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Abstract

We present a survey of the current state of the reseach on time and space partitioning for space
avionics. The availability of ever more powerful computers allows to assign many control tasks to
a single computer easily, in principle. But in its naïve form, this would mean too much effort and
thus cost for demonstrating dependability. For aircraft, there is already an approach to solve this
problem, the Integrated Modular Avionics (IMA) architecture. For spacecraft, the basic problem is
similar. But in detail, the setting is different, though. This report compiles a survey and identifies
relevant research challenges. Based on some of them, we propose to design a multi-core processor
architecture that avoids fundamental problems of the current architectures with respect to time
partitioning, and that can be used in the space domain.
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Chapter 1
Introduction

We present a survey of the current state of the reseach on time and space partitioning for space
avionics. Avionics is the set of electronic systems, in particular computers, on board of an aircraft
or spacecraft. Such systems must be dependable. There are significantly different levels of
dependability, for example for the cabin electronics of an aircraft and for its autopilot. The higher
the level required, the higher the effort necessary for demonstrating dependability. The traditional
approach therefore provisions separate computer hardware for each control task. The effort for
demonstrating dependability then follows from the level targeted, for each task.

The availability of ever more powerful computers allows to assign many control tasks to a single
computer easily, in principle. This would have the advantage of saving considerable weight and
thus cost for the aircraft or spacecraft. But this idea, in its naïve form, would mean too much
effort and thus cost for demonstrating dependability. A level demanded by one of the tasks must
be applied to all of them.

For aircraft, there is an approach for this already. The Integrated Modular Avionics (IMA)
architecture (see Chap. 4 below) is a software and hardware platform which isolates software
programs from each other. The dependability needs to be demonstrated at the highest level only
once, for the platform. This concept is used in practice already for the aircraft Airbus A380,
Airbus A400M, and Boeing 787 Dreamliner.

For spacecraft, the basic problem is similar. We want to run several tasks on a single computer
(or a few computers) for cost reasons, with dependability requirements that are high, too. But
in detail, the setting is different, though. There is already some research on time and space
partitioning of control tasks in space craft. But there is not yet a concept proven in practice.

Further domains have similar problems and according solution approaches. In the automotive
domain, the AutoSAR initiative (automotive open system architecture) is related. We do not
survey it here since it is not as practice proven yet as IMA in the avionics domain, and since our
research resources are limited.

The aim of this work is to compile a survey and to identify relevant research challenges. We hope
to then pursue some of these research questions further. Our work here was conducted during a
(partial) sabbatical in winter term 2015/16 and during the following summer term 2016.

We thank the people at the Data Handling Avionics department of Airbus DS, Bremen, for
pointing us at this interesting research subject.
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Chapter 2
Systems with Mixed Dependability

In this chapter, we introduce to systems with mixed dependability. We briefly introduce to the
notions of dependability and of mixed dependability first. We then describe two mechanisms to
handle mixed dependability.

2.1 Dependability

The survey paper by Avižienis et. al. [Avi+04] provides definitions for dependability in the domains
of computing and communication systems. The original definition of dependability is the ability to
deliver service that can be justifiably trusted. This definition stresses the need for justification of
trust. The alternate definition that provides the criterion for deciding if the service is dependable
is: the dependability of a system is the ability to avoid service failures that are more frequent and
more severe than is acceptable.

Dependability is an integrating concept that encompasses the following attributes [Avi+04]:

availability: readiness for correct service.

reliability: continuity of correct service.

safety: absence of catastrophic consequences on the user(s) and the environment.

integrity: absence of improper system alterations.

maintainability: ability to undergo modifications and repairs.

2.2 Mixed Dependability

A system with mixed dependability is a system where components with different dependability
levels coexist on the same execution platform. Crespo et. al. [Cre+14] call this a “mixed criticality
system” (MCS): Increasing processing power makes it possible to integrate more and more
components on a single execution platform. However, if at least some of the components must
be dependable, adequate validation (and often certification) is necessary, such that validation
costs can become prohibitive for further integration. This trend can be observed in many different
domains. Examples are the aeronautical domain, the space domain, the automotive domain, and
industry automation.
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2.3 Handling Mixed Dependability

A general approach to this is to separate the components on the single execution platform so well
that only the separation mechanism and the high dependability components need to be validated
for a high dependability. Mechanisms to achieve such a separation comprise a separation kernel
and virtualization.

2.3.1 Separation Kernel

A separation kernel is a combination of hardware and software for allowing multiple functions to
be performed on a common set of physical resources without interference [Cre+14]. It was first
proposed by Rushby [Rus81], aiming at security problems.

According to Crespo et. al. [Cre+14], the MILS architecture, developed by the MILS (Multiple
Independent Levels of Security and Safety) initiative [Alv+05], is a separation kernel. In addition,
the ARINC-653 standard [Aer05] uses these principles to define a baseline operating environment
for application software used within Integrated Modular Avionics (IMA), based on a partitioned
architecture. Wie will describe IMA in more detail in Chap. 4.

2.3.2 Virtualization

Crespo et. al. [Cre+14] use virtualization as a separation mechanism. A hypervisor implements
partitions or virtual machines that are isolated from each other in the temporal and spatial (i.e.,
storage) domains.

Different kinds of isolation must be considered [Cre+14, Sect. 2.1]:

Fault isolation: a fault in an application must not propagate to other applications.

Spatial isolation: applications must execute in independent physical memory address spaces.

Temporal isolation: the real-time behaviour of an application must be correct independent of
the execution of other applications.

Crespo et. al. [Cre+14, Sect. 2.1] propose a predefined and static allocation of resources to
partitions, in order to achieve a separation that is sufficiently simple to allow for separate validation.
The resources comprise CPU time, memory areas, IO ports, etc. Static allocation of CPU time
should be achieved by a cyclic scheduling policy for partition execution.

Crespo et. al. [Cre+14, Sect. 3] state that there is some confusion of terminology on virtualization,
and they propose the following definitions: A type 1 hypervisor (also named native or bare-metal
hypervisor) runs directly on the native hardware, while a type 2 hypervisor is executed on top of
an operating system. Full virtualization provides a complete re-creation of the hardware behaviour
of a native system to a guest system, while para-virtualization requires the guest system to be
modified: Some machine instructions are replaced by functions provided by the hypervisor. In
full virtualization, certain “conflicting” machine instructions must be caught during runtime, in
order to maintain the spatial and temporal separation. They are then handled by the hypervisor.
With para-virtualization, in contrast, no catching is necessary, and the handling can use more
information from the guest. This improves the performance greatly, and it simplifies the hypervisor.
Of course, the source code of the guest must be available for recompiling. Since the latter usually
is not a problem for mixed dependability systems, para-virtualization is preferable here.
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Crespo et. al. [Cre+14, Sect. 3.2] categorize the IMA architecture (see Chap. 4 below) as a
separation kernel. However, part of it comes close to the functionality provided by a hypervisor.

