
Enabling Neural Network Edge Computing on a
Small Robot Vehicle

Jan Bredereke

Abstract We report on experiences with optimizations that enable neural network
edge computing on a small robot vehicle, which serves as a proxy for an autonomous
robotic space craft. We realize a visual object recognition task using a neural network
on a field-programmable gate array (FPGA) with data processing resources as limited
as those of an FPGA suitable for space. We use a quantized neural network nicely
matching the properties of an FPGA. The restrictions of the small FPGA require us
to sequentialize the processing partially. We employ input frame tiling for this. It
allows us to keep the entire neural network on-chip. Furthermore, we split up the
visual object recognition task into two stages, using two separate neural networks.
The first stage identifies the region of interest approximately, using large and thus
few tiles. The second stage looks closely at the single tile containing the region of
interest; thus being not that time critical.

1 Introduction

This introduction first motivates our work, then describes our sample application,
and finally introduces our solution approach.

1.1 Motivation

Neural networks are often used in data centers with powerful and power consuming
special hardware. A current research question is how to also make full use of neural
networks at the “edge” of the Cloud. That is, close to the sensors and the actors,

Jan Bredereke
City University of Applied Sciences Bremen · Flughafenallee 10 · 28199 Bremen · Germany ·
e-mail: jan.bredereke@hs-bremen.de

1

This version of the contribution has been accepted for publication, after peer review, but is not the Version of Record and 
does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: 
http://dx.doi.org/10.1007/978-3-031-29104-3_4. Use of this Accepted Version is subject to the publisher’s Accepted 
Manuscript terms of use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms



2 Jan Bredereke

or even autonomously from data and power supply connections. The CPU of a
microcontroller has too scarce data processing resources for this. An FPGA can offer
more data processing resources, both in absolute numbers and in relation to its power
consumption. An FPGA is very well suited for a highly parallel structure such as
that of a neural network. In practice, however, many optimization tasks need to be
solved before full use of the potential of the FPGA can be made.

Our particular motivation comes from space craft engineering. On-board com-
puters provide especially scarce data processing resources. Access to the ground
segment is usually available intermittently only. Due to space radiation, current off-
the-shelf processors would fail soon. Therefore, special processors are used. Their
chips feature structural widths of at least 65 nm instead of the denser 10 nm or less
currently in use elsewhere. These special processors compromise on data processing
resources to achieve sufficent robustness. An extremely small number of computers
of this kind is made. Therefore, they usually are not made with application specific
integrated circuits (ASICs), but with programmable standard hardware (FPGAs).
Radiation-hard versions of some FPGAs are available, which have suitably larger
structural widths.

There is increasing demand for on-board computing resources. Examples are on-
board image processing, e.g. for autonomous rovers on other celestial bodies, or for
constellations of nano-satellites, each with narrow bandwidth to the ground segment.

The Internet of Things (IoT) is an area with similar challenges. Cost restrictions
lead to scarce data processing resources. Many of these devices are battery powered.
This further restricts the data processing resources. Thus, challenges and solutions
in space craft engineering might be applicable to the IoT, too, and vice versa.

1.2 The Sample Application

We employ an autonomous model car as a prac-
tical robot vehicle, serving as a proxy for an
autonomous robotic space craft. The vehicle is
equipped with a camera and a system-on-chip
(SoC) Xilinx Zynq-7020. The SoC features an
Arm CPU and, in particular, an FPGA Artix-7.
The data processing resources of the Artix-7
are quite similar to those of an FPGA suitable
for space [HSB+20, Chap. 2.1.3]. The SoC is
integrated into a PYNQ-Z1 board. In Figure 1,
the board can be spotted easily due to its pink
colour.
The task of the vehicle is to visually recognize a
person in view, to follow it when it moves, and
to obey to driving commands given by simple
gestures. It shall do all of this autonomously
and in real-time.

