinning device for attitude control), the impact
of a micro-meteorite, etc. However, there are less off-the-shelf solutions for neural networks for audio
signal recognition than for visual object recognition.

1.3 The Selected Application: an Autonomous Vehicle

written by Niklas Krekel

The project team decided on building an autonomous model car in order to have a real-life proxy for
an autonomous spacecraft. When sending probes away from Earth, autonomy in navigation becomes
increasingly more important as the time delay to an earth-based ’decision maker’ also increases. Intelligent
steering of those spacecraft is therefore an area of ever increasing interest in research and innovation,
while also being easily approximated on Earth.

For this project, the autonomy of the model vehicle was decided to be informed by object recognition. In
comparison to other machine learning methods, computer vision is well established in research and can be
applied to tasks with greatly varying complexities. This simplifies the selection of a realistic scenario that
is useful to evaluate and at the same time aims to exhaust the performance of the FPGA in use. Object
recognition is also trivial to test in a real environment while requiring relatively high data throughput,
further exhausting hardware performance limits. The last point becomes especially important under real
time conditions, which often apply to space exploration. Continuous on-board decision making in real
time is another objective of this research undertaking. The faster any autonomous process can react to
changes in the environment, the higher is the chance of avoiding adverse situations.

In summary, this project aims to approximate an autonomous spaceflight scenario by building a model
vehicle that uses computer vision to detect a target object, translate the target’s position into actionable
maneuvering inputs and approach it, while continuously monitoring the environment and recalculating
steering commands along the way.

With the overall goal in mind, the project’s challenges were expected to be:

• Implementing or choosing a neural network model which capitalizes on the specialized FPGA hard-
ware

• Setting up a processing pipeline from sensor to inference

• Interpreting the inference results and translating them to maneuvering inputs

• Building a vehicular platform and integrating it with sensor and processing hardware

2 Fundamentals
This section explains the fundamental principles of artificial neural networks, followed by the main differ-
ences of binarized neural networks. It also introduces the software framework and specific hardware used
for their implementation.

2.1 Basic Principles of Neural Networks

written by Raffael Kaehn

To provide a base line for further explanations, this subchapter gives an overview of the elementary
principles of neural networks, builds upon this to introduce specialized networks for image recognition
and finishes with an explanation of the optimization process.

Page 7 of 50

2.1.1 The Single-Layer Perceptron

Generally speaking, an artificial neural network can be understood as a mathematical function that
receives an input vector, processes it in combination with internal parameters, and deterministically pro-
duces an output vector. Both the input and output vector are of finite, constant length and contain
elements that are required to be within a predetermined range of values. To allow for a more intuitive
and understandable representation, neural networks are often depicted as directed graphs, where each
input vector element appears as a node in one layer, each output vector element appears as a node in
another layer and relationships in calculations appear as edges between nodes of different layers:

x1Input #1

x2Input #2

y1 Output

Input
layer

Output
layer

Figure 1: Basic single-layer perceptron

In the most basic neural network, called a perceptron, the value of an output node can be determined
by first calculating the dot product between the values of the input nodes and those of the connecting
edges. Intuitively, the latter can be thought of as a weight, or a measure of influence, of the previous
nodes value in the calculation of the current nodes value. Since the result of the dot product is linearly
dependent on the input values, the following problems arise:

• Depending on the respective weights, the distribution of the output values of two or more nodes of
the same layer might be drastically different. This could become especially problematic when the
output of one node is used as an input of another node.

• A linear function that takes the output of another linear function as an input can always be
substituted for a single linear function. This property would make it impossible to approximate
non-linear functions, even in multi-layer neural networks.

To solve the first problem, a bias is added to the dot product, allowing the mean of the distributions to
be shifted in a positive or negative direction. To solve the second problem, the resulting sum of the dot
product and the bias is given as an argument to an activation function. This is typically a non-linear
function used to clamp or redistribute the values into a specific, predictable range. After the activation
function has been applied, the calculated result as given by equation (1) is set as the value of the output
node. The process is repeated for every node of the output layer.

yj = g(aj), aj =
∑
i

wjixi + b (1)

2.1.2 Multi-Layer Architectures

For most real-world applications, the described single-layer perceptron is not sophisticated enough to
approximate complex dependencies in the processed data and therefore cannot produce reliable predictions
for non-trivial input values. To combat this problem, it has proven useful to integrate additional layers
between the input and output nodes of the network. These layers can be interpreted as solving smaller sub-
problems of an overarching classification or regression task. Since the intermediate results they produce
are typically not presented to the user, they are referred to as hidden layers. The inner workings of these
layers can range from identical to the principles explained above to completely unrelated, specialized

Page 8 of 50

functions, with the most relevant variants explained hereafter:

• Fully connected layers – These layers can be seen as a generalization of the output layer of the
perceptron described above. In this type of layer, the value of each of its nodes is influenced by the
weighted value of every node from the previous layer. In image recognition tasks, one or more of
these layers are often located right before the output layer and fulfill the task of actually classifying
data that was processed and normalized in previous layers of the following types.

• Convolutional layers – This layer type is easiest to understand by looking at its typical use case,
as part of a neural network to recognize and classify objects in images. In this context, these layers
can be thought of as applying filters to different regions of an image, where the dimensions of the
filter are constant within a layer and the coordinates of the region are different and advancing for
every node of that layer. This filtering mechanism is implemented by restricting the influence of
nodes in the previous layer on the value of one node in the next layer to small and changing subsets
with their respective weights in the calculation shared for every node in the next layer.

• Pooling layers – This layer type is most often found in direct succession to a convolutional layer
and used to reduce the dimensionality of the previous layer. This dimensionality reduction can
be achieved by separating the image into multiple non-overlapping square tiles with a side length
greater than one and combining the color information of the fragments within that tile into a single
figure, often either by calculating an average of the included values or by determining the maximum
value.

For image recognition tasks, the three above-mentioned layer types are often used in combination, where
the image is first processed in a series of generalization stages, each consisting of a convolutional and
pooling layer and meant to extract or emphasize certain elements in the data. These elements are then,
layer by layer, combined into larger patterns. When the extraction of general elements and combination
of elements into patters and the combinations of patters into objects has been completed, fully-connected
layers are used for the actual classification. The exact configuration of these layers, called topology of the
neural network, can and should vary depending on the problem to be solved, but the described principles
and the reasoning behind them can be applied to problems in many domains.

2.1.3 Optimization

After the general architecture has been laid out, the network is able to accept input data, use that
data and the internal parameters to calculate the values of the nodes in the next layer, and repeat this
operation until the output layer is reached. The process of producing an output vector as a prediction
for a given input vector is called inference.

Directly after initialization, during which the weights and biases are often set to random values drawn
from a normal distribution, these predictions from the network will likely not be close to the expected
results. To calculate a concrete numeric value for these deviations, the predicted and expected output
vectors are processed by a so-called loss function. This function could be implemented as a simple sum
of squared errors (SSE), consisting of the following steps:

1. Calculate the element-wise difference between the predicted and expected vector, this is referred
to as the error.

2. Square each element, resulting in a value that is independent of the direction (positive/negative)
in which the prediction diverged from the expected value.

3. Calculate the sum of all elements.

The resulting figure, called the loss of the network for a given input vector, is a direct measure of its
performance, with lower values indicating more accurate predictions. When looking at a fixed pairs of
input and expected output vectors, the loss is only dependent on the internal weights and biases and as
such, the goal of the optimization process explained below is to find values for these parameters that

Page 9 of 50

minimize the loss across the data set.

The intuitive solution to this task would be to calculate the derivative of the loss function, set it equal
to zero and solve for the weights to find the functions stationary points. These weights would then be
inserted into the second derivative where, if the value of that function at the given input was greater
than zero, a minimum of the loss function would have been found. Although this method works for very
simple neural networks, solving equations with the high number of variables found in complex networks is
too computationally intensive. For these cases, a method called gradient descent is used, where instead
of trying to find a globally optimal set of weights to minimize the loss function, a gradual, step-by-step
descent is being made towards a local minimum. Each gradient descent step consists of the following
tasks:

1. Calculate the gradient of the loss function E with respect to the weights. The term gradient refers
to a vector of the functions partial derivatives for each weight. For the single-layer perceptron
described above, the elements of this vector would be calculated by applying the chain rule for
differentiation as follows:

∂E

∂wji
=
∂E

∂yj
· ∂yj
∂wji

=
∂E

∂yj
· ∂yj
∂aj
· ∂aj
∂wji

(2)

After inserting equation (1), the factor on the far right can be solved like this:

∂aj
∂wji

=
∂

∂wji

∑
k

wjkxk + b =
∂

∂wji
wjixi = xi (3)

The factor in the middle describes the derivative of the activation function:
∂yj
∂aj

=
∂

∂aj
g(aj) = g′(aj) (4)

When using the described SSE loss function and with ŷj as the expected output of a neuron, the
left factor becomes:

∂E

∂yj
=

∂

∂yj
(yj − ŷj)2 = 2(yj − ŷj) (5)

As such, the complete gradient can be written as:
∂E
∂w11

∂E
∂w12

∂E
∂b

 =


2(yj − ŷj) · g′(aj) · x1
2(yj − ŷj) · g′(aj) · x2

2(yj − ŷj) · g′(aj)

 (6)

2. The calculated gradient is then used as a delta by which the weights are modified:

∆wji =
∂E

∂wji
(7)

To control how much the weights should be changed, a learning rate α is introduced. If this value
is near its recommended upper bound of 1, the weights are adjusted in large steps towards their
optimum value, but a chance of overshooting a local minimum is introduced. If the value is near
its recommended lower bound of 0, the adjustments are made in small steps, potentially resulting
in a slow optimization process.

wji = wji − α∆wji (8)

2.2 Binarized Neural Networks

written by Raffael Kaehn

Building upon an understanding of traditional neural networks, this subchapter introduces binarized neural
networks, a specialized form that enables further optimization possibilities when implemented on FPGAs.