Conceived by the same research group, XtratuM (see Sect. 6.3.1) is an open-source, type 1
hypervisor that uses para-virtualization. It was designed specifically for mixed-criticality systems.

Virtualization aims at presenting a virtual machine to an application software which is exactly like
the real machine. However, it cannot hide one kind of difference: the machine instructions are
not executed evenly in the time sense anymore. There are “holes” where other partitions get time.
The application software can notice this when it interacts with the system’s environment. This
is relevant for real-time applications, for example for control applications where the controlled
system does not stop while the application is on hold. Another example is the interaction with
peripheral devices which change state by progress of time, such as timers.

The latency of an interrupt can become substantially higher, i.e., until the partition of the interrupt
is scheduled again. This can break assumptions about the timing of interrupts made by an
application or by an operating system. For example, Ripoll et. al. [Rip+10, Sect. 3.2] report that
they used the RTEMS operating system in a partition, and that the timer tick of the RTEMS
operating system was faster than the schedule period of the partition. Therefore, they had to take
measures to ensure that accumulated clock ticks were presented to the partition at the beginning
of its time slot.

2.3.3 Separation Kernel vs. Virtualization

Separation is a solution to the problem of mixed dependability, and virtualization is one possible
mechanism to achive separation. Virtualization comprises more than necessary to achive separation.
For example, the application in a (fully) virtualized machine cannot “see” any differences (besides
“holes in time”) to a dedicated real machine. This is not necessary for separation. Instead, we can
provide some modification of a real machine to the application, as long as it guarantees separation.
The approach of para-virtualization (compare Sect. 2.3.2 above) goes a step into exactly this
direction.

A separation kernel imposes the use of the same operating system onto all applications, while
virtualization allows for different operating systems (or even bare-metal applications without any
operating system) in its partitions. The latter can be a substantial advantage if heterogeneous
applications are to be integrated.

A separation kernel usually comprises more functionality (e.g., on communication, and maybe on
multi-threading) than a hypervisor used for virtualization. Therefore, we suspect that the effort
necessary for verifying the time and space separation property is usually higher for a separation
kernel.

See also Sect. 7.3 on the research challenge on which of the two mechanisms has which relative
pros and cons, under which conditions.
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Chapter 3
Timing Analysis

This chapter provides some basic knowledge on timing analysis. We need this knowledge for
further discussions of time partitioning and, later on, for an idea on a processor architecture
supporting time partitioning.

3.1 Proof Techniques for Real-Time Properties

In this section, we introduce to proof techniques for real-time properties of embedded systems
such as space avionics. This provides the background for the discussion of time partitioning further
below. Embedded systems such as space avionics often must satisfy hard real-time properties.
That is, they provably must provide the reaction to a stimulus before a given limit of time.
Techniques exist to provide such proofs. The worst-case execution time (WCET) is the maximum
time a piece of code will ever need for execution on a given hardware, regardless of input and
internal state. The proof of a hard real-time property consists in establishing an upper bound
for the WCET which does not exceed the given limit. Usually an upper bound is used, instead
of the actual WCET, because of a lack of more precise information. This information has been
abstracted away in order to reduce the effort of analysis (or to make it feasible in the first place).

In a partitioned system, there is an execution time budget for each partition. Accordingly, the
proofs of the hard real-time properties of all partitions must be carried out, hopefully in a (mostly)
independent way.

Kopetz [Kop11, p. 245] describes how to determine an upper bound for the execution time of
machine code commands on a target hardware. If the processor of the target hardware has
fixed instruction execution times, the duration of the hardware instructions can be found in the
hardware documentation and can be retrieved by an elementary table look-up. The adding-up of
the instruction execution times must be done for all combinations of input and initial state. Such
a simple approach does not work if the target hardware is a modern RISC processor with pipelined
execution units and instruction/data caches. While these architectural features result in significant
performance improvements, they also introduce a high level of unpredictability. Dependencies
among instructions can cause pipeline hazards, and cache misses will lead to a significant delay
of the instruction execution. To make things worse, these two effects are not independent. A
significant amount of research deals with the execution time analysis on machines with pipelines
and caches. The excellent survey article by Wilhelm et. al. [Wil+08] presents the state of the art
of execution time bounds analysis in research and industry in depth, and it describes many of the
tools available for the support of execution time bounds analysis.
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A book chapter by Wilhelm [Wil09] elaborates even further on how to determine bounds on
execution times.

Wilhelm et. al. [Wil+08, Chap. 2.1.3] point out the problem of timing anomalies. A timing
anomaly is a counterintuitive influence of the (local) execution time of one machine instruction on
the (global) execution time of the whole task. For example, a cache miss may speed up the global
execution, instead of slowing it down, if it prevents a more expensive branch misprediction. Besides
such speculation-caused anomalies, there also can be instances of the well-known scheduling
anomalies. One consequence of these anomalies is that no worst case initial execution state exists.
For example, an initially empty cache may not be the worst case. This prevents safe timing
measurements on isolated snippets of code. All this holds if and only if the processor architecture
is sufficiently complex for timing anomalies to occur. It usually does not hold for simpler 8- and
16-bit processors.

Kopetz [Kop11, p. 247] continues to describe the state of practice in determining a reasonable
upper bound for the WCET of a task. It includes the use of a restricted architecture that reduces
the interactions among the tasks and the extensive testing of the complete implementation. He
finishes that the state of current practice is not satisfactory. We add that Wilhelm et. al. [Wil+08]
have presented satisfactory methods and tools; they are just not yet the general state of practice.

Cooling [Coo03, Chap. 14] surveys methods for performance engineering for real-time systems.
That is, which design management approaches can help to achieve a desired performance.

3.2 Trends in Processor Architecture with Relevance to
Timing Analysis

Wilhelm et. al. [Wil+08, Sect. 11.2] summarize current trends in processor architecture which are
relevant to timing analysis:

“The hardware used in creating an embedded real-time system has a great effect on the ease of
predictability of the execution time of programs.