Fig. 1 The sample application vehicle
with a camera and an FPGA board.
(photo: Felix Müller)



Enabling Neural Network Edge Computing on a Small Robot Vehicle 3

1.3 Approach for Optimizations

We investigate optimizations that enable neural network edge computing on this
kind of small robot vehicle. Many ideas are conceivable. Up to now, we tried out the
following:

• Use a pre-trained neural network for inference only on the vehicle.
Rationale: inference is an order of magnitude cheaper than training.

• Use hardware acceleration for the neural network by an FPGA, with the FPGA
choice obeying the restrictions of the application area.
Rationale: a neural network is inherently concurrent, and an FPGA offers mas-
sively parallel execution.

• Reduce hardware resources for the neural network by employing a quantized
neural network.
Rationale: a quantized neural network demands far less bits per node, and recent
research showed that the resulting loss of precision per node can be more than
compensated by a few more nodes [Blo+18; Umu+17].

• Reduce hardware resources for the neural network by splitting the input image
into tiles and process them sequentially.
Rationale: if the task doesn’t fit the chip area available at all, making an area/speed
trade-off by partially sequentializing the task can help.

• Reduce the number of tiles required, and thus the number of iterations, by sepa-
rating locating a person in a frame and determining the person’s gesture.
Rationale: A small object of interest requires many tiles for finding it and eval-
uating its properties in detail. A two-staged approach can cope with larger, less
detailed and thus less numerous tiles for finding. The subsequent gesture recogni-
tion needs a single tile only. Our restricted-hardware setting requires the sequen-
tialization by tiling; the expensive part here is finding the “region of interest”, not
evaluating it.

We report on the details and on our experiences in the remainder of this paper.

2 Related Work

The CHREC Space Processor (CSP) [Man+18] implements a neural network for
visual object recognition on a Xilinx SoC Zynq-7020, like we do. It flew as an
experiment on the International Space Station (ISS) in 2017. However, it did not
use the FPGA of the SoC for acceleration. The CASPR experiment including the
successor SHREC Space Processor (SSP) [Rof+20] has just recently begun on Jan.
11, 2022 onboard the ISS.

The FINN framework [Umu+17] supports implementing a binarized neural net-
work (BNN) on an FPGA. The FINN-R framework [Blo+18] is an improved version.
It also supports quantization beyond binary. Both papers report extensively on the
efficiency gains of quantizing a neural network.



4 Jan Bredereke

BinaryEye [JEB18] uses the FINN framework to classify a video stream of
handwritten digits at 20.000 frames per second (fps). Each frame is limited to fixed
32 × 32 pixels, in black/white. BinaryEye uses a Kintex-7 FPGA, more powerful
than the Artix-7 used by us.

The DAC-SDC low power object detection challenge for UAV applications
[Xu+21] found that an FPGA is substantially more energy-efficient than an em-
bedded GPU, with almost the same accuracy, even though with a lower frame rate.
The FPGA hardware used by all teams was a PYNQ-Z1 board with a SoC Zynq-7020,
the same as ours.

Conclusion: these papers provide valuable work towards our goal, but each
achieves partial aspects only.

3 Selection of Suitable Frameworks

Many frameworks exist which promise to support implementing a neural network
on an FPGA. When we started our work, we did a little survey on those available
at that time. [HSB+20, Chap. 4] Making use of them turned out to be more diffi-
cult than expected. In particular, scarce documentation was a problem with several
frameworks. Other frameworks did not support our hardware platform, the PYNQ-
Z1 board. Two tools did generate code, but it would have required substantial further
work to actually make the code run on our board. In this first round, we therefore
didn’t use any of these frameworks.

Instead, in this first round we manually accelerated the execution of a very simple
neural network in a Python environment. The PYNQ-Z1 board provides a user
friendly Python development environment. However, execution there is far too slow
for our purposes. We manually implemented the neural network on the FPGA and
devised a tool chain that feeds data from the Python environment into the FPGA and
returns the results back to the Python environment. We used Keras/Tensorflow in
the IDE PyCharm to train our neural network, written in Python, in order to obtain
the weight parameters for our implementation of the network. We did this offline
on standard PC hardware. We then made the inference work on the less powerful
PYNQ-Z1 board. We provided the input to our neural network using Python. The
PYNQ provides the concept of so-called Python overlays. We wrote the custom
driver for such a Python overlay in order to tie the Python code to the AXI bus
connecting the CPU and the FPGA of the SoC. We also wrote an IP core in VHDL,
consisting of the components of our neural network, suitably connected, interfacing
to the AXI bus. We configured the network with the weight parameters from the
training. A comparison with a network in Python showed an acceleration of several
orders of magnitude. The implementation effort for this first FPGA solution was
substantial; however, implementing another network could reuse most of the code
except the actual wiring of the network. [HSB+20]