Page 10 of 50

2.2.1 Motivation

One potential problem with the previously introduced network topology for image recognition is their
dependence on a relatively high number of layers and consequently many internal parameters to produce
reliably accurate results. Typically, these parameters as well as all input values, intermediate results and
output values are represented as floating point numbers, requiring significant amounts of memory and
computational power. Recent research results have shown that similarly accurate results can be obtained
with lower precision numbers, as long as this is compensated by a higher number of nodes per layer. This
type of neural network, called quantized neural network, in which the input values, internal parameters
and output values are represented by lower precision numbers, have the advantage that fewer processor
cycles are needed to compute the values of the nodes and less memory is needed to store the intermediate
results and parameters.
If the precision of these values is reduced even further to the point where each number is represented by
only a single bit, the resulting network is called a binarized neural network. Building upon the advantages
mentioned above, these networks show immense promise when implemented on FPGAs, since many of
the calculations during inference can be implemented as simple binary operations and the lower memory
requirements play nicely into the limited availability of such resources on FPGAs. [17]

2.2.2 Differences in the Inference Process

Since the precision of the values in the calculations has been reduced to a single bit, the range of values
that can be represented is drastically reduced. In the literature, the alphabet {−1, 1} is used for all
calculations, in which a bit set to 0 corresponds to the value −1 and a bit set to 1 corresponds to the
value 1 [3]. The conversion from a real number to a value from this alphabet is done by a quantization
function, such as the following:

Q(x) =

{
−1 if x < 0

1 if x ≥ 0
(9)

This quantization function may also be applied to the input values. Depending on the application, this
could mean, for example, that the color values of a grayscale image would be binarized in a way where
each pixel is either black or white, before then mapping these values to the alphabet {−1, 1}. For a color
image, a division of each pixel into its subpixels (red, green, and blue) with subsequent binarization is
conceivable. In this constellation the three primary colors, the three additive secondary colors, white, and
black could be represented. An image converted using this method can be seen below:

(a) 256 possible values per subpixel [16] (b) 2 possible values per subpixel

Figure 2: A potential input image and its binarized counterpart

To show the complete inference process for these input values, it makes sense to revisit the single-layer
perceptron from the beginning of this chapter. As can be seen in equation (10), calculating aj as the

Page 11 of 50

dot product of the quantized input vector x and the weight vector wj is no different from a conventional
floating point network:

aj =
∑
i

wjixi + b (10)

However, since the result is an integer and thus not necessarily an element of the expected set of
values {−1, 1}, the quantization function introduced above is then applied as an activation function,
reestablishing the binarization conditions:

yj = g(aj), g(·) = Q(·) (11)

2.2.3 Differences in the Optimization Process

The optimization process gradient descent is based on the principle that the weights are adjusted in
small steps to reach a local minimum of the error function. However, since the weights of a binarized
neural network can only have the values −1 and 1, it is not possible for them to be adjusted in small
increments. The common solution to this problem is to store the weights of the network as real-valued
floating point numbers, meaning they can have values excluded from the set {−1, 1}, during training.
Only when these weights are used to calculate a prediction y are they binarized using the quantization
function. This results in the following equation for calculating a prediction:

yj = g(aj), aj =
∑
i

Q(wji)xi + b (12)

This prediction would now be used to calculate the gradient of the error function with respect to the
real-valued weights as such:

∂E

∂wji
=
∂E

∂yj
· ∂yj
∂aj
· ∂aj
∂wji

= 2(yj − ŷj) · g′(aj) ·Q′(wji)xi (13)

Here, two new problems arise:

• The quantization function used in the binarization of the real-valued weights is not continuously
differentiable. While it is at least semi-differentiable, its left or right derivatives are zero for every
input, which would result in the elements of the gradient always being zero as well. To solve
this problem, the so-called straight-through estimator is used, which sets the gradient of the error
function with respect to the real-valued weights equal to its gradient with respect to the binarized
weights:

∂E

∂wji
=

∂E

∂Q(wji)
(14)

This results in the following partial derivative:

∂aj
∂Q(wji)

= xi (15)

• The quantization function is also used as the activation function g(a), whose derivative is also part
of the gradient. In this case, it is exchanged for another, continuously differentiable function. Due
to the similar shape and bounds of the function values, the tanh function is a suitable choice. This

Page 12 of 50

has the consequence that the output of a node is no longer limited to the alphabet {−1, 1} with,
in the case of the tanh function, intermediate values also being possible.

With these two adjustments, the following complete equation for the calculation of the gradient of the
error function is obtained:

∂E

∂wji
=

∂E

∂Q(wji)
=
∂E

∂yj
· ∂yj
∂aj
· ∂aj
∂Q(wji)

= 2(yj − ŷj) · g′(aj) · xi (16)

At the end of the training process, the calculated gradient is used as a delta to adjust the real-valued
weights, similar to the process explained in the first subchapter. At the point where the training has been
completed, the real-valued weights are permanently quantized and stored for future use during inference.

2.3 FINN-Framework

written by Niklas Krekel

FINN is a framework enabling the construction of quantized neural networks to be used specifically
for inference on FPGA hardware. It was conceived by researchers at Xilinx Research Labs and is now
an open source tool officially maintained by Xilinx, a leading company in the production of specialised
computing hardware [6]. As explained in subsubsection 2.2.1, BNNs have been shown to be able to
retain a high classification accuracy compared to unquantised networks, if the number of nodes per layer
is increased. This opens up the possibility of capitalising on the high performance of FPGAs regarding
binary operations. Due to the smaller memory requirements of binarized parameters, it is possible to
keep them in on-chip memory, reducing off-chip memory access and therefore latency. Owing to these
optimisations, BNNs on FPGA hardware are expected to offer a performance benefit over floating point
networks without compromising on accuracy. [17]

To actually implement a binarized neural network in hardware, FINN does not require the user to be
familiar with hardware description languages. Instead, models can be constructed with familiar and pop-
ular frameworks like PyTorch, and optimised for the problem at hand using quantization-aware training.
The resulting layer model is then supplied to FINN, which streamlines and converts it into C++ code.
This code can be synthesized and implemented into a bitfile for a specific target device and afterwards
deployed on said hardware. [6, page ’End-to-End Flow’]

In order to be able to convert a network model into synthesizable code, FINN organises it in a het-
erogeneous streaming architecture. For each layer, there is a separate compute engine tailored to the
specific requirements of that layer. When a compute engine starts producing output, this is transmitted
through on-chip data streams to the following compute engine, which can already start its computations
while the one before it finishes up, effectively overlapping computation and communication and reducing
latency. Since the BNN’s parameters can also be stored on-chip, the amount of off-chip memory access
is minimised, further reducing latency, i.e. the time spent classifying one input. [17]

2.4 Digilent Pynq-Z1

written by Felix Müller

The Digilent Pynq-Z1 is a development board for embedded systems with an ARM Cortex-A9 CPU (the
„Processing System“) and a FPGA equivalent to an Xilinx Artix-7 (the „Programmable Logic“) inside
one System-on-a-Chip (SoC) called Zynq. Both the CPU and FPGA have access to 512 MB of DDR3
memory through a memory controller with 8 DMA channels and 4 high performance AXI3 slave ports [4].
To lower the barrier of entry into embedded FPGA designs, the board is intended to be used with Pynq
which is an open source tool chain that allows the use of Python to access high level abstractions of
hardware interfaces. However, every layer of abstraction can be replaced by lower level implementations
if higher performance and thus more control is required [14].

Page 13 of 50

2.5 AXI4

written by Felix Müller

This project requires multiple peripherals to communicate with each other (e.g. the PS with the neural
network on the PL). This is achieved by using an AXI4-bus to which all peripherals are connected. AXI
belongs to the ARM AMBA family of micro controller buses and is officially supported by Xilinx in all
it’s tools (e.g. Vivado). The latest supported version is AXI4, which provides 3 types of interfaces [2]:

• AXI4: „for high-perfomance memory-mapped requirements.“

• AXI4-Lite: „for simple, low-throughput memory-mapped communication (for example, to and from
control and status registers).“

• AXI4-Stream: „for high-speed streaming data.“

The fixed hardware inside the Zynq SoC only implements the AXI3 standard which is resolved by using
a so called “Interconnect” to translate between the two versions of the standard.

3 Breakdown Into Subsystems
Multiple steps are required to get from a video signal to the automated steering of the vehicle, which
are realized by separate subsystems that interface with each other. First an overview of all subsystems is
given followed by the list of protocols for communications between the systems.

3.1 Subsystems

written by Felix Müller

This project consists of 4 subsystems in total, that are illustrated in Figure 3. Every rectangle represents
one subsystem that is connected to at least one other subsystem (illustrated with an arrow). The direction
of the arrow indicates the direction and the labelling the protocol of the data flow. The physical location
of the subsystems is shown by the bigger boxes that group the subsystems. The group “Vehicle” contains
all subsystems located on the actual vehicle that are required for operation. The group “Base Station”
is situated at another (optional) physical location and runs on a any personal computer with network
access.

Vehicle Base Station

Programmable Logic Processing System

Hardware

Base Station
AXI4

US
B

3.3V
GPIO

UDP

Figure 3: Combined System

The aforementioned subsystems are interconnected into a pipeline (illustrated in Figure 4) which takes
the raw image data from the camera and processes it until it is reduced to mere control signals for the
motors. The following descriptions should give a coarse overview of the pipeline whereas each individual

Page 14 of 50

step is explained in detail in the chapter of the matching subsystem (marked by the lower part of the
nodes in the pipeline).

• Camera: The camera captures the image data with a sensor and delivers it to the PS over USB.

• Scaling: The native resolution of the camera is too high for the available processing power, therefore
it is scaled down before any further computations.

• Tiling: Because the used neural network is limited to images with a resolution of 32x32 pixel, the
captured camera frame needs to be cut up into several tiles.

• Inference: This is the heart of the entire pipeline. Every generated tile is inferred with a confidence
for each of the available classes in the neural network.

• Analysis: The results of the individual classifications are reduced to the tiles which contain the
object in question. Afterwards a position relative to the image center is generated based on the
tiles that contained the object in question with the highest confidences.

• PID: Depending on the presence of the object, the PID controller either generates a signal to drive
and steer towards this object or enters a search mode, where it rotates around it’s own axis until
it finds a matching object.

• Motor Driver: Generates the analog signals based on the values given by the PID controller.

• Motors: The physical motors that propell the vehicle forward according to the given signals by the
motor driver.

Camera
HW

Scaling

PS

Tiling

PS
Inference

PL

Analysis

PS
PID
PS

Motor Driver
PL

Motors
HW

Figure 4: Data Pipeline

3.2 Protocols

This section will give an overview over the protocols that are used for communication between the
subsystems and why they were selected. The actual implementation and usage of the protocol will be
explained in the subsystem where it is first used.

3.2.1 Between Processing System and Programmable Logic

The AXI4 protocol was used between PS and PL because it provides the highest bandwidth and flexibility
for the SoC on the Pynq-Z1 board and is the intended method by the chip manufacturer Xilinx. Two of
the available interfaces provided by the AXI4 standard were used in this project:

• AXI4-Lite: For the configuration of the neural network (weights & thresholds) and for motor control
(direction & speed).

• AXI4: For high speed memory mapped transfers of the image data to the neural network and the
resulting inference results back to the CPU.

Page 15 of 50

3.2.2 Between Processing System and Base Station

The BS has a different physical location than the vehicle (see Figure 3) therefore a tethered connection
is not applicable because it would severely limit the vehicle in its movement.

To keep the implementation portable, the User Datagram Protocol (UDP) was used. This protocol was
extended by putting so-called frames into the datagram that follow a very simple structure. The header
of the frame contains only a single byte which is the identifier. The structure of the body is determined
by each identifier.

3.2.3 Between Programmable Logic and Hardware

The communication between the PL and the HW is different to the other protocols since it is the only
one-way data transfer. This is done by using the 3.3V logic level GPIO pins of the PL to control the
driver circuitry of the motors. This circuitry provides no feedback which leaves the input functionality of
the GPIO pins unused.

3.2.4 Between Processing System and Hardware

The camera of the hardware system is connected to the PS over USB using the video device class.
Because the Linux kernel provides generic drivers for this use case, it does not need further explanation.

4 Design of “Hardware” Subsystem
This sections describe the components that make up the physical hardware of the vehicle. These com-
ponents consist of a base model car, a camera and several miscellaneous peripherals.

4.1 Vehicle Platform

written by Niklas Krekel

In order to simulate a simplified roving scenario, a toy vehicle is used as the mobile platform for the system.
It features four DC motors to which the wheels attach directly. Two motors on each side of the vehicle
are controlled together, steering is possible by varying the speed of the motor groups independently. This
control scheme is implemented through the included motor controller board. A battery compartment,
including two 18650 Lithium-Ion batteries, a charging port and power switch, supplies the motors. Two
acrylic plates stacked onto of each other with metal spacers make up the vehicle chassis. On the lower
plate, the motors and the controller are mounted. The upper plate carries the battery box. A schematic
representation of the base vehicle is included in Figure 5.