The simplest case are traditional 8- and 16-bit processors with simple architectures. In such
processors, each instruction basically has a fixed execution time. Such processors are easy to
model from the hardware timing perspective, and the only significant problem in WCET analysis
is how to determine the program flow.

There is also a class of processors with simple in-order pipelines, which are found in cost-sensitive
applications requiring higher performance than that offered by classic 8- and 16-bit processors.
Examples are the ARM7 and the recent ARM Cortex R series. Over time, these chips can be
expected to replace the 8- and 16-bit processors for most applications. With their typically simple
pipelines and cache structures, relatively simple and fast WCET hardware analysis methods can
be applied.

At the high end of the embedded real-time spectrum, performance requirements for applications,
like flight control and engine control, force real-time systems designers to use complex processors
with caches and out-of-order execution. Examples are the PowerPC 750, PowerPC 7448, and
ARM11 families of processors. Analyzing such processors requires more advanced tools and
methods, especially in the hardware analysis.

The mainstream of computer architecture is steadily adding complexity and speculative features
in order to push the performance envelope. [. . . ] This mainstream trend of ever-more complex
processors is no longer as dominant as it used to be, however. In recent years, several other design
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alternatives have emerged in the mainstream, where the complexity of individual processor cores
has been reduced significantly.

Many new processors are designed by using several simple cores instead of a single or a few
complex cores. This design gains throughput per chip by running more tasks in parallel, at the
expense of single-task performance. Examples are the Sun Niagara chip, which combines eight
in-order four-way multithreaded cores on a single chip [OH05] and the IBM-designed PowerPC
for the Xbox 360, using three two-way multithreaded in-order cores [Kre05]. These designs are
cache-coherent multiprocessors on a chip and thus have a fairly complex cache and memory
system. The complexity of analysis moves from the behavior of the individual cores to the interplay
between them as they access memory.

Another very relevant design alternative is to use several simple processors with private memories
(instead of shared memory). This design is common in mobile phones, where you typically find
an ARM main processor combined with one or more DSPs on a single chip. Outside the mobile
phone industry, the IBM–Sony-Toshiba Cell processor is a high-profile design using a simple
in-order PowerPC core along with eight synergistic processing elements (SPEs) [Hof05]. The
Cell will make its first appearance in the Sony PlayStation 3 gaming console, but IBM and
Mercury Computing systems are pushing the Cell as a general-purpose real-time processor for
high-performance real-time systems. The SPEs in the Cell are designed for predictable performance
and use local program-controlled memories rather than caches, just like most DSPs. Thus, this
type of architecture provides several easy-to-predict processors on a chip as an alternative to a
single hard-to-predict processor.

Field-programmable gate arrays (FPGAs) are another design alternative for some embedded
applications. Several processor architectures are available as “soft cores” that can be implemented
in an FPGA together with application-specific logic and interfaces. Such processor implementations
may have application-specific timing behavior, which may be challenging for off-the-shelf timing
analysis tools, but they are also likely to be less complex and thus easier to analyze than general-
purpose processors of similar size. Likewise, some standard processors are now packaged together
with FPGA on the same chip for implementing application-specific logic functions. [. . . ]

There is also work on application-specific processors or application-specific extensions to standard
instruction sets, again creating challenges for timing analysis. [. . . ]”
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Chapter 4
Integrated Modular Avionics (IMA) for
Aircraft

In this chapter, we give an overview of the Integrated Modular Avionics (IMA) architecture which
is used for aircraft. We describe why it was developed, and which are the key properties of its
constituent data network and of its operating system interface. Furthermore, we outline the
extension to Distributed Modular Electronics (DME).

Our overview draws on the well-written background chapter of the recent dissertation thesis of
Efkemann [Efk14, Chap. 2]. A good source for further reading is Ott [Ott07]. She gives a broad
view on both architectures and development processes, and there in particular on testing processes.

4.1 From a Federated Architecture to the IMA Archi-
tecture

Efkemann [Efk14, Chap. 2] presents the following overview of Integrated Modular Avionics (IMA)
in his dissertation thesis:

“The traditional federated aircraft controller architecture [Fil03, p. 4] consists of a large number of
different, specialised electronics devices. Each of them is dedicated to a special, singular purpose
(e. g. flight control, or fire and smoke detection) and has its own custom sensor/actuator wiring.
Some of them are linked to each other with dedicated data connections. In the Integrated Modular
Avionics (IMA) architecture this multitude of device types is replaced by a small number of
modular, general-purpose component variants whose instances are linked by a high-speed data
network. Due to high processing power each module can host several avionics functions, each of
which previously required its own controller. The IMA approach has several main advantages:

• Reduction of weight through a smaller number of physical components and reduced wiring,
thereby increasing fuel efficiency.

• Reduction of on-board power consumption by more effective use of computing power and
electrical components.

• Lower maintenance costs by reducing the number of different types of replacement units
needed to keep on stock.

• Reduction of development costs by provision of a standardised operating system, together
with standardised drivers for the avionics interfaces most widely used.
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• Reduction of certification effort and costs via incremental certification of hard- and software.

An important aspect of module design is segregation: In order to host applications of different
safety assurance levels on the same module, it must be ensured that those applications cannot
interfere with each other. Therefore a module must support resource partitioning via memory access
protection, strict deterministic scheduling and I/O access permissions. Bandwidth limitations on
the data network have to be enforced as well.

The standard aircraft documentation reference for IMA is ATA chapter 42. The IMA architecture
is currently in use in the Airbus A380, A400M, the future A350XWB, and Boeing 787 Dreamliner
aircraft. Predecessors of this architecture can be found in so-called fourth-generation jet fighter
aircraft like the Dassault Rafale.”

4.2 AFDX Data Network

Efkemann [Efk14, Chap. 2.1] continues with an overview of the AFDX data network employed by
the IMA architecture:

“A data network is required for communication between (redundant) IMA modules as well as
other hardware. This role is fulfilled by the Avionics Full DupleX Switched Ethernet (AFDX)
network. It is an implementation of the ARINC specification 664 [Aer09] and is used as high-speed
communication link between aircraft controllers. It is the successor of the slower ARINC 429
networks [Aer04].

AFDX is based on 100 Mbit/s Ethernet over twisted-pair copper wires (IEEE 802.3u, 100BASE-
TX). This means it is compatible with COTS Ethernet equipment on layers 1 and 2 (physical
layer and link layer). Ethernet by itself is not suitable for real-time applications as its timing is
not deterministic. Therefore AFDX imposes some constraints in order to achieve full determinism
and hard real-time capability.