Enabling Neural Network Edge Computing on a Small Robot Vehicle 5

In the second round, we re-evaluated some frameworks. We decided to use the
FINN framework [Umu+17], since its documentation had improved considerably at
that time. [MKB+21]

We eventually stayed with the FINN framework during our further work, which
we describe in the next chapter.

4 Prototype Implementations

This section reports how we implemented the optimizations discussed in Sect. 1.3,
and what we learned from this. We applied the optimizations step by step in several
rounds. Each subsection reports on one of these iterations.

4.1 Tracking a Moving Traffic Sign

In this round, we approached a non-trivial visual object recognition task, and we
added our robot vehicle (shown in Fig. 1) as a sample application. [MKB+21] We
used the FINN framework [Umu+17] to implement the neural network for visual
object recognition on the FPGA automatically. The results are fed back to the CPU of
the SoC, where we implemented a simple tracking algorithm in C/C++: the vehicle
turns and follows the object recognized. For simplicity, at this point we used one
of the pre-trained neural networks that come with the FINN framework. Therefore,
the vehicle tracks and follows a particular traffic sign, of which we moved around a
decommissioned life-size example in the open air on a public parking space.

The resulting system was indeed able to successfully perform this driving task in
real-time.

The FPGA hardware is by far too restricted to accomodate a neural network that
can process an entire video frame. Therefore, we split each frame into several tiles
and fed them into the FPGA sequentially. We used tiles of different size classes,
in order to transform both small and large regions with an object into tile-filling
images. For simplicity in this round, we implemented the tiling using the OpenCV
framework on the CPU. Each frame of size 640×480 pixels was cut into 999 regions
of 64× 64 pixels and 108 regions of 96× 96 pixels. These regions were transformed
into 1107 tiles of size 32 × 32 pixels. The resulting frame rate was 2 fps.

Only the actual inference executed on the FPGA, anything else still executed on
the CPU of the SoC. So there was ample room for further optimizations.

4.2 Tracking a Moving Person Making Gestures

In our third round, we trained the neural network ourselves, which allowed for a
more realistic tracking task. [ACB+21] The task of the vehicle now was to track a



6 Jan Bredereke

person; additionally, this person can command the vehicle by simple arm gestures
(“start”/“stop”/“no specific pose”, compare Fig. 2). We produced a set of 300 images
of persons showing these gestures, and we added 120 random images without a person
from a Google web search.

Fig. 2 Arm gestures for commanding the vehicle, at a resolution of 32 × 32 pixels.

We re-evaluated our choice of a board with a SoC of similar processing capabilities
as a radiation-hard FPGA suitable for space. We stuck with our PYNQ-Z1 board,
but the Avnet Ultra96-V2 board turned out to be a slightly more powerful alternative
still in range. [ACB+21, Chap 3.3]

We re-evaluated our choice of a framework. Many candidates dropped out. This
was because they aim at larger FPGAs, have not published their code, provide
documentation too scarce, or are not supported anymore. As a result, we stuck with
the FINN framework. [ACB+21, Chap. 5]

We considered several publicly available neural network models for visual object
recognition. We chose the CNV_1W1A model, because the FINN framework pro-
vides additional support for this model. [ACB+21, Chap. 4.5] The model is written
using Brevitas, a PyTorch library. Brevitas can export the trained model in the ONNX
exchange format, which can be fed directly into the FINN compiler. More details on
our tool chain are in our technical report [ACB+21].