Page 16 of 50

Figure 5: Vehicle platform schematic [5, file ’ELEGOO Smart Robot Car Kit Parts and Names.png’]

4.2 Camera

written by Felix Müller

A USB webcam with a maximum resolution of 1920x1080 pixels and a frame rate of 30 fps was used.
The only selection criteria were a tripod mount for easy attachment to the vehicle and a narrow viewing
angle for maximum detail of objects at a given resolution.

4.3 Additional Peripherals

written by Niklas Krekel

The Pynq-Z1 board is connected to the camera mentioned in subsection 4.2 and these additional periph-
erals:

1. Power bank
10400mAh Lithium Polymer power bank with USB-A outputs capable of supplying up to 3A at
5V. Used to power the Pynq-Z1 board and its peripherals.

2. USB angle and two-way splitter cable

3. WiFi adapter
USB2.0 WiFi adapter for connecting the Pynq-Z1 to a 2.4GHz wireless network through standard
802.11b/g/n.

4.4 Combined Vehicle

written by Niklas Krekel

The power bank is mounted to the base vehicle by extending the spacer rods between the acrylic plates
with stand-off screws and strapping it to the bottom of the upper plate. A screw for mounting the camera

Page 17 of 50

is attached to the front of this plate, and the Pynq-Z1 board is strapped to it between the camera screw
and the battery compartment. Figure 6 shows the complete vehicle.

Figure 6: Fully assembled vehicle

5 Design of “Programmable Logic” Subsystem
written by Felix Müller

This section describes the design of the hardware running on the FPGA aka Programmable Logic of the
whole vehicle system. There are multiple components in the design: the neural network (BNN-PYNQ),
the motor controller and several miscellaneous components required to connect the components. A block
design was used a as a visual way to connect the components which can be seen in Figure 14.

5.1 Neural Network (BNN-PYNQ)

The BNN-PYNQ was used as the hardware implementation of a neural network without any modifications.
It was compiled from the sources in the Github repository with the following configuration parameters:

• Target Platform: Digilent Pynq-Z1

• Neural Network Topology: CNV (a convolutional network)

• Weight Bits: 1

• Activation Bits: 1

The evaluation by the original researches already measured the performance in their paper [17] for a
standalone usage of the network. In the vehicle however it is not the only logic on the PL and bound
to realtime constraints properly control the vehicle. Therefore a compromise between hardware usage
and throughput needs to be found that is compatible with the other constraints of the vehicle. One
such compromise are the chosen parameters as they achieve a respectable precision at a tolerable cost in

Page 18 of 50

resources according to the measurements in the paper. Further research might be necessary to evaluate
if this is true in practice.

The result of the compilation is an IP-Core which can be dropped into a block design in Vivado. The
block can then be treated as a black box with interfaces at its boundaries. The most notable interfaces
are the AXI4 ports which are used for the configuration and data transfer of the image data and the
classification results. The following subsections will give a coarse overview for the most most important
aspects of these interfaces.

5.1.1 AXI4-Lite

This interface is used to configure the network, trigger one or multiple inferences or retrieve it’s status
(e.g. inference complete). Communication is achieved over registers that can be accessed at an offset
from the base address of this peripheral. The most important registers are the control register (table
B.2) and the input/output data address register (table B.3 & B.4). The registers to load the weights
and thresholds were intentionally left out because they would require too much room in this report and
are already documented by the original research group.

5.1.2 AXI4

This interface is used to retrieve image data to classify and to store the results. Because this interface
implements a full AXI4 interface, the BNN-PYNQ has direct access to the DDR3 memory. The addresses
of the data can be configured via AXI4-Lite as described in table B.3 and B.4. The expected format of
the input data is Red-Green-Blue (RGB). Each color channel is described as a 8-bit fixed point number
therefore one pixel requires three bytes. For the input resolution of 32x32 pixel this means that each
image requires 3072 bytes (32 per row x 32 rows x 3 color channels per pixel). Several images can
be stored consecutively in memory. The amount of images that the BNN-PYNQ needs to process is
configured via AXI4-Lite as described in table B.5. The output format of the inference results are 16-bit
integers that represent the confidence of a class. For each image 64 of these confidences are written
independently of the available class from a trained parameter set. Therefore 128 bytes are required for
the results of a classified image. A multiple of these blocks will be stored consecutively depending on the
amount of images classified.

5.2 Motor Controller

The motor controller generates the signals to address the L298N motor driver and was implemented
in pure VHDL. It receives the desired speed and direction via AXI4-Lite registers and generates the
appropriate signals on the GPIO pins connected to the analog driver circuitry.

5.2.1 AXI4-Lite Interface

Only 24-bit are required to address the L298N motor driver, but because there is a minimum of 4 registers
for AXI4-Lite, three separate registers were used to keep the addressing simple from the PS. The register
width of 32-bit was chosen to stay consistent with the other used peripherals on the AXI4-bus and
therefore require less interconnects. The structure of the implemented registers can be seen in Table B.1.
The left/right speed settings control the speed speed of both motors on either side with a value from 0
to 1023. The state of the bits IN1 to IN4 determine the rotation direction of the motors. Table 1 gives
an overview of the most important combinations.

Page 19 of 50

IN4 IN3 IN2 IN1 Description

0 0 0 0 Stop all motors

0 1 1 0 Forward

1 0 0 1 Backward

1 0 1 0 Stationary Rotation (Left)

0 1 0 1 Stationary Rotation (Right)

Table 1: Motor Direction Control

5.2.2 GPIO Interface

The L298N motor driver is connected to 6 GPIO and the ground pin on the Pynq-Z1 board. The driver
gets its power from an external battery and therefore only control signals are shared between Pynq-Z1 and
the motor driver. The mapping of the GPIO pins is described in table 2. All GPIO pins are used digital
signals with a logic level of 0V or 3.3V. The motor enable pins are additionally addressed by applying a
pulse width modulation to the signal. The period of the PWM signal is 1.024 milliseconds or 976.6 Hz
to keep the losses from power switching to a minimum. A disadvantage of the low frequency is that the
switching is quite loud, because the frequency is still in the audible range thus omitting a high pitched
hum from the motor driver. To reduce this noise, the frequency could be increased to 15 kHz, which is
an appropriate value according to the application nodes from the manufacturer of the motor driver, but
this would require a calculation if the switching time is still low enough based on the resistance of the
connected motors [1]. The resolution of the PWM signal is 10-bit, where a duty cycle of 0% (0) is the
slowest and 100% (1023) the highest speed. The actual slowest speed is at a duty cycle of around 40%.
This value was determined by empirical testing with an observation at which duty cycle the motors start
moving (without load). Higher values are possible based on the actual weight of the vehicle.

Pynq-Z1 L298N Description

GND GND Ground

J3-IO39 ENA Motor Enable A

J3-IO38 IN1 Motor In 1

J3-IO37 IN2 Motor In 2

J3-IO36 IN3 Motor In 3

J3-IO35 IN4 Motor In 4

J3-IO34 ENB Motor Enable B

Table 2: Connections between Motor driver (L298N) and Pynq-Z1

6 Design of “Processing System” Subsystem
This sections describes the design of the software for the ARM-v9 CPU of the SoC. First thich reasons
for the chosen toolchain are described which is followed by descriptions for the implemented algorithms
(e.g. for tiling or the PID controller).

6.1 Toolchain

written by Felix Müller

Page 20 of 50

For the processing of the inference results and data transmission to the base station on the PS several
operating systems and toolchains were considered:

• Toolchain: Xilinx Vitis

– OS: Standalone

– OS: FreeRTOS

– OS: PetaLinux

• Toolchain: GCC

– OS: PynqLinux (Ubuntu 18.04, the default OS shipped with the board)

6.1.1 Xilinx Vitis

This toolchain is called a unified platform by Xilinx and was launched in 2019 [18]. It combines several
previously separate tools into one. The important bit of this platform is their embedded software inte-
grated software environment based on the Eclipse IDE called Software Platform, which contains several
useful tools and conveniences, such as an debugger or syntax highlighting. There are also some additions
tailored for embedded development, such as a serial monitor. Projects are split into platform and appli-
cation projects. The platform contains the underlying operating system, information about the hardware
on the PL (e.g. address mappings of peripherals on a AXI4-bus) and optionally a bitstream for the PL.
The application is based on the platform and contains the actual running application [19]. This tight
integration with the hardware design has the advantage that several operations are done automatically.
This includes the automatic generation of header files for the addresses of peripherals on the AXI4-bus
or direct compatibility with included libraries (e.g. for a lightweight TCP/IP stack or FAT32-filesystem
support for SD cards).

Depending on the selected operating system for the platform there are 3 common options to put the
application on the board:

• JTAG (programmed over USB)

• Quad-SPI flash memory (programmed over USB)

• Boot Image (copied to a micro SD card which must be put in the slot on the board)

The first option (JTAG) is the fastest to execute but volatile (will be lost after power-cycle), whereas
the last option requires the most manual work because the boot image has to be copied manually. The
flash memory option survives power-cycles and can be programmed over USB but is limited to 16MB of
memory [4].

Standalone

In this mode of operation the application runs almost bare-metal as there is only a very thin abstraction
layer to the actual hardware. Therefore this approach would result in the most control and best utilization
of processing power. Typically leaving out an operating system would require extra work to implement
the functions that are normally provided by an OS but luckily almost all these functions can be replaced
by low-level libraries provided by Xilinx that are included in a default Vitis installation.

FreeRTOS

This is a small real-time operating system for microcontrollers and therefore very lightweight. The biggest
advantage over the standalone mode would be the included methods to deal with several threads and
the synchronization between them (e.g. with semaphores). Additionally it provides schedulers to queue
jobs based on prepared tasks [7].

Page 21 of 50

Petalinux

PetaLinux is a SDK to create a Linux distribution that is customized for a particular hardware setup on
embedded systems utilizing FPGAs for their programmable logic [13].

6.1.2 GCC

The GNU Compiler Collection is, as the name suggests, a collection of compilers for several programming
languages (including C and C++), which is not nearly as full-featured as the Vitis toolchain (whre the
compiler is just a small part in chain) but is far more portable and independent from Xilinx products
because of this. For this reason it is possible to target almost any operating system, including the official
Pynq distribution, even if it is not targeting specific hardware or event embedded systems [8].

PynqLinux (Ubuntu 18.04)

This Linux distribution is based on Ubuntu 18.04 and part of the Pynq ecosystem labeled Python Produc-
tivity by Xilinx because it provides interfaces to allow an easy entry into embedded design and specifically
systems consisting of a a processor and a programmable logic. This is achieved by utilizing the program-
ming language together with Jupyter notebooks for interactive programming and rapid prototyping. Still,
the heart of this distribution is a fully featured Linux kernel with special kernel drivers for the included
hardware of the supported boards (e.g. DMA) [14]. Because it is a complete kernel with many included
drivers, it is also possible to make use of a USB WiFi adapter to remotely update and debug the vehicle
while it is untethered. The disadvantage against a lightweight kernel is the higher power consumption,
amplified by the additional running processes (e.g. for the webserver of the Jupyter notebook).