In AFDX, so called Virtual Links (VLs) are employed for bandwidth allocation and packet routing.
Each VL has a 16-bit ID, which is encoded into the destination MAC address of each frame sent
through this VL. For each VL, only one end system can send frames, while there can be one or
more receivers (unidirectional multicast communication, similar to ARINC 429). AFDX switches
use a pre-determined configuration to deliver frames based on their VL ID to a set of receiving
end systems.

Each VL is allocated a part of the full bandwidth of an AFDX link. To that end, each VL has
two attributes: a maximum frame length (Lmax) in bytes and a bandwidth allocation gap (BAG).
The BAG value represents the minimum interval (in milliseconds) between two frames on that VL.
Thus, the maximum usable bandwidth in bit/s of a VL can be calculated as:

bmax = Lmax · 8 · 1000/BAG

End systems use a VL scheduler to ensure minimum latency and jitter for each VL.

[. . . ]

In order to increase reliability, an aircraft data network consists of two independent switched
networks. AFDX frames are sent on both networks. If no frame is lost, the other end systems
will receive two frames. In order to identify matching frames sent over the redundant links, the
message payload is followed by a sequence number field. Of two frames received on different
networks with an identical sequence number, only the first is passed up the protocol stack.”

Ott [Ott07, Chap. 1.6.3] provides a substantially more detailed overview of AFDX.
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Figure 4.1: IMA module system architecture (taken from [Efk14, Fig. 2.2])

4.3 Operating System Interface ARINC 653

Efkemann [Efk14, Chap. 2.2] then introduces to the operating system interface ARINC 653 of the
IMA architecture:

“[. . . ], an IMA module can host multiple avionics functions. The interface between avionics
applications and the module’s operating system conforms to a standardised API which is defined
in the ARINC specification 653 [Aer05].

The system architecture of an IMA module is depicted in figure 4.1. A real-time operating system
kernel constitutes the central component. It uses a driver layer for access to the module’s I/O
hardware (either solely AFDX, or other interfaces like Discretes, CAN, and ARINC 429 buses as
well, depending on module type) [Aer05, p. 11].”

Efkemann [Efk14, Chap. 2.2.1] details the partitioning as follows:

“In order to guarantee the same isolation of avionics functions residing on a shared module as a
federated architecture would provide, it is the operating system’s responsibility to implement a
concept called partitioning. According to [RTC01], a partitioning implementation should comply
with the following requirements:

• A software partition should not be allowed to contaminate another partition’s code, I/O, or
data storage areas.

• A software partition should be allowed to consume shared processor resources only during
its period of execution.

• A software partition should be allowed to consume shared I/O resources only during its
period of execution.

• Failures of hardware unique to a software partition should not cause adverse effects on other
software partitions.
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• Software providing partitioning should have the same or higher software level1 than the
highest level of the partitioned software applications.

On the IMA platform, a partition is a fixed set of the module’s resources to be used by an avionics
application. In particular, each partition is assigned a portion of the module’s memory. The
operating system ensures that other partitions can neither modify nor access the memory of a
partition, similar to memory protection in a UNIX-like operating system. Each partition also
receives a fixed amount of CPU time. The operating system’s scheduler ensures that no partition
can spend CPU time allotted to another partition [Aer05, p. 13].

Two kinds of partitions reside on a module:

Application partitions contain application code that makes up (part of) the implementation
of an avionics function.

System partitions on the other hand provide additional module-related services like data loading
or health monitoring.

Inside a partition there can be multiple threads of execution, called processes. Similar to POSIX
threads, all processes within a partition share the resources allocated to the partition. Each process
has a priority. A process with a higher priority pre-empts any processes with a lower priority.
ARINC 653 defines a set of states a process can be in (Dormant, Waiting, Ready, Running) as
well as API functions for process creation and management [Aer05, p. 18–25].”

In the following, Efkemann [Efk14, Chap. 2.2.2] discusses the methods of communication in length.
A brief summary is:

“The operating system must provide a set of different methods of communication. All of them
fall into either of two categories: intra-partition or interpartition communication. Intra-partition
communication always happens between processes of the same partition, while inter-partition
communication happens between processes of different partitions or even partitions on different
modules. [. . . ]”

4.4 Distributed Modular Electronics (DME)

Distributed Modular Electronics (DME) is an extension of the IMA concept. It was developed in
the SCARLETT research project (SCAlable & ReconfigurabLe elEctronics plaTforms and Tool).
SCARLETT was a joint European research and technology project of airframers, large industrial
companies, SMEs, and universities [SCA13].

According to Efkemann [Efk14, Chap. 2.5], “the DME concept aims at the separation of processing
power from sensor/actuator interfaces, thereby reducing the number of different component types
to a minimum. This also makes DME suitable for a wider range of aircraft types by giving
system designers the possibility to scale the platform according to required hardware interfaces
and computing power. Figure 4.2 shows an example of a network of components: two Core
Processing Modules (CPM), three Remote Data Concentrators (RDC), and two Remote Power
Controllers (RPC) linked via two redundant AFDX networks. The CPM components provide the
computing power and host the avionics applications, but apart from AFDX they do not provide
any I/O hardware interfaces. Instead, the RDC and RPC components provide the required number
of sensor/actuator and bus interfaces.

1as defined in [RTC92]
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Figure 4.2: Distributed Modular Electronics (DME) architecture (taken from [Efk14, Fig. 2.3])

The project also investigates ways of increasing fault tolerance through different reconfiguration
capabilities, for example transferring avionics functions from defective modules to other, still
operative modules. Finally, the design of a unified tool chain and development environment has
led to improvements of the avionics software implementation process. [. . . ]”
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Chapter 5
Differences between the Aeronautical and the
Space Domain

There are significant differences between the aeronautical and the space domain, with respect to
time and space partitioning.

5.1 The Speed of Growth of Complexity

Windsor and Hjortnaes [WH09, Sec. IV.B] state that the space domain mastered integrating
applications on a single CPU earlier than the aeronautical domain. This was achieved by validating
everything at the highest integrity level. But this now becomes more and more expensive due to
the increasing complexity of mission applications. The Central Flight Software (CFS) encompasses
the Data Management (DMS) and the Attitude & Orbital Control (AOCS) functional chains.
Recently, they are integrated on one computer instead of independent computers linked by a
data bus ([WH09, Sec. V.A]). Similarly, the payload software consists of several components of
differing criticality: command and control has a higher criticality than payload data processing.
These payload functions co-exist on one or several on-board computers (OBCs) and are under the
responsibility of one or several organizations ([WH09, Sec. V.B]).