We had a first look at alternatives to tiling an image. A Region Proposal Network
(RPN) is an interesting idea. A tentative experiment showed the need for additional
effort not feasible for us at that time. We also considered a Single Shot Detector
(SSD) briefly. [ACB+21, Chap. 6] In hindsight, this would have been feasible only
when adding off-chip memory to the FPGA. When the task can be solved on this
FPGA by 1000 iterations with a network for a 32 × 32 pixel image, then no network
for a full size frame 640 × 480 pixel image can fit on this FPGA to do the task in
a single shot. Using the FPGA together with off-chip memory while applying some
other kind of iteration might help to realize an SSD network. We did not investigate
this further, though. The bandwidth of the off-chip memory link would certainly be
a relevant parameter.

Our implementation used 70 % of the block RAM and 46 % of the look-up-tables
of the FPGA. Unfortunately, our implementation had some bugs then, found only
after this round, which prevented a successful evaluation of the detection accuracy
in a real-life test.



Enabling Neural Network Edge Computing on a Small Robot Vehicle 7

4.3 Tiling in Hardware

The thesis of Müller [Mül21], one of our collaborators, improves the efficiency of
the tiling by realizing it on the FPGA, too, instead of in software on the CPU of the
SoC. Müller’s solution allows for a highly flexible configuration of the tiling and
scaling at run-time. It uses the PYNQ-Z1 board, too.

Müller integrated his tiling implementation with the implemenation of an ex-
ample CNV neural network from the FINN framework, which was trained with the
CIFAR10 data set. All variants of the integrated solution were small enough to fit into
the FPGA and its block RAM. Tests proved that the system successfully recognizes
differently scaled and differently placed images from the CIFAR10 data set in an
input video stream. The hardware solution on the 100 MHz FGPA was up to 4 times
faster than a comparable solution in software on the 650 MHz CPU. And Müller
identified several aspects of his hardware solution that would allow for further opti-
mization. The development of the solution was more complex than one in software;
a large share of this was due to the voluminous AXI4 interface specification.

The integration of this hardware tiling into our robot vehicle system needs yet to
be done.

4.4 Tracking a Moving Person and Only Then Looking for Gestures

In a further round, we separated locating a person in a frame and determining the
person’s gesture, in order to reduce the number of tiles required; furthermore, we
improved the quality of our implementation of the robot vehicle system. [ACB+22]
We re-trained the CNV neural network from the previous round, now for detecting
a person. For this, we used suitable parts of the huge standard COCO data set. We
implemented the inference on the same PYNQ-Z1 board as before. Our implemen-
tation used 70 % of the block RAM and 44 % of the look-up-tables of the FPGA;
this should easily allow to add the above tiling in hardware.

When using 24 tiles only, the system achieved 10–12 fps; it could follow a person
in up to 2 m distance. When using 396 tiles, the system could follow a person in nearly
6 m distance; however, the frame rate dropped to 2–3 fps. Significant imperfections
of the mechanical drive train let the car lose its target more often in the latter case.
An overall optimum appeared to be at 138 tiles and 6 fps.

Because of time restrictions, we could not add the recognition of gestures anymore.
For a start, it could be implemented in software, since it is used only once per frame.
Thus, it is not that time critical.

5 Summary and Outlook

We reported on experiences with optimizations that enable neural network edge
computing on a small robot vehicle.



8 Jan Bredereke

The basic approach worked well, doing the cheaper inference only on the vehicle,
and employing a field-programmable gate array (FPGA) with its massively parallel
resources for a neural network. Also, using a quantisized version of a neural network
matching the properties of the FPGA well. All of this was expected from recent
literature already.

Fitting a realistic visual recognition task into the resources of a small FPGA
suitable for space required an area/speed trade-off; that is, processing an input frame
in several iterations. We kept the neural network entirely on-chip and avoided the
potential memory bandwidth bottleneck of a solution that permanently loads parts of
a large neural network into the small FPGA. Instead, we sequentialized processing
the input frame by cutting it into several tiles. Tiling is a relatively cheap operation.
And Müller proved that tiling can be performed on the very same FPGA, too, thus
speeding it up further.