6.1.3 Selection

The GCC toolchain on PynqLinux was chosen, because it allowed the project members to work remotely
and provides a complete network and USB stack which made the integration of peripherals such as
a webcam or a WiFi dongle trivial. Furthermore a disadvantage of all options belonging to the Vitis
platform is a requirement for special hardware to work remotely.

6.2 Programming Language

The main consideration for the programming language of the application running on the PS was speed to
reduce the bottleneck compared to the hardware accelerated components of the system. The requirements
for the software are simple enough to put all the functionality in one monolithic application, therefore it
was decided that a single language should suffice for the final application. The natural approach would
have been to use Python because this is the way that was intended by Xilinx and Digilent for the Pynq
platform. This however was not viable because Python as a interpreted language is way to slow for
realtime image processing on an 650 Mhz ARM chip. Thus we decided to stay as close to the hardware
as possible and used C/C++ for the PS application.

6.3 Vehicle Configuration

written by Niklas Krekel

Vehicle configuration parameters are specified in the file “vehicle.conf”, where the available parameters are
also documented. This file is loaded through the simple library included in dotenv.h. While commented
and empty lines are ignored, lines that have a key-value-pair in the form key=value are loaded as envi-
ronment variables for the application. The value of a known key can be retrieved by std::getenv("key"),
and is returned as string. In order to interpret an environment variable as a different data type, the
wrapper functions env::getenv_int, env::getenv_uint32 and env::getenv_double are provided. Further
annotations are provided as comments in the configuration file. In the following sections all relevant
parameters will be referenced and explained.

Page 22 of 50

6.4 Positioning With Tiling

written by Pablo Navarro

The classifier infers an image containing 32 × 32 × 3 values at a time, given by network architecture
and denoted as tres,w × tres,h × nchannel in the following. This resolution is sufficient for classifying
which prominent object is present in an image. For targeting an object it is necessary to determine
its presence and position in the frame. Therefore, the image is divided into several overlapping tiles of
different dimensions which are then being scaled to a final size of tres,w × tres,h pixel. This size can
be modified by parameters RESIZED_TILE_W and RESIZED_TILE_H e.g. if a different classifier is used.
Two methods for generating tiles are being provided. Setting parameter TILING_FN to value 0 selects
the method described in subsubsection 6.4.2. Choosing the value 1 selects the method described in
subsubsection 6.4.3. Furthermore, all values fed into the neural network must be of 8-bit fixed point
arithmetic. Therefore a conversion from 8-bit unsigned integer, as provided by the frame-grabber, to
fixed point is required for all pixels and all color channels. A look up table of size 28 = 256 and type
8-bit unsigned integer is precomputed at initialization time and stored in memory to save expensive
computation time at each loop.

6.4.1 Tile and Frame Specification

A given frame of width fw and height fh containing nchannel color channels is specified by parameters
INITIAL_RESOLUTION_WIDTH, INITIAL_RESOLUTION_HEIGHT and N_CHANNELS respectively. Each pixel
is therefore represented by nchannel bytes, e.g. 3 bytes for RGB888 as requested by the neural network
used in this project. Gray-scale images can be processes by setting this parameter to value 1. For frames
in RGB565 color mode nchannel = 2 can be specified so one pixel is represented by 2 bytes. The frame
is divided into overlapping tiles of different tile classes which are specified by parameter TILE_SPEC
containing four parameters for each of ntclass tile classes. Each tile class j is characterized by a tile
width tj,w, tile height tj,h, relative horizontal stride tj,swr and relative vertical stride tj,shr. Absolute
stride values are given by equation 17, rounding to the next smallest integer. Index j is limited to range
0 ≤ j < ntclass in the following equations.

tj,swa = btj,swr · tj,wc
tj,sha = btj,shr · tj,hc

(17)

The number of tiles for tile class j in horizontal and in vertical direction nj,w and nj,h is then given by
equation 18. The total number of tiles for tile class j is denoted by nj .

nj,w =

⌊
fw − tj,w
tj,swa

+ 1

⌋
nj,h =

⌊
fh − tj,h
tj,sha

+ 1

⌋
nj = nj,w · nj,h

(18)

The total number of tiles n is given by equation 19.

n =

ntclass−1∑
j=0

nj (19)

Page 23 of 50

Tile classes can specify tiles with arbitrary width and height. Both dimensions are clipped to frame size
fw and fh before processing tiles. Furthermore all tiles must be scaled to a final size of tres,w × tres,h
pixel to be classified by the neural network. Therefore scaling factors tj,sx and tj,sy are being computed
at initialization time according to equation 20.

tj,sx =
tj,w
tres,w

tj,sy =
tj,h
tres,h

(20)

All tiles are being appended to a buffer of type 8-bit unsigned integer in memory which then is passed to
the classifier. The order of pixels is row-major while each pixel is represented as nchannel channel values
next to each other. The size of the buffer nbuffer to be allocated for the given neural network is computed
in equation 21.

nbuffer = tres,w · tres,h · nchannel · n = 3072 · n, [nbuffer] = byte (21)

Figure 7 shows an example of the tiling process with a frame of size fw×fh and nchannel = 3 (RGB888).
ntclass = 2 tile classes are given by specification as sketched in the upper left and bottom right corner of
the frame. Some characteristic tile values discussed in the preceding equations are being shown alongside.
As a result n0 and n1 tiles are generated for tile classes j = 0 and j = 1 respectively. A total amount of
n = n0 + n1 = 46 tiles is being extracted and indexed by value i, 0 ≤ i < n. All tiles must be rescaled
to size 32 × 32 and are then mapped to a buffer, sorted by index i. Buffer size is nbuffer = 138 kB as
specified by equation 21.

rescale to

 byte

 kB

Buffer:

Figure 7: Tiling process example

Page 24 of 50

Some considerations are made to avoid redundant computation on each loop and to maximise the frame
rate. At initialisation time and when frame dimensions are modified (e.g. by a command from BS) all
specified tile parameters are being verified and all relevant values are being computed as described above.
The tile buffer can then be allocated once with a static size nbuffer and will be overwritten at each loop.
Additionally the coordinates of tile centres are being precomputed using the complete frame as reference
and can be then looked up by using tile index i. This enables target object location as described in
subsubsection 6.4.4.

All tiles will be saved to file “tiles.csv” for each frame by setting parameter TILING_DEBUG=1. This
enables exporting and inspecting all created tiles on a separate machine. The first two values in each
line specify tile dimensions tj,w, tj,h when saved before resizing and resized tile dimensions tres,w, tres,h
when saved after resizing tiles. The third value specifies number of channels (bytes per pixel) nchannel.
The following values of each line contain pixel values in row-major order.

6.4.2 Tile Generation by ROI

The frame is provided as an OpenCV matrix. OpenCV is a framework for computer vision aimed at
real-time applications. The matrix type allows efficient cropping to a ROI (region of interest) submatrix.
A new matrix header with specified boundaries is created in an O(1) operation and no data is copied
[12]. Firstly the provided frame is duplicated so data send to BS will be kept unchanged. All values are
converted to precomputed fixed point values by cv::Mat::forEach method. Corresponding tiles are
generated by iterating through each tile class j, all tiles in vertical direction nj,h and all tiles in horizontal
direction nj,w so all combinations are processed. ROI width rj,w, height rj,h and upper left coordinate
rjn,x, rjm,y is given by equation 22. Single tiles are then being rescaled to size tres,w × tres,h pixel and
appended to a buffer in memory.

rj,w = tj,w

rj,h = tj,h

rjn,x = n · tj,swa, 0 ≤ n < nj,w

rjm,y = m · tj,sha, 0 ≤ m < nj,h

(22)

OpenCV provides several interpolation methods for scaling, which can be specified by parameter
INTERPOLATION_FN [12]. In the following cv::INTER_AREA, cv::INTER_LINEAR, cv::INTER_NEAREST
and cv::INTER_LANCZOS4 are being compared. Different tile dimensions t0,w, t0,h are given for a frame
of size fw = 640, fh = 480, nchannel = 3 and ntclass = 1 tile classes with t0,swr = t0,shr = 0.25. As a
result a varying amount of tiles n is being generated, which can be calculated by equation 19. Note that
only downscaling is being considered in this project as the requested size of 32× 32 pixel is tiny in terms
of frame size. Table 3 shows computation time per tile dt

n for all four interpolation methods.

t0,w × t0,h n
Time per tile dt

n (approximation) in µs

INTER_AREA INTER_LINEAR INTER_NEAREST INTER_LANCZOS4

64× 64 999 60 60 44 906

96× 96 391 345 243 64 964

100× 100 352 1142 247 65 1105

128× 128 204 525 270 93 1324

150× 150 126 2095 312 119 1479

160× 160 117 700 316 132 1516

Table 3: Comparison of OpenCV interpolation methods computation time

Page 25 of 50

Figure 8 shows a graphical representation of the results. While lanczos interpolation (INTER_LANCZOS4)
can produce smooth and high quality results it adds a significant amount of computation time per
tile and is therefore discarded for further considerations. Bilinear (INTER_LINEAR) and nearest neighbor
(INTER_NEAREST) interpolation provide a fast and efficient solution for rescaling tiles. Both methods seem
to scale linearly by the tile size and by a small factor. The method INTER_AREA provides especially fast
computation when tile dimensions tj,w, tj,h are an integer multiple of destination dimension tres,w, tres,h,
i.e. when scaling factors are integer tj,sx, tj,sy ∈ N. Otherwise the computation time will scale strongly
in terms of tile size.

Figure 8: Comparison of OpenCV interpolation methods computation time (graphical)

In the following the quality of different interpolation methods is being investigated. Figure 9 shows tiles for
an example frame. The upper tiles are being specified with dimensions t0,w = t0,h = 100 and then rescaled
to tres,w = tres,h = 32, while the lower tiles are being specified with dimensions t1,w = t1,h = 160 and
rescaled similarly. Note that latter are being scaled by an integer factor t1,sx = t1,sy = 160

32 = 5 and thus
will be efficiently computed by INTER_AREA as shown in Figure 8. Quality differences are little perceptible
for small tile dimensions while the quality for bigger tile dimensions differs strongly between bilinear or
nearest neighbor interpolation and INTER_AREA. Latter interpolation method uses pixel area relation and
gives “moire’-free results” as described in OpenCV documentation [12]. It is therefore useful to develop an
algorithm to choose the optimal interpolation method based on tile class specification tj,w, tj,h, satisfying
the tradeoff between computation time and tile quality. Small tiles can then be rescaled by bilinear or
nearest neighbor interpolation to save computation time while INTER_AREA interpolation method should
be preferred for increasing tile dimensions, which should be chosen as an integer multiple of tres,w, tres,h,
so a high accuracy result can be achieved. Some tests could already verify that overall confidence values
are grater when INTER_AREA interpolation method is used.

In some cases a tile dimension cannot be chosen to be an integer multiple of tres,w, tres,h but a high
quality rescaling is required. Especially for cases when the vehicle gets close to the target object a tile
class with large tile dimensions must be specified for the target object to fit inside. The second method
for tile generation, described in subsubsection 6.4.3, can be used as an alternative in such cases, filling
the gap between efficient computation and flexible selection of tile specifications.