The complexity problems hit the space domain later than the aeronautical domain. We suppose
the reason is that the space domain must use slower and therefore less powerful computers due to
the harsh radiation environment in space (compare Sect. 5.6 below). Therefore, the space domain
only recently reached the critical region of complexity.

Windsor et. al. [WDD11] provide some concrete numbers on complexity for the Airbus A380: its
IMA platform is composed of up to 30 IMA modules of 8 different types, hosting 21 avionics
functions which were developed by 10 function suppliers. In contrast, the IMA-SP architecture
envisioned by Windsor et. al. will have less computing nodes (e.g., central on board computer,
payload computer, and intelligent sensors and actuators), connected to a less powerful network
based on SpaceWire or MIL-STD-1553B), and hosting fewer functions developed by small numbers
of suppliers.
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5.2 Scale of Communication Demands

The space domain appears to have significantly smaller demands on communication. Even though
the International Space Station (ISS) features a complexity similar to that of an airplane, a typical
satellite or launcher is much simpler; compare the end of the previous section. Accordingly, only a
few hardware nodes need to be connected, with less bandwith. Windsor et. al. [WDD11] even
explicitly consider the communication bus optional for the IMA-SP platform, for the case of a
single hardware node. We add that the necessary redundancy against hardware failures nevertheless
demands at least two hardware nodes. Depending on the redundancy concept, there might be
little demand for them to communicate, however.

5.3 Online/Offline Maintenance

All aeronautical software maintenance is performed off-line, while the aircraft ist at the ground
safely. In contrast, spacecraft operations require the system to be active ([WH09, Sec. VI.B].

Usually, a spacecraft is launched with the complete mission definition implemented in the flight
software, from a pre-launch support mode to payload operations phase [WH09, Sect. V.D].
However, there is interest for adding new applications to extend the mission. This has been
done in a few cases, but with extensive validation effort. And in the commercial satellite market,
operators would like to have the in-flight capability to safely upload private payload applications
to their spacecraft without the involvement of the manufacturer.

We add that the redundancy of multiple computer hardware may be used to take one of the
computers offline in order to install a new software version. But this can be done for a short
period of time only. And the new software version must be already validated fully. We have
devised such an update process for the first in-space flight software update of the main computers
of the European Columbus module which is part of the International Space Station [Bre08].

The IMA concept of the aeronautical domain requires substantial offline effort for reconfiguring
communication paths. The virtual links (VLs) of the AFDX network are static. When the network
routing shall be changed, each node affected must be accessed by a technician in order to apply
this software update. This approach of IMA cannot be applied in the space domain, where physical
access is impossible in nearly all cases.

5.4 Pronounced Mission Phases

Satellites have more pronounced mission phases than aircraft. Aircraft operate in different modes
on ground, during ascent, cruise, and decent. Switches between these modes can occur rapidly.
Long-lived satellites have longer-lasting and more predictable mission phases, such as ascent, orbit
insertion, orbital payload operation, and deorbiting.

This offers the opportunity to reconfigure the computing resources between mission phases. At
least, no computing time needs to be allocated to functions not active in the current mission
phase. Since there is plenty of time after orbit insertion, the software even could be updated from
ground, compare Sect. 5.3 above. See also [WDD11, page 8A6-4].

All of this does not apply to launchers, which are short-lived, of course.
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5.5 Availability of a Hardware-Based Memory Protec-
tion Unit

In the space domain, only the most recent space qualified microprocessors (e.g., LEON2/3)
have some kind of memory management unit (MMU) available [WH09, Sect. VI.E]. The Leon2
processor provides two memory write protection registers only. This is not sufficient if security is
relevant, too. The Leon3 processor has a full MMU and also provides read-protection [Mas+10a].
(Sect. 6.3.1 on page 21 below provides more details of the Leon processors.)

Future work: describe current status concerning MPU in the aeronautical domain, in particular in
IMA.

5.6 Radiation

In the space environment, the high level of hard radiation causes frequent malfunctions or even the
permanent destruction of electronic circuits. This radiation could be shielded by a substantially
massive casing only. Its launch weight usually prohibits this solution. The effect of radiation
can be reduced by using electronic circuits with larger chip structures, too. However, larger chip
structures also mean less functionality per chip and less speed. Therefore, less powerful computers
can be used in space than on ground.

The atmosphere of the Earth shields most of this radiation, even for aircraft at high altitudes.
Therefore, the restriction does not apply to the aeronautical domain. Accordingly, aeronautical
hardware such as IMA modules cannot simply be taken and used in the space domain.

Higher computing power may be obtained in the space domain by giving up reliability and
availability for some tasks, to a certain degree. For example, a radiation-hard, but slow computer
can take care of the vital tasks of the spacecraft, while a much faster “number cruncher” computer
can perform payload data processing, for example video encoding, even though it will crash a few
times a day. In order to not affect the vital system adversely, such a number cruncher needs a bus
interface with validated high dependability, only. However, such an approach with differentiated
hardware does not match well the idea of interchangeable IMA hardware components.

5.7 Miscellaneous: Differences Between Launchers and
Satellites

Inside the space domain, there are notable differences between launchers and satellites. Launch
vehicles live a short time only. The first stage is spent in a few minutes, and the launcher’s payload
ist deployed within hours, often even less. In contrast, satellites usually last at least months, and
often more than a decade.

Accordingly, any comparison between the aeronautical domain and the space domain should state
whether it refers to launchers or to satellites, if this matters.

15



Chapter 6
Existing Work on Time and Space Partitioning
Suitable for Space Avionics

In this chapter, we survey existing work on time and space partitioning that is geared towards or
particularly suitable for space avionics.

6.1 The IMA-SP Project: an Adaption of IMA for Space
Avionics

6.1.1 The Original IMA-SP Project

Integrated Modular Avionics for Space (IMA-SP) [WDD11; WH09] was a project of the European
Space Agency (ESA). It aimed at incorporating the benefits of time and space partitioning,
based upon the aeronautical IMA concept, into the spacecraft avionics architecture. Windsor
and Hjortnaes [WH09] motivate the benefits of IMA-SP in general, and they give an overview
of the approach chosen, but yet without concrete experiences and without a defined, concrete
architecture. Windsor et. al. [WDD11] provide such an architecture and some experimental
applications of it.