Since we had to sequentialize the processing partially anyway, we split up the
visual object recognition task into two stages, using two separate neural networks.
The first stage identifies the region of interest approximately, using large and thus
few tiles. The second stage looks closely at the single tile containing the region of
interest; thus being not that time critical.

A single-shot neural network approach would have required another way of se-
quentialization; and we suspect that it would have become difficult to avoid a memory
bandwidth bottleneck there. Of course, the advantage of our two-staged approach
partially hinges on the property of our application that there is only one region of
interest in a frame at a time.

Future work should integrate hardware tiling into our robot vehicle system. Fur-
thermore, it should investigate the advantages that a neural network brings which is
tailored more specific to the application.

References

[ACB+21] Philipp Altnickel, Tuncer Catalkaya, Jan Bredereke, et al. Gesten- und
Objekterkennung durch schwache FPGAs in autonomen Fahrzeugen
mittels neuronaler Netze. German. Tech. rep. City Univ. of Applied
Sciences Bremen, Germany, Sept. 1, 2021. 153 pp.

[ACB+22] Philipp Altnickel, Ferhat Cansu, Jan Bredereke, et al. Personenerken-
nung durch schwache FPGAs in autonomen Fahrzeugen mittels Neu-
ronaler Netze. German. Tech. rep. City Univ. of Applied Sciences
Bremen, Germany, Mar. 1, 2022. 57 pp.

[Blo+18] Michaela Blott et al. “FINN-R: An End-to-End Deep-Learning Frame-
work for Fast Exploration of Quantized Neural Networks”. In: ACM
Transactions on Reconfigurable Technology and Systems 11.3 (Dec.
2018). doi: 10.1145/3242897.

[HSB+20] Colin von Huth, Marvin Soldin, Jan Bredereke, et al. Bericht zum Pro-
jekt “Neuronale Netze auf strahlungstoleranten FPGAs für die Raum-



Enabling Neural Network Edge Computing on a Small Robot Vehicle 9

fahrt”. German. Tech. rep. City Univ. of Applied Sciences Bremen,
Germany, Feb. 14, 2020. 88 pp.

[JEB18] Petar Jokic, Stephane Emery, and Luca Benini. “BinaryEye: A 20 kfps
Streaming Camera System on FPGA with Real-Time On-Device Image
Recognition Using Binary Neural Networks”. In: 2018 IEEE 13th Int’l
Symp. on Industrial Embedded Systems (SIES). (Graz, Austria). June 6–
8, 2018. doi: 10.1109/SIES.2018.8442108.

[Man+18] Jacob Manning et al. “Machine-Learning Space Applications on
SmallSat Platforms with TensorFlow”. In: Proc. of AIAA/USU Con-
ference on Small Satellites (SmallSat). (Logan, UT, USA, Aug. 4–9,
2018). 2018.

[MKB+21] Felix Müller, Niklas Krekel, Jan Bredereke, et al. Applying Binarized
Neural Networks on FPGAs to an Autonomous Driving Problem. Tech.
rep. City Univ. of Applied Sciences Bremen, Germany, Mar. 31, 2021.
50 pp.

[Mül21] Felix Müller. “Dynamisches Tiling auf schwachen FPGAs zur Objekt-
erkennung mithilfe kleiner neuronaler Netze”. German. Bachelorthe-
sis. City Univ. of Applied Sciences Bremen, Germany, June 23, 2021.

[Rof+20] Seth Roffe et al. “CASPR: Autonomous Sensor Processing Experiment
for STP-H7”. In: Small Satellite Conf. 2020. 2020.

[Umu+17] Umuroglu et al. “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference”. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. (Mon-
terey, CA, USA). FPGA ’17. ACM, Feb. 22–24, 2017, pp. 65–74. doi:
10.1145/3020078.3021744.

[Xu+21] Xiaowei Xu et al. “DAC-SDC Low Power Object Detection Challenge
for UAV Applications”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 43.2 (Feb. 2021), pp. 392–403. doi: 10.1109/
TPAMI.2019.2932429.