Page 26 of 50

Figure 9: OpenCV interpolation methods quality for t0,w, t0,h = 100 (top) and t1,w, t1,h = 160 (bottom)

6.4.3 Tile Generation by Mapping

Tile generation by mapping uses a different approach then extracting submatrices from a given frame
with dimensions fw, fh. At initialization time a matrix of size fw × fh × 4 is precomputed, which can
be interpreted as a grid holding tile indices i for different areas of the frame. In a main loop all fw · fh
pixels are processed once using OpenCV cv::Mat::forEach method. A given pixel with coordinates
px, py belongs to all tiles in the range [ij,min,x, ij,max,x] ∧ [ij,min,y, ij,max,y] according to equation 23.
This four values are looked up inside the precomputed matrix for a given tile class j. This tile indices
are then being transformed to absolute indices inside the tile buffer and a pixel is copied to associated
positions. Furthermore a weight matrix for rescaling using bilinear interpolation is being constructed,

Page 27 of 50

holding weights for positions in the grid. A pixel value is then only partially copied to the tile buffer.

ij,min,x(px) =

 0, for px < tj,w⌊
px−tj,w
tj,swa

+ 1
⌋
, else


ij,max,x(px) =

⌊
min(nj,w,

px
tj,swa

+ 1)

⌋

ij,min,y(py) =

 0, for py < tj,h⌊
py−tj,h
tj,sha

+ 1
⌋
, else


ij,max,y(py) =

⌊
min(nj,h,

py
tj,sha

+ 1)

⌋

(23)

Figure 10 shows an example of the simple case when ntclass = 1 tile class is specified with relative strides
t0,swr = t0,shr = 0.5. The number of tiles in horizontal and in vertical direction is n0,w = 4, n0,h = 3
and the total number of tiles is n = 12. Each cell in the shown grid is mapped to tiles with indices i
specified inside the corresponding cell. Pixel coordinates must be converted into indices inside the tile
buffer. Additionally each pixel must be weighted by a specific value wi,xy to enable scaling.

 byte

 kB

Figure 10: Example on tile generation by mapping

Page 28 of 50

6.4.4 Target Object Location

For estimating the location of the target object inside a given frame a moving average and two threshold
values are being used as described in the following. This process is used as a simple and efficient way to
encode the classifier outputs into a single x- and y-axis-position.

The classifier returns confidence values for each tile and each object class. Therefore, when processing
n tiles by a classifier with nclasses object classes (nclasses = 42 for German Traffic Sign Recognition
Benchmark), n·nclasses confidence values are returned. For targeting a specific object only the confidence
value cij for tile i and object class j, given by parameter SIGN_ID, is of interest. A tile is considered valid
only if the confidence value cij is greater then the value given by parameter CONFIDENCE_THRESHOLD.
The coordinate tix, tiy, describing the center of tile i inside the complete frame, is looked up from a
precomputed array and added to a moving average max,may. Finally, the number of valid tiles nvalid
must be greater than parameter CORRECT_CLASS_THRESHOLD for the complete frame to contain a valid
target, i.e. for pvalid to be 1. The position of the target object is then given by px = max

nvalid
, py =

may
nvalid

.
Value px is normalized to range [−1, 1] and fed into a PID controller as system-output ∆xnorm as
described in subsubsection 6.5.4. Equations 24, 25 and 26 describe this process in mathematical terms.

nvalid =

n−1∑
i=0

{
0, for cij ≤ CONFIDENCE_THRESHOLD

1, else

}
,where j = SIGN_ID (24)

px =
max
nvalid

=
1

nvalid

n−1∑
i=0

{
0, for cij ≤ CONFIDENCE_THRESHOLD

tix, else

}
,where j = SIGN_ID

(25)

pvalid =

{
0, for nvalid ≤ CORRECT_CLASS_THRESHOLD

1, else
(26)

6.5 Vehicle Control

written by Pablo Navarro

The vehicle is controlled in two different modes. The first mode, called Search, is activated whenever no
target object is located in the scene. The vehicle then turns by its longitudinal axis until a target object
is located. Once an object is targeted the second mode, called Approach, is activated. The steering
direction is then computed by subtracting the actual position of the object inside the scene from the
center coordinates of the image stream at each time-step. A PID controller then estimates the optimal
angular velocity ϕ̇ of the vehicle for approaching the target object. This output, called control-signal, is
then translated into rotational speed for all four motors. As the motors are controlled by a PWM signal,
the rotational speed is translated to PWM duty cycle. The relation between all four motor speeds is
calculated in such way, that the absolute velocity v of the vehicle is always equal to a constant parameter
v0.

Page 29 of 50

6.5.1 Vehicle Dynamics

The vehicle is driven by two DC motors at each size. Both left sided motors as well as both right
sided motors are controlled together, so vehicle left velocity vl(t) and vehicle right velocity vr(t) can be
adjusted. The resulting vehicle absolute velocity v(t) is given by the average of both side velocities and
can be computed by equation 27.

v(t) =
vl(t) + vr(t)

2
(27)

Rotational speed of the motors nl(t), nr(t) is related to vehicle velocities vl(t), vr(t) by equation 28
as both left motors drive at same rotational speed and both right motors do similarly. Tire radius
TIRES_RADIUS is denoted as r in m and must be measured for the given vehicle. Note that a maximal
coefficient of ground-friction µ = 1 is assumed.

vl(t) = 2π · r · nl(t)
vr(t) = 2π · r · nr(t)

(28)

The vehicle direction can be described in terms of an angle ϕ. Its angular velocity along the z-axis is given
by ϕ̇(t) and can be calculated by equation 29. The length TIRES_DISTANCE, denoted as a, describes the
distance from tire to vehicle symmetry line in m and is also being measured in advance.

ϕ̇(t) =
vl(t)− vr(t)

a
(29)

The vehicle angular velocity ϕ̇(t) can also be expressed by vehicle rotational speed nV (t) by equation 30.

ϕ̇(t) = 2πnV (t) (30)

Figure 11 illustrates the described parameters and vehicle dynamics.

Page 30 of 50

Figure 11: Vehicle dynamics (left: vehicle top view; right: vehicle tire front view)

6.5.2 Control Modes

The vehicle switches between two modes, Search and Approach, as mentioned in subsection 6.5. As
described in subsubsection 5.2.2 the four motors are controlled by L298N motor H-Bridge by six pins
which must be set accordingly. To prevent frequent mode switches and therefore instability in vehicle
control two parameters can be adjusted. The transition from Approach-Mode to Search-Mode only
occurs after MIN_SUCCESSIVE_FALSE successive frames are not satisfying the validity condition specified
in subsubsection 6.4.4. Anyways, as soon as a frame is considered invalid, the vehicle instantly halts
while still remaining in Approach-Mode until the above condition is fulfilled. Similarly, the transition
from Search-Mode to Approach-Mode is performed after MIN_SUCCESSIVE_TRUE successive frames are
satisfying the validity condition specified in subsubsection 6.4.4.

Search-Mode

In Search-Mode the vehicle turns by its z-axis in intervals of length VEHICLE_TURN_TIME ms and pauses
of length VEHICLE_TURN_SLEEP ms in between. This ensures that frames are grabbed while the vehicle
is in rest and therefore tiles with best possible quality are fed into the classifier. The initial turn direction
is defined by parameter VEHICLE_TURN_DIRECTION_INITIAL and is either clockwise (0) or counter-
clockwise (1). Afterwards, at every transition from Approach-Mode to Search-Mode, a turn direction,
denoted as turn_dir, is determined by the last known position of the target which can be either on
the left or right frame half as described by equation 31. In some cases this procedure can lead to faster
recovery of the target. ∆xnorm describes the horizontal deviation from vehicle direction to target object

Page 31 of 50

direction and is normalized in the range −1 ≤ ∆xnorm ≤ 1.

turn_dir =

{
0, for ∆xnorm ≥ 0

1, for ∆xnorm < 0

}
, evaluated when transitioning Approach-Mode→ Search-Mode

(31)

While turning, the absolute velocity should be v = 0, i.e. the vehicle should not move away from
its position. Therefore both left and right sided motors are set to opposite directions using pins IN1,
IN2, IN3 and IN4. Pin ENA controls motor speed of left sided motors and pin ENB of right sided
motors respectively and are set depending on parameter VEHICLE_TURN_SPEED, denoted as nV Search,
which defines the constant rotational speed of the vehicle when turning in 1

s . As both pins require
a PWM signal its specific PWM duty cycle dSearch in µs must be computed. Using equations 28,
29 and 30 and setting nV (t) = nV Search follows equation 32. Note that both left and right side
motors rotational speed nl(t), nr(t) are equal magnitude but opposite direction and get substituted by
nlSearch = −nrSearch = nSearch.

2πnV Search =
2π · r · (nlSearch − nrSearch)

a
=

4π · r · nSearch
a

(32)

Translating motor rotational speed nl(t), nr(t) in 1
s to PWM signal dl(t), dr(t) in µs requires maximum

PWM duty cyle PWM_MAX, denoted as dmax in µs. Additionally, the maximal rotational speed of motors
MOTORS_ROT_SPEED_MAX, denoted as nmax in 1

s must be measured for the given vehicle or derived from
technical information about the motors. Equation (33) shows the relationship between both variables.
Note that, for simplicity, the correlation between PWM duty cycle (and therefore motor supply voltage)
and motor rotational speed is assumed to be linear.

dl(t) =

∣∣∣∣ dmaxnmax
· nl(t)

∣∣∣∣
dr(t) =

∣∣∣∣ dmaxnmax
· nr(t)

∣∣∣∣ (33)

The PWM duty cycle dSearch, which is equal for both sides, can then be computed by equation (34)
using equations (32) and (33).

dSearch = dlSearch = drSearch =

∣∣∣∣ dmaxnmax
· nSearch

∣∣∣∣ =

∣∣∣∣ dmaxnmax
· a

2r
· nV Search

∣∣∣∣ (34)

The constant rotational speed nV Search of the vehicle when turning is constrained by a maximum value
nV Search,max by setting nSearch = nmax in equation 32 as given in equation 35.

nV Search,max =
2r · nmax

a
(35)

Approach-Mode

In Approach-Mode both sides of the vehicle move forward, so L298N pins IN1 and IN3 are set to low (0)
and pins IN2 and IN4 are set to high (1). Therefore the condition vl(t), vr(t) ≥ 0 holds. Vehicle angular
velocity ϕ̇(t) is given as the control-signal in rad

s . Vehicle absolute constant velocity v0 is given as a
parameter VEHICLE_ABS_VEL in m

s . It is constrained to a maximum value v0,max given by equation 36

Page 32 of 50

which can be achieved even if a maximum vehicle angular velocity is required, i.e. when either vl(t) = 0
and vr(t) is maximum or vr(t) = 0 and vl(t) is maximum.

v0,max = v(t)|vl(t)=0
vr(t)=2πrnmax

= v(t)|vl(t)=2πrnmax

vr(t)=0

= πrnmax (36)

To translate vehicle angular velocity ϕ̇(t) into specific PWM duty cycles dl(t), dr(t) for addressing both
left and both right sided motors the equation 37 is derived from equations 27 and 29.

v(t) = v0 =
vl(t) + vr(t)

2
=
aϕ̇(t) + 2vr(t)

2

⇒ vr(t) = v0 −
a

2
ϕ̇(t)

(37)

From equations 28 and 37 then equation 38 can be derived.

nr(t) =
vr(t)

2πr
=

1

2πr
· (v0 −

a

2
ϕ̇(t)) (38)

Finally, the PWM duty cycle dr(t) is given by equation 39 according to equations 33 and 38. The same
process is repeated for PWM duty cycle dl(t).

dl(t) =

∣∣∣∣ dmaxnmax
· 1

2πr
· (v0 +

a

2
· ϕ̇(t))

∣∣∣∣
dr(t) =

∣∣∣∣ dmaxnmax
· 1

2πr
· (v0 −

a

2
· ϕ̇(t))

∣∣∣∣ (39)

Figure 12 illustrates the described parameters and vehicle dynamics in both modes.