The IMA-SP architecture is a two-layer architecture, consisting of a System Executive layer and
an application layer [WH09]. The System Executive includes a software kernel responsible for
partition scheduling and communication services as well as handling hardware signals. Memory
partitioning is ensured either by a Memory Management Unit (MMU) or by a (simpler) Block
Protection Unit (BPU). A BPU prohibits access to memory (at a minimum, write access) outside
of a partition’s defined memory areas. Partitions are scheduled on a fixed, cyclic basis. The
order of partition activation is defined at configuration time using configuration tables. This
provides a deterministic scheduling scheme. Tasks within a partition can be scheduled statically
or dynamically. Temporal and spatial partitioning therefore ensures each partition uninterrupted
access to common resources and non-interference during their assigned time period.

IMA-SP defines the role of the system integrator explicitly [WH09, Sect. III.D]. They are responsible
for the system design including the detailed on-board resource allocation; and they are responsible
for the final integration and configuration of the components. Furthermore, there are the role of
the platform supplier and the role of the application supplier.

A communication bus is optional for the IMA-SP platform, for the case of a single hardware node
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[WDD11]. This reflects the significantly smaller demands on communication in the space domain
compared to the aeronautical domain, see Sect. 5.2.

The IMA-SP approach customizes its architecture quite specifically to the requirements of the
space domain. Windsor et. al. [WDD11] list the following “user requirements”:

Mode requirements: Different partition scheduling plans shall be supported for different opera-
tional modes (e.g., initialization phase, operational phase, safe/survival phase).

Allocation of basic physical resources: The resource allocation scheme shall be defined and
predictable.

Time services: The IMA-SP platform shall provide On Board Time (OBT) services.

On Board Events: Applications may raise and access on-board operational events, such as
launcher separation and alarms (for FDIR: Failure Detection, Isolation, and Recovery).

Access to on-board data stores: There shall be on-board data stores for data generated
between communication windows with ground, for mission programming data (e.g., long-
term mission time line and telecommand files), for context data required to resume operations
after a recovery action, and for software images and patches.

Flight software maintenance: The applications and the kernel shall be maintainable via stand-
ard operations (dump, patch, and update).

Fault protection: The IMA-SP platform shall support an FDIR service both at partition level
and at system level.

Application communication interface: Applications may interact with the platform or other
applications through and only through well defined interfaces.

Observability requirements: Ground shall have the possibility to reconstruct from telemetry
the conditions leading to a change in a partition’s state or an operational event being raised.

We think that these “user requirements” must make the resulting architecture rather specific for
a narrow application area. The IMA-SP project apparently did not do a generalization step by
identifying common requirements of the aeronautical domain and the space domain first, before
adding the space specific requirements. Instead, the project put an emphasis on preserving long-
proven ideas, approaches, and even hardware from the space domain. Therefore, it has become
less visible which conceptual changes are necessary for the transfer of IMA from the aeronautical
domain to the space domain, and what are just customizations to a the specific application area.
The aeronautical domain dared a more radical change of its ways when introducing IMA, compared
to what the IMA-SP project is prepared to do.

We even think that the approach is tailored more to satellites than to launchers. Launchers have
no opportunity to do flight software maintenance, and often there is no time for recovery from a
safe mode.

Windsor et. al. [WDD11] describe the architecture of the IMA-SP platform. It is composed of:

• hardware node(s)

• a System Executive Platform (SEP), consisting of

– a partitioning kernel,
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– a TSP abstraction layer, and

– (optionally) guest OSs inside the partitions

• system support services (e.g., for I/O) inside dedicated partitions

• application support services (e.g. implementations of standard protocols)

The services of the TSP abstraction layer were derived from the ARINC 653 [Aer05] API of
the IMA architecture [WDD11]. In this, re-use of existing space concepts, which are similar to
ARINC 653, took precedence over the (literal) incorporation of the ARINC 653 specification.
Windsor et. al. describe the similarities and differences in detail [WDD11].

One example for a difference is that IMA-SP adds to IMA a set of services which allow to exchange
data between partitions via shared memory. This is a mandatory addition. We think that this was
driven by rather specific applications in mind. There appears to be no generalizing stock-taking of
communication mechanisms which are or are not necessary for different application areas.

Three SEPs took part in the IMA-SP study: AIR (an RTEMS modification to support time and
space partitioning by GMV, Portugal, see Sect. 6.3.4 below), PikeOS (a commercial microkernel
from SYSGO, Germany, used in the the aeronautical domain, see Sect. 6.4.1 below), and XtratuM
(an open source hypervisor from the University of Valencia, Spain, see Sect. 6.3.1 below). These
SEPs have been ported to the LEON3 Sparc microprocessor which is the ASIC targeted for future
European spacecraft [WDD11]. See the following sections for more details on these three SEPs.

Windsor et. al. [WDD11] report on three use cases which the IMA-SP study planned to investigate.
In these use cases, it was planned to apply and try out the IMA-SP approach practically. Windsor
presents some results in a talk at ADCSS 2012 [Win12]. The feedback on the system executive
platforms was:

“XtratuM:

Pro: product maintenance & adaptability – good level of maturity – OBT synchronisation

Cons: Missing GDB debug tool – bootloader

Pike OS:

Pro: Extensive documentation – Development tools very good – Easily configurable –
Debug available on TSIM

Cons: No tracing mechanism – Missing GDB debug tool – RTEMS interrupt management
not implemented

Edisoft RTEMS:
[it was] para-virtualised for all SEP kernels”

And the conclusion of the talk included:

• “AIR, PikeOS and XtratuM have been ported to LEON2/3 and pre-validated
– PikeOS offers DO-178 certification datapack

• Lessons learnt from Use Cases
– Mastering role definition and process is key to success
– IO management with current HW is challenging but not impossible
– Execution Platform support tools & test bench needed
– HW improvements have been identified”
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Silva et. al. [SCS12] report on the development of an input/output component for IMA-SP, by
GMV, Portugal. The aim is to be able to reuse the drivers for at least some system resources. It
supports RS-232, UDP on Ethernet, SpaceWire and MIL-STD-1553B, in beta version quality.

The original IMA-SP project ended in December 2012.