Table 4 gives an overview of how all six L298N pins are mapped during both modes.

L298N-Pin Search-Mode Approach-Mode

IN1 ¬turn_dir 0

IN2 turn_dir 1

IN3 turn_dir 0

IN4 ¬turn_dir 1

ENA dSearch (PWM) dl(t) (PWM)

ENB dSearch (PWM) dr(t) (PWM)

Table 4: L298N pinout for Search- and Approach-Mode

Page 33 of 50

arrow:

Figure 12: Vehicle dynamics in Search-Mode (left) and in Approach-Mode (right)

6.5.3 Control Parameters

Table 5 summarizes all relevant parameters discussed in subsubsection 6.5.2. Constant parameters have
to be measured for a specific vehicle or specified while variable parameters can be easily adapted and
tuned. Column Value shows the parameters used in this project.

Page 34 of 50

Parameter Name in Code Unit Range Value

a TIRES_DISTANCE m R+ 0.065

r TIRES_RADIUS m R+ 0.0325

nmax MOTORS_ROT_SPEED_MAX 1
s R+ 4

dmax PWM_MAX µs N 1023

turn_dir VEHICLE_TURN_DIRECTION_INITIAL - {0, 1} 0

nV Search VEHICLE_TURN_SPEED 1
s [0, 2r·nmax

a] 1.3

- VEHICLE_TURN_TIME ms N 250

- VEHICLE_TURN_SLEEP ms N 4000

v0 VEHICLE_ABS_VEL m
s [0, πrnmax] 0.2

Table 5: Constant parameters (top) and variable parameters (bottom)

6.5.4 Control Loop

The control loop is applied only in Approach mode and consists of multiple blocks chained together,
where a setpoint w is given as input and a system output ∆xnorm is controlled and returned to the input
as a feedback signal. This is referred to as a closed-loop- or feedback-control in control theory. The error
signal e is calculated as e = w − ∆xnorm and is passed to a controller, which then outputs a control
signal ϕ̇. An actuator computes the actuator signal ϕR which is influenced by disturbances z from the
surrounding environment. Finally a system input ϕ is passed into the process which then results in the
returned system output. [11]

The control target is to approximate the system output to the chosen setpoint, that is ∆xnorm ≈ w.
∆xnorm describes the horizontal deviation from vehicle direction to target object direction and is normal-
ized in the range −1 ≤ ∆xnorm ≤ 1. Therefore the setpoint w, defined by parameter PID_SETPOINT, is
chosen to be 0 as the target object should be approached in a straight line.

The motor control block inside the actuator translates an angular velocity ϕ̇ to PWM duty cycle dl, dr
(see (39)) for left and right motors, which are then transmitted to the motor H-Bridge L298N described in
subsection 5.2. The vehicle then is rotated resulting in a change of its absolute angle ϕR. Influences by the
surrounding environment like uneven ground or unequal behaviour of motors could then affect this angle.
The resulting angle ϕ is perceived by the vehicle camera, Processing System (PS) and Programmable
Logic (PL) and is then translated into a deviation to the target object. Figure 13 illustrates the control
loop.

Figure 13: Control loop

PID Controller Block

A proportional–integral–derivative (PID) controller is chosen as controller block with input e and output
ϕ̇. The time domain characterisation is given by equation 40. Note that the term is being simplified as

Page 35 of 50

the setpoint w is constant throughout the entire process.

ϕ̇(t) = KP · e(t) +KI ·
t∫

0

e(τ)dτ +KD
de(t)

dt

= KP · e(t) +KI ·
t∫

0

e(τ)dτ +KD
d∆xnorm(t)

dt

(40)

The values KP , KI and KD characterise how the response to an input reflects on the output and can be
set by parameters PID_KP, PID_KI and PID_KD respectively. The PID evaluation function is not called in
fixed time-steps, as it depends on the competition of preceding tasks like tiling and inference. This can
possibly lead to inconsistent behaviour, especially due to peaks in the derivative term. Therefore a sample
time ts is specified by parameter PID_SAMPLE_TIME, ensuring that a fixed time interval passes between
PID evaluation loops. Therefore parameters KI and KD can be multiplied or divided by ts respectively
once at initialisation time, which saves two operations per loop. The parameter values chosen in this
project are summarised in Table 6. The benefit of integral and derivative gain values KD and KI is
limited by maximum FPS and vehicle velocity achieved in this process. Therefore only the proportional
factor KP is being considered to keep the process simple.

Parameter Value

KP 2.2

KI 0

KD 0

ts 50ms

w 0

Table 6: PID controller parameter values

The control signal or vehicle angular velocity ϕ̇(t) in rad
s is constrained to a minimum and maximum

value to fulfil the requirement of constant absolute velocity v0 as described in subsubsection 6.5.2. By
setting dl(t) = dmax and dr(t) = dmax in equation 39 the values ϕ̇max and ϕ̇min can be computed as
described in equation 41.

ϕ̇max =
2

a
· (2πrnmax − v0)

ϕ̇min = −2

a
· (2πrnmax − v0) = −ϕ̇max

(41)

7 Design of “Base Station” Subsystem
The “Base Station” subsystem is the only subsystem at another physical location than the vehicle. It’s
purpose is to give insights and control over the vehicle while in operation but is not required for the
vehicle to function. Instead it is intended as a debugging tool.

7.1 Toolchain

written by Felix Müller

Page 36 of 50

To be consistent with the PS, the same toolchain (C++ compiled with GCC) is used. Additonally a
graphics library is required to show a preview of the image seen by vehicle and other debug information
(e.g. the predicted position). For this purpose SDL2 was selected, which is a library that provides low
level access to different system components for input and output (e.g. keyboard, mouse or audio) but
most importantly for this project are the interfaces to access the graphics hardware of the host system
[15].

7.2 Components

The software is split into three important components. The “Network” component communicates with
the vehicle. The “Video” component displays information to the user. The “Input” component takes user
input and forwards it to the vehicle over the network.

written by Felix Müller

7.2.1 Network

For the communication between PS and BS the User Datagram Protocol (UDP) is used, which is
accomplished by simple sockets in the standard library of the GCC. The packet size must be decided
beforehand and set to the same value as in the PS application. This size has to be selected based on
the reliability of the used network. Whereas packages of around 1000 Bytes or even jumbo frames above
1500 Bytes might work in a wired Ethernet environment this is certainly not the case in a wireless network
(e.g. WiFi or radio transmission via a satellite). For now a size of 512 Bytes was selected, because an
analysis of transmission reliability is not the focus of this project. This aspect could be explored in the
future.

One received datagram contains one so-called frame of data which is identified by an identifier as the first
byte. Currently there are two types of frames sent from the vehicle to the base station: “Control” and
“(Image) Data”. The control frame contains the state of the vehicle. This is accomplished by packing
several bytes of information into one frame as described in Table C.1. The image frames contain a video
feed that is split into several frames which are identified by a 24-bit ID at the beginning of the frame. The
format of the remaining data is specified by the selected color mode (e.g. RGB565 is 2 bytes per pixel
in the format of 5-bit red, 6-bit green and 5-bit blue). Double-buffering is used to minimize flickering
or artifacts in the preview. This method uses two buffers where one will be filled with new incoming
data and the other one will be displayed to the user by the video component. Once an entire frame was
received, the two buffers get swapped, therefore the image does not change while it is being displayed.

It is also possible to send data frames to the vehicle. Five such frames were implemented to set the
resolution (Table C.2), set the color mode (Table C.3), enable/disable the video feed (Table C.4), change
the displayed tile (Table C.5) or control the motors (Table C.6).

7.2.2 Video

The visible buffer that was received over the network gets converted into a texture and send to an
appropriate device (e.g. a graphics card) which displays it to the user. Other debug information is
converted into human readable strings and then further converted into textures that are overlayed onto
the image preview. To preserve resources, these text textures are only regenerated if the data has changed.

7.2.3 Input

The provided event loop by SDL2 is used to process keyboard input by users. All inputs are forwarded
to the vehicle according to the pressed key. The key functions are described in Table 7.

Page 37 of 50

Key Functionality

R Cycle through image resolutions

V Toggle video transmission

M Toggle mode (manual or autonomous driving)

Space Emergency stop (activates manual mode and disables all motors)

Up or W Move the vehicle forward (only in manual mode)

Down or S Move the vehicle backward (only in manual mode)

Left or A Steer the vehicle left (only in manual mode)

Right or D Steer the vehicle right (only in manual mode)

Table 7: Base Station Shortcuts

8 Evaluation
This section firstly shows how the complete system was able to accomplish different scenarios in multiple
integration tests which is then backed up by numeric measurements showing the improvements in com-
putation time, compared to a reference Python implementation, that made it possible to carry out the
accomplished scenarios.

8.1 Integration Tests

written by Raffael Kaehn

After the implementation had concluded, the vehicle was subjected to a final evaluation under real-world
conditions. All tests were conducted in the open air on a public parking space to set a realistic scene
without disrupting road traffic. A decommissioned stop sign was utilised as a prop to be recognised by
the neural network. After the vehicle had been set on the ground, there was no human intervention
involved – all movements were initiated solely by the on-board control system.
The evaluation was split into three parts to showcase and test different aspects of the vehicle controller
with each one explained in short hereafter:

• Scenario 1: Approaching a static target – For this test, the vehicle is positioned roughly five
metres away from the stop sign, facing away from it at an angle of at least 45 degrees. At first,
the vehicle is not able to see the target and remains in search mode, where it slowly turns around
until a target is found. At that point, the vehicle transitions into approach mode where it moves
forward in the direction of the target until it is no longer in the frame. During the whole test, the
stop sign remains stationary.

• Scenario 2: Tracking a dynamic target – The vehicle is again placed roughly five metres away
from the stop sign, but this time directly facing it. When the target is found and the vehicle
moving, the sign is carried away from its initial position, but still remains visible in the vehicles
camera frame. Here, the control systems ability to adjust the steering angle depending on the
targets position relative to the vehicle can be observed: If the calculated center of the object is on
the right side of the camera frames center, the vehicle moves to the right, if it is on the left, the
vehicle moves left, with the magnitude respectively proportional to the distance from the target to
the center line.

• Scenario 3: Recovering from a target loss – After the vehicle is placed on the ground, the stop
sign is moved into the vehicles camera frame. Subsequent to its recognition, the vehicle moves in
the correct direction to follow it. From there, the stop sign temporarily moves out the vehicles field
of view, causing it to correctly transition back into search mode. Here it can be seen that this time,

Page 38 of 50

since the target is last seen on the left side before it is lost, the vehicle turns counterclockwise. As
soon as it becomes visible again, the vehicle resumes its approach of the target.

The integration test has shown that the vehicle has the ability to fulfil all specified tasks of basic au-
tonomous control, as it is capable of searching for and approaching a stationary target, following a target
as it is moving, and rediscovering a target after it has been lost.

8.2 Measurements

written by Pablo Navarro

In the following the computation time for tiling and inference of a frame with size fw = 640, fh = 480
and nchannel = 3 between a given python example by BNN-PYNQ project and the solution developed in
this project is being compared. Tile specification is given by equation 42.

tres,w = tres,h = 32

ntclass = 2

t0,w = t0,h = 64, t0,swr = t0,shr = 0.25

t1,w = t1,h = 96, t1,swr = t1,shr = 0.5

⇒ n = n0 + n1 = 37 · 27 + 12 · 9 = 1107

(42)

The process to be measured consists of creating and resizing tiles, transferring tiles to PL, inferring on
PL and transferring confidence values back to PS. The first measurement is made using the algorithms
discussed in subsubsection 6.4.2 and interpolation method cv::INTER_AREA. The second measurement
is made by executing a python script inside a Jupyter Notebook environment. The results are shown in
Table 8. Measurement times are broken down into three categories as detailed as possible for the given
implementations.

Time in ms

New Implementation Python Example

Tiling 9.62 282.24

Inference 364.64 364.64

Data Transfer + Rescaling 128.27 3123.09

Total 502.53 3769.97

Table 8: Comparison of computing time between new implementation and BNN-PYNQ example

8.3 Analysis

written by Felix Müller

The new implementation turned out to be over over seven times faster than the original Python imple-
mentation and is able to process two images per second instead of one image every four seconds. This
can be attributed to multiple factors. First off the new implementation is compiled specifically for the
ARM-v9 architecture and therefore much faster in comparison to an implementation in an interpreted
language (e.g. Python) when executing comparable algorithms. Secondly a combination of optimisation
techniques were used that are more efficient than the algorithms used in the Python implementation to
severely reduce the computation time of the image tiling and scaling. Finally the data preparation and
transfer of the image data to the neural network on the FPGA was improved. Any improvement to the
total processing time was achieved by these adaptions because exactly the same implementation for the
inference on the FPGA was used which results in the same times for the inference.

Page 39 of 50

9 Conclusion & Outlook
written by Felix Müller, Pablo Navarro, Niklas Krekel

This project established a basic hardware and software platform to research artificial neural networks on
FPGAs. A realisation of an example use case demonstrated that the multiple subsystems (including the
neural network) can work together to perform basic scenarios.

As the measurements have shown, this project already achieves a throughput of multiple frames per
second at a rate of several hundreds of tiles per frame. But this does not nearly makes use of the full
potential of the BNN-PYNQ which has shown to be able to process around twelve thousand 32x32 images
per second. This measurement was taken on a FPGA that has around four times the resources of the
chip used in this project yet even when taking a rough estimate of four times less throughput (around
3k images/second) into account, there still appears to be much more potential with this network. Some
areas of improvement could be optimizations to the tiling of images, the interfacing with the PYNQ-
BNN between PS and PL or adjustments to the PYNQ-BNN. Adjustments could be made in the form
of reducing the size of the network by lowering the amount of classes and training a network for a more
realistic object to track. The object used in this project was sufficient for some first tests but a more
plastic object would allow evaluations closer to a real scenario.

The hardware platform has shown to be good enough for basic manoeuvring of the vehicle. Still the
precision of the motor control turned out be restricting, especially in cramped areas. Therefore more
work on the hardware is required to unleash the full potential of the software. Additionally the attachment
of the camera needs to be improved because the current mount relays any vibrations from the drive train
to the camera thus severely distorting the captured image.

Following is a list of additional ideas for possible improvements:

• Onboard compass to reliably determine vehicle rotation or swap motors for stepper motors to
reliably get the current (relative) rotation angle.

• Optimize workflow by pulling the latest Git commit on boot, compile it and run it. With this it
would be possible to use the vehicle completely headless. Of course there needs to be a fail safe
for pulling when there is no WiFi connection. A RGB led on the board could be used to display
the current state (e.g. yellow: pulling, blue: building, red: build failed, green: running). The build
log should be captured to a log file in case of a failed build. With this workflow project members
would be able to develop locally with a mere text editor and git. To deploy to a vehicle, the local
state just needs to be pushed and the vehicle restarted. This could be extended further by using a
git branch for each vehicle or triggering an update from the base station.

• Forward console output to base station to have debug information in one place, removing the need
for a SSH connection.

• Increase the motor supply voltage by adding more cells in series. This would possibly grant more
movement accuracy.

• Switch between vehicle modes more intelligently and add new modes to get more distinct control
over the vehicle.

• Implement dynamic tiling, where at first, big tiles are used to find objects and smaller tiles are only
created to get more precise location information. Tile sizes and locations can be carried over to
the next frame, as it is likely to find the object again in the vicinity.

• Update PynqLinux and all libraries, this can aid system stability and maybe even speed.

• Look for a faster way to transfer data to the PL, right now copyBufferHostToAccel takes some
time.

Page 40 of 50

References
[1] Applications of monolithic bridge drivers. AN240/1288. SGS-Thomson Microelectronics. 1995.

[2] AXI Reference Guide. UG761. Xilinx. 2011.

[3] Matthieu Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1. 2016. arXiv: 1602.02830 [cs.LG].

[4] Digilent Pynq-Z1 Product Page. url: https://store.digilentinc.com/pynq-z1-python-
productivity-for-zynq-7000-arm-fpga-soc/ (visited on 12/23/2020).

[5] Elegoo Smart Robot Car Kit V3.0.2019.10.12.zip. https://www.elegoo.com/pages/arduino-
kits - support - files or https : / / drive . google . com / file / d / 1nSlkYJ7oCfMkG1p -
KDfVHdLQt3B4Nmo5/view?usp=sharing. (Visited on 03/30/2021).

[6] FINN - Fast, Scalable Quantized Neural Network Inference on FPGAs (GitHub). url: https:
//github.com/Xilinx/finn (visited on 03/30/2021).

[7] FreeRTOS. url: https://freertos.org/ (visited on 12/23/2020).

[8] GCC. url: https://gcc.gnu.org/ (visited on 12/23/2020).

[9] Colin von Huth et al. Bericht zum Projekt ‚Neuronale Netze auf strahlungstoleranten FPGAs
für die Raumfahrt‘. German. Bremen, Feb. 14, 2020. 88 pp. url: http://homepages.hs-
bremen.de/~jbredereke/de/forschung/veroeffentlichungen/neuronale-netze-fpgas-
projekt-1920.html (visited on 02/15/2021).

[10] Jasminka Matevska et al. “CRUISE – Evaluating Enhanced Crew Autonomy Concepts On-Board
the ISS as a Preparation for Future Long Term Crewed Space Missions”. In: Proc. of DASIA 2014
Data Systems in Aerospace (Warsaw, Poland, June 3–5, 2014). Ed. by L. Ouwehand. ESA Special
Publication ESA SP-725. id.56. Aug. 2014. isbn: 978-92-9221-289-6. url: https://ui.adsabs.
harvard.edu/link_gateway/2014ESASP.725E..56M/ADS_PDF (visited on 02/15/2021).

[11] Gerd-J. Menken.Mechatronik 1 - Teil III. Regelung dynamischer Systeme. Vorlesungsskript, Hochschule
Bremen, SoSe 2020, 2020.

[12] OpenCV documentation. url: https://docs.opencv.org/3.4/da/d54/group__imgproc_
_transform.html#ga5bb5a1fea74ea38e1a5445ca803ff121 (visited on 03/29/2021).

[13] PetaLinux Tools Documentation (UG1144). Xilinx, 2020.

[14] Pynq. url: http://www.pynq.io/ (visited on 12/23/2020).

[15] SDL2 - About SDL. url: https://www.libsdl.org/index.php (visited on 01/05/2021).

[16] J. Stallkamp et al. “Man vs. computer: Benchmarking machine learning algorithms for traffic sign
recognition”. In: Neural Networks 32 (2012). Selected Papers from IJCNN 2011, pp. 323–332.
issn: 0893-6080. doi: https://doi.org/10.1016/j.neunet.2012.02.016. url: https:
//www.sciencedirect.com/science/article/pii/S0893608012000457.

[17] Yaman Umuroglu et al. “FINN: A Framework for Fast, Scalable Binarized Neural Network Inference”.
In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. FPGA ’17. ACM, 2017, pp. 65–74.

[18] Xilinx Vitis announcement. url: https://www.xilinx.com/news/press/2019/xilinx-
announces-vitis--a-unified-software-platform-unlocking-a-new-design-experience-
for-all-developers.html (visited on 12/23/2020).

[19] Xilinx Vitis Software Platform. url: https://www.xilinx.com/products/design-tools/
vitis/vitis-platform.html (visited on 12/23/2020).

Page 41 of 50

https://arxiv.org/abs/1602.02830
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/
https://www.elegoo.com/pages/arduino-kits-support-files
https://www.elegoo.com/pages/arduino-kits-support-files
https://drive.google.com/file/d/1nSlkYJ7oCfMkG1p-KDfVHdLQt3B4Nmo5/view?usp=sharing
https://drive.google.com/file/d/1nSlkYJ7oCfMkG1p-KDfVHdLQt3B4Nmo5/view?usp=sharing
https://github.com/Xilinx/finn
https://github.com/Xilinx/finn
https://freertos.org/
https://gcc.gnu.org/
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/neuronale-netze-fpgas-projekt-1920.html
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/neuronale-netze-fpgas-projekt-1920.html
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/neuronale-netze-fpgas-projekt-1920.html
https://ui.adsabs.harvard.edu/link_gateway/2014ESASP.725E..56M/ADS_PDF
https://ui.adsabs.harvard.edu/link_gateway/2014ESASP.725E..56M/ADS_PDF
https://docs.opencv.org/3.4/da/d54/group__imgproc__transform.html#ga5bb5a1fea74ea38e1a5445ca803ff121
https://docs.opencv.org/3.4/da/d54/group__imgproc__transform.html#ga5bb5a1fea74ea38e1a5445ca803ff121
http://www.pynq.io/
https://www.libsdl.org/index.php
https://doi.org/https://doi.org/10.1016/j.neunet.2012.02.016
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://www.xilinx.com/news/press/2019/xilinx-announces-vitis--a-unified-software-platform-unlocking-a-new-design-experience-for-all-developers.html
https://www.xilinx.com/news/press/2019/xilinx-announces-vitis--a-unified-software-platform-unlocking-a-new-design-experience-for-all-developers.html
https://www.xilinx.com/news/press/2019/xilinx-announces-vitis--a-unified-software-platform-unlocking-a-new-design-experience-for-all-developers.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

A Illustrations

Figure 14: Block design of the “Programmable Logic” subsystem

Page 42 of 50

B Hardware Registers
Legend:

• W: Writable Value

• R: Readable Value

Register B.1: Motor Control Registers (0x43C20000)

Re
se
rve
d

-

31 4

IN
4

W

3

IN
3

W

2

IN
2

W

1

IN
1

W

0

Offset 00h

Re
se
rve
d

-

31 10

Sp
ee
d
Le
ft

W

9 0

Offset 04h

Re
se
rve
d

-

31 10

Sp
ee
d
Ri
gh
t

W

9 0

Offset 08h

Re
se
rve
d

-

31 0

Offset 0Ch

Register B.2: BNN-Pynq Control Signals Register (0x43C00000)

Re
se
rve
d

-

31 8

Au
to
Re
sta
rt

R/W

7

Re
se
rve
d

-

6 4

Re
ad
y

R

3

Idl
e

R

2

Do
ne

R

1

St
art

R/W

0

Register B.3: BNN-Pynq Input Data Address Register (0x43C00010)