6.1.2 Follow-Up Assessment Study on Partitioning and Mainten-
ance of Flight Software in IMA-SP

Hardy et. al. [HHC14] report on a follow-up assessment study on partitioning and maintenance of
flight software in IMA-SP. They ported a small satellite flight software to the Xtratum hypervisor
on a (simulated) Leon3 processor. As some of the lessons learned, they provide experiences with
the hypervisor used (XtratuM, compare Sect. 6.3.1 below) and with the guest operating system
used (RTEMS, compare Sect. 6.3.4 below).

Concerning XtratuM, a few additions were made to XtratuM in order to support the boot scheme,
the software maintenance approach, and the board chosen by the project. The authors report a
bug found in the version 3.4.2 of XtratuM used as a major issue: A division-by-zero exception
in the floating point unit of the processor halted the entire system. Thus, it could break the
partitioning. Minor issues include that the virtualization of the registers of the LEON processor
does not seem to be implemented correctly and completely. We conclude that the XtratuM version
used did not yet meet quality criteria for a high level of dependability.

Concerning RTEMS, the authors found two bugs which they classified as major issues. One of
them led to unpredictable scheduling inside the RTEMS partition. Both have been fixed in the
latest version of RTEMS. However, the port of this version to XtratuM was still missing, at least
at the time the presentation was made.

6.1.3 The IMA-SP System Design Toolkit Project

The IMA-SP System Design Toolkit project is a follow-up project to the original IMA-SP project.
Hann et. al. [Han+15] describe its first phases (2014 to 2015). The project defined a data model,
with associated files and file formats, describing the complete setup of a partitioned system and
allowing for a system feasibility assessment; it developed a prototype of a tool set, called the
IMA-SP System Design Toolkit (SDT); and it plans to demonstrate the toolkit on a case study.

The system feasibility assessment means to show that the partitioning and resource allocation
meet all constraints and requirements. These include timing, fault containment, communication,
and memory allocation. The system feasibility assessment is performed by the system integrator
[Han+15].

The data model consists of, according to [Han+15]:

the partition model: partition properties, activities/tasks, communication ports, memory re-
quirements, and resource requirements

the physical data model: memory, cache, interrupts, and peripheral devices

the IMA-SP system data model: allocation of physical resources to the partitions

the partitioning kernel data model: partitioning kernel memory requirements, health monit-
oring events and actions, default health monitoring system configuration table, and default
health monitoring partition configuration table
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the partitioning kernel data model – configuration: health monitoring table, scheduling
plan, connection table, and memory configuration table

the common data model: basic types of the data model

The IMA-SP SDT data model is specified using the “ecore” format, of the Eclipse Modelling
Framework (EMF) project [Ste+08]. The model files are in XML Meta-data Interchange (XMI)
format [ISO14].

Hann et. al. [Han+15] also further describe the system design work flow and the design of the
IMA-SP System Design Toolkit.

6.2 The SAVOIR-IMA Initiative: A TSP Based Soft-
ware Reference Architecture

SAVOIR (space avionics open interface architecture) is an initiative by the European Space Agency
(ESA) which aims at improving the ways in which the European space community builds avionics
sub-systems. It it geared towards satellites, thus excluding launchers. The initiative defined a
reference avionics architecture for spacecraft platform hardware and software in general. The
reference architecture either uses a “classic” execution platform or an execution platform providing
time and space partitioning. SAVOIR is organized in specialized working groups. Two of them are
SAVOIR-FAIRE on the software reference architecture in general and SAVOIR-IMA on the TSP
based software reference architecture. [Hjo14]

Hiller and Hernek [HH13] report on the results and roadmap of the SAVOIR-IMA initiative. There
are working groups and activities on:

• use cases and system requirements

• terminology

• reference architecture and interface description (COrDeT-3, SIFSUP)

• methods and tools for on-board software engineering

• adding multi core support to AIR (MultIMA)

• SW elements for security

• on-board software reference architecture for payloads (OSRA-P)

• IMA system design toolkit

• preparation for SEP kernel qualification package

The SIFSUP activity (Objectives of Savoir-IMA and Savoir-Faire Support) is, amongst others,
on the difference in paradigm between IMA-SP (Time and space partitioning) and the On-board
Software Reference Architecture (OSRA) (a component-based architecture on top of a centralized
Execution Platform). [Jun14a]

On OSRA, see, e.g., Jung [Jun14b]. It does not cover time and space partitioning specifically.

Future work: find out more on SAVOIR-IMA.
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Figure 6.1: The XtratuM architecture, taken from [Pei+10, Fig. 1].

6.3 Virtualization Solutions Suitable for Space Avionics

In this section, we survey virtualization solutions suitable for space avionics. They are the
bare-metal hypervisor XtratuM and the partition management kernel AIR.

6.3.1 XtratuM: a Hypervisor for Safety-Critical Embedded Systems

XtratuM is a bare-metal hypervisor which implements para-virtualization and dedicated device
techniques [Pei+10; Mas+09; Cre+09]. It was designed to achieve time and space partitioning
for safety-critical embedded systems.

We already presented the notions of virtualization in general, of a bare-metal hypervisor, and of
para-virtualization in Sect. 2.3.2 above.

Figure 6.1 shows an overview of the XtratuM architecture [Pei+10]. XtratuM executes in the
supervisor mode of the processor. The applications execute in the user mode, each in its own
partition. The hypervisor XtratuM applies a static scheduling scheme to grant execution time of
the processor to the partitions. This achieves the separation of the partitions in the time domain.
Each partition gets its statically determined share of the execution time. No user partition can
overrun or change the schedule. Timer interrupts are caught and handled by the hypervisor.

Similarly, the hypervisor XtratuM allocates areas of memory to the partitions. It catches any
illegal access to memory addresses outside a partition’s memory space. To be precise, this is true
only for processors providing suitable hardware support. The Leon2 processor does not have a
memory management unit (MMU), which could translate virtual memory addresses into physical
memory addresses. The Leon2 provides two memory write protection registers only. Therefore,
XtratuM can enforce write protection among partitions, but not read protection. This is sufficient
in order to meet safety requirements, but it is not sufficient to enforce security against malicious
software in a partition. On processors providing a MMU, such as the Leon3 processor, XtratuM
provides read protection, too [Mas+10a]. The Leon processors are designed for and used in a
space environment, in particular with an increased level of radiation.

A peripheral device can be associated to a specific partition. In this case, no other partition may
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access this peripheral device. This is similar to memory protection.