Ba
se
Ad
dr
es
s

R/W

31 0

Page 43 of 50

Register B.4: BNN-Pynq Output Data Address Register (0x43C0001C)

Ba
se
Ad
dr
es
s

R/W

31 0

Register B.5: BNN-Pynq Number of Repetitions Register (0x43C0005C)

Im
ag
e A

mo
un
t

R/W

31 0

Page 44 of 50

C Network Dataframes

C.1 Vehicle to Base Station

Dataframe C.1: Control Dataframe (Vehicle to Base Station)

Inf
err
ed
Y
Po
sit
ion

(H
igh

By
te)

23

Inf
err
ed
Y
Po
sit
ion

(L
ow

By
te)

22

Inf
err
ed
X
Po
sit
ion

(H
igh

By
te)

21

Inf
err
ed
X
Po
sit
ion

(L
ow

By
te)

20

Inf
err
ed
Cl
as
s

19

Fr
am
e P

ro
ce
ssi
ng
Ti
me

(H
igh

By
te)

18

Fr
am
e P

ro
ce
ssi
ng
Ti
me

(B
yt
e 2
)

17

Fr
am
e P

ro
ce
ssi
ng
Ti
me

(B
yt
e 1
)

16

Fr
am
e P

ro
ce
ssi
ng
Ti
me

(L
ow

By
te)

15

M
ot
or
Ri
gh
t S
pe
ed
(H
igh

By
te)

14

M
ot
or
Ri
gh
t S
pe
ed
(L
ow

By
te)

13

M
ot
or
Le
ft
Sp
ee
d
(H
igh

By
te)

12

M
ot
or
Le
ft
Sp
ee
d
(L
ow

By
te)

11

M
ot
or
Di
rec
tio
n

10

M
ot
or
Co
nt
ro
l M

od
e

9

Tr
an
sm
itt
ed
Ti
le

8

Ti
le
Co
un
t

7

Vi
de
o
Fe
ed
En
ab
le

6

Co
lor
M
od
e

5

Im
ag
e H

eig
ht
(H
igh

By
te)

4

Im
ag
e H

eig
ht
(L
ow

By
te)

3

Im
ag
e W

idt
h
(H
igh

By
te)

2

Im
ag
e W

idt
h
(L
ow

By
te)

1

Fr
am
e I
D

0

0

C.2 Base Station to Vehicle

Dataframe C.2: Set Resolution Dataframe (Base Station to Vehicle)

He
igh
t (
Hi
gh
By
te)

4

He
igh
t (
Lo
w
By
te)

3

W
idt
h
(H
igh

By
te)

2

W
idt
h
(L
ow

By
te)

1

Fr
am
e I
D

0

0

Dataframe C.3: Set Color Mode Dataframe (Base Station to Vehicle)

Co
lor
M
od
e

1

Fr
am
e I
D

1

0

Dataframe C.4: Set Video Feed Enable Dataframe (Base Station to Vehicle)

Vi
de
o
Fe
ed
En
ab
le

1

Fr
am
e I
D

2

0

Page 45 of 50

Dataframe C.5: Set Displayed Tile Dataframe (Base Station to Vehicle)

Ti
le
Ind
ex
(H
igh

By
te)

2

Ti
le
Ind
ex
(L
ow

By
te)

1

Fr
am
e I
D

3

0

Dataframe C.6: Set Motors Dataframe (Base Station to Vehicle)

Sp
ee
d
Ri
gh
t (
Hi
gh
By
te)

6

Sp
ee
d
Ri
gh
t (
Lo
w
By
te)

5

Sp
ee
d
Le
ft
(H
igh

By
te)

4

Sp
ed
Le
ft
(L
ow

By
te)

3

Di
rec
tio
n

2

M
an
ua
l M

od
e

1

Fr
am
e I
D

4

0

Page 46 of 50

D Building and Running the Subystems
written by Felix Müller

You always need to install the PS because this is the software that controls the vehicle. The PL project
only needs to be touched if you want to make changes to the logic on the FPGA. The compiled Bitstream
is included in the PS repository and will be loaded onto the FPGA on startup of the PS. If you want
to debug the state of the PS while its running (beyond the console output) you have to install the BS
project.

D.1 Make

Both the PS and BS projects use Makefiles for their build scripts, which detects changes in the source
files and only executes compilation when files have changed.

D.1.1 Targets

Make allows the definition of multiple targets that have some output file(s) and can depend on other
targets. The syntax run a target ist the following:

make [Target]

The PS and BS projects contain (at least) the following targets:

• all: Creates all binaries to run the application

• run: Runs the application (depends on all, therefore if source files changed, the application will be
automatically recompiled before startup)

• clean: Deletes all generated files

Both projects place their generated files in a directory called build in the same directory as the Makefile.

D.2 PS

Prerequisites:

• Pynq-Z1 board with PynqLinux installed

• Access to the repositories or a snapshot

All build dependencies are provided with PynqLinux.

Installation:

1. Clone the repository or use a snapshot

2. Clone the submodules (which are all in public repositories maintained by Xilinx):

git submodule update –init –recursive

3. Build the application:

make all

4. Run the application:

make run

Page 47 of 50

D.3 PL

Prerequisites:

• Vivado (at least version 2020.2)

Installation:

1. Clone the repository or use a snapshot

2. Open src/vehicle.xpr in Vivado

• When using Linux, the following env-variables should be set to avoid localization errors:

– LC_NUMERIC=en_US.UTF-8

– LC_ALL=en_US.UTF-8

3. Run the target Generate Bitstream in the left sidebar

4. Wait for the task to complete

5. Copy the generated files to the PS project:

• PL/src/vehicle.runs/impl_1/vehicle_wrapper.bit −→ PS/hw/vehicle.bit

• PL/src/vehicle.gen/sources_1/bd/vehicle/hw_handoff/vehicle.hwh−→ PS/hw/vehicle.hwh

6. Update PS/hw/peripherals.h if you changed the address of some AXI peripheral

• An address list can be found in the address editor in Vivado

• The address of the BNN (BlackboxJam) cannot be changed because it is embedded in the
library by Xilinx

D.4 BS

The base station application was developed for Linux. Some changes may be required to run it on another
OS.

Dependencies:

• make

• gcc

• sdl2

Installation:

1. Clone the repository or use a snapshot

2. Build the application:

make all

3. Run the application:

make run

Page 48 of 50

E Vehicle Network Configuration
The Pynq-Z1 boards have an Ethernet connector and should be connected to a USB WiFi adapter when
mounted on a model vehicle. A connection through Ethernet offers more stability, especially when using
the included Samba share to access and edit files. WiFi on the other hand should be used when the
vehicle is driving.

E.1 Ethernet

The Ethernet interface is configured with DHCP by default, it therefore should be assigned an IPv4
address automatically. In a fairly standard network configuration, connecting to the board via SSH can
be done by using the host name ’pynq’:

ssh xilinx@pynq

If this does not work, the host name should be replaced with the IPv4 address. This can be found using
any of the following methods:

• Running arp -a

• Using nmap command

• Looking up connected clients on the standard gateway/router

E.2 WiFi

Since the Pynq-Z1 is preferably run headless, command line tools ifup, ifdown and wpa_supplicant can
be used. To confirm that the WiFi adapter has been detected, any of these commands can be run:

iwconfig
ifconfig -a

This should show the interface wlan0. To add a new WiFi network, its SSID needs to be known:

sudo iwlist wlan0 scan

With the SSID and passphrase, this command will return the pre-shared key (psk) for the network:

wpa_passphrase <SSID> <PASSPHRASE>

Copy the string after psk and open the interface setup file:

sudo nano /etc/network/interfaces.d/wlan0

This file should look like the following, where <SSID> and <PSK> are replaced with the concrete values
determined before. Including ’auto wlan0’ ensures that the system will try to reconnect to the network
when booting.

auto wlan0
i f a c e wlan0 i n e t dhcp
wpa−s s i d <SSID>
wpa−psk <PSK>

The shortcuts Ctrl+S and Ctrl+X can be used to save and exit the file. After restarting the network
service by running

sudo /etc/init.d/networking restart

the interface wlan0 should be in state UP and have an IPv4 address assigned, both can be checked by
running ifconfig wlan0. The LEDs on the WiFi adapter should also show activity.

Page 49 of 50

F Working Together Remotely
One Pynq-Z1 board was made accessible through a VPN, to enable the project members to work on-
chip remotely. While this already simplified software development, debugging was made possible by also
publishing the base station on the local network. A Raspberry Pi 4 was used as host for the VPN Docker
container and the base station.

These steps were followed to achieve a suitable network setup:

1. Acquire Dynamic DNS service (domain pointing to public IP)

2. Configure edge router for dynamic DNS (updates DDNS with its public IP)

3. Set up VPN Docker container on a host in same network as Pynq-Z1 (guides can be found online)

4. Forward the ports from the router to Docker host and from there to container

5. Install the base station as documented in subsection D.4, configure vehicle with the host’s IP

6. Configure ssh server on base station host to allow X11 forwarding

Project members can, with the right credentials, connect to the VPN. It should then be possible to access
the Pynq-Z1 and base station through SSH the same way as directly from within the local network. The
Pynq-Z1’s Samba share is now also available for easy file access, as well as graphical output and keyboard
input for the base station. It is necessary to use one of the command line options ’-X’ or ’-Y’ when
opening an SSH connection to the base station host, to accept X11 forwarding.

Page 50 of 50

	Introduction
	Research Context: Fast Digital Circuits for Artificial Intelligence in Space
	Original Research Goals of This Project
	The Selected Application: an Autonomous Vehicle

	Fundamentals
	Basic Principles of Neural Networks
	The Single-Layer Perceptron
	Multi-Layer Architectures
	Optimization

	Binarized Neural Networks
	Motivation
	Differences in the Inference Process
	Differences in the Optimization Process

	FINN-Framework
	Digilent Pynq-Z1
	AXI4

	Breakdown Into Subsystems
	Subsystems
	Protocols
	Between Processing System and Programmable Logic
	Between Processing System and Base Station
	Between Programmable Logic and Hardware
	Between Processing System and Hardware

	Design of "Hardware" Subsystem
	Vehicle Platform
	Camera
	Additional Peripherals
	Combined Vehicle

	Design of "Programmable Logic" Subsystem
	Neural Network (BNN-PYNQ)
	AXI4-Lite
	AXI4

	Motor Controller
	AXI4-Lite Interface
	GPIO Interface

	Design of "Processing System" Subsystem
	Toolchain
	Xilinx Vitis
	GCC
	Selection

	Programming Language
	Vehicle Configuration
	Positioning With Tiling
	Tile and Frame Specification
	Tile Generation by ROI
	Tile Generation by Mapping
	Target Object Location

	Vehicle Control
	Vehicle Dynamics
	Control Modes
	Control Parameters
	Control Loop

	Design of "Base Station" Subsystem
	Toolchain
	Components
	Network
	Video
	Input

	Evaluation
	Integration Tests
	Measurements
	Analysis

	Conclusion & Outlook
	References
	Illustrations
	Hardware Registers
	Network Dataframes
	Vehicle to Base Station
	Base Station to Vehicle

	Building and Running the Subystems
	Make
	Targets

	PS
	PL
	BS

	Vehicle Network Configuration
	Ethernet
	WiFi

	Working Together Remotely