Some partitions may be special, these are called system partitions or supervisor partitions, in
contrast to the user partitions. The system partitions are allowed to manage the other partitions,
for example by stopping and resuming them via calls to the hypervisor. However, since these
partitions run in the user mode of the processor, too, they cannot break the time and space
isolation described above.

The XtratuM hypervisor provides a hardware abstraction to the partitions similar to the aeronautical
ARINC 653 standard [Aer05] API of the IMA architecture (compare Sect. 4.3). However, these two
interfaces have several differences. The most notable difference is that communication in the IMA
architecture is based on the fast AFDX data network (compare Sect. 4.2), while XtratuM does
not prescribe any particular network technology. There even can be no inter-computer network at
all. This is probably due to the difference between the aircraft and the spacecraft domain, that
communication demands are often lower in the latter domain, compare Sect. 5.2.

Each partition appears as a normal, dedicated computer to the software running in it. Accordingly,
a partition can contain a bare application (no operating system at all, just an infinite loop),
a general-purpose operating system, or a real-time operating system. In case there is some
operating system, an application in a partition may have several processes/threads, as usual. The
para-virtualization approach requires an adaption of the software inside the partitions, however:
some privileged machine instructions in the lower layer of the operating system (or in the bare
application) must be substituted by calls to the hypervisor, as discussed in Sect. 2.3.2.

Operating systems that have been ported to XtratuM include LithOS and RTEMS (see Sect. 6.3.4
on RTEMS below), and also Linux, PaRTiKle, and ORK+ [FEN+13]. The real-time operating
system LithOS [Mas+10b] was designed to provide an ARINC 653 inspired API. LithOS adds
multi-process support, communication between processes, and a process scheduler to the services
provided by XtratuM. However, there is still no mandatory AFDX network with LithOS. Similarly,
PaRTiKle is an open source real-time kernel for embedded systems, distributed under the terms
of the GNU Public License; PaRTiKle has been initially developed by the University of Valencia,
Spain [FEN+13]. ORK+ (Open Ravenscar Kernel) is a small, high performance real-time kernel
that provides restricted tasking support for Ada programs [FEN+13].

The processors on which XtratuM has been implemented include the Intel x86 processor family,
supporting multiprocessors [Mas+09; Cre+09], the Leon2 processor [Pei+10], the Leon3 processor
[Mas+10a], the Leon4 processor [Cre+14; MCC12], and the ARM Cortex R4 [Cre+14]. XtratuM
has been adapted to deal with heterogeneous multicore architectures in the MultiPARTES project,
see Sect. 6.3.3 below.

XtratuM is open software distributed under the Gnu Public Licence version 3. Some ancillary tools
are sold under a proprietary licence by FentISS [Fen16], a spin-off of the University of Valencia,
Spain.

The configuration of a specific software image must be described in a central configuration file.
XtratuM’s system integration tools compile this configuration file together with the application
software images into the system software image. This image then is loaded onto the processor an
run.

The central XtratuM configuration file is in XML format and can be written by hand. Alternatively,
the configuration file can also be generated using the Xoncrete tool. Xoncrete is a graphical
tool to assist the system designer when configuring the resources (memory, communication ports,
devices, processor time, etc.) allocated to each partition. It has two parts: a resource editor
and a scheduling analysis tool [Bro+10]. The scheduling analysis tool provides support for the
complexities of hierarchical scheduling (i.e., scheduling the partitions and scheduling tasks inside
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Figure 6.2: The attitude control demonstrator.

the partitions) [Bro+10; Rip+10].

Maturity: The study of Hardy et. al. [HHC14] (see Sect. 6.1.2 above for details) indicates
that the XtratuM version 3.4.2 used there did not yet meet quality criteria for a high level of
dependability.

6.3.2 Our Case Study Using XtratuM for a Portable Real-Time Ap-
plication

We performed a case study using XtratuM [Ehr+15]. It used an e.Cube computer designed by
AirbusDS for space missions, featuring an x86-family Atom processor. The application was an
attitude control demonstrator with one degree of freedom, see Fig. 6.2. The application ran on
the Atom processor inside one of the XtratuM partitions. The application ran bare-metal, only
using XAL (the XtratuM Abstraction Layer), without an operating system. (It had turned out
that the port of the Linux operating system to XtratuM didn’t run anymore in the then current
version of XtratuM.) The application had real-time properties. It had to be formally proven that
these real-time requirements were met by the implementation running on top of XtratuM.

The project was performed in a collaboration of the City University of Applied Sciences Bremen
with AirbusDS, Bremen.

The goals of the project included gaining familiarity with real-time systems and in particular with
real-time proofs. The proofs based on the idea of determining the worst-case execution time by
testing with exhaustive path coverage. Furthermore, the effort necessary for achieving portability
of the software (including the real-time proofs) to other hardware architectures was of interest.

The project provided experience with XtratuM. We used XtratuM version 3.7.3, current as of
September 2014. It turned out that the adaption of XtratuM to the specific main board could
be solved only partially due to missing documentation of the details of the main board used.
Configuring the software image for the hardware and the applications needed substantial effort. It
would probably have been of considerable help if the Xoncrete tool for XtratuM would have been
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available for this.

Preparatory work for the real-time proofs was performed. But due to delays because of the
hardware adaption problems mentioned, the full proof was not carried out anymore.

In retrospect, using a hypervisor like XtratuM has the advantage that several applications with
different criticality can run safely on a single processor; but there were no indications that
the hypervisor would ease porting the application and its real-time proof to another hardware
architecture. The reason for this is that the hypervisor does not abstract away from the details
of the hardware used, they remain fully visible to the application. The hypervisor only hides the
other partitions running on the same processor. We did not attempt to port the application to
another processor anymore in the course of the project. But both the compiled application binary
and the real-time proof depend on the specifics of the processor. Of course, the application can
be compiled for a different processor. But using a hypervisor makes no difference in this. The
same holds for adapting the real-time proof to another processor and its timing characteristics.

6.3.3 The MultiPARTES Project: an Extension of XtratuM for
Multi-Core Processors

The MultiPARTES project (Multi-cores Partitioning for Trusted Embedded Systems) adapted
XtratuM to deal with heterogeneous multicore architectures [TCA13; CA14]. Besides the adaption
of XtratuM, the project also defined a development methodology and provided supporting tools.

The hardware platform consists of two different systems: a dual core x86 based processor (Atom
Core Duo at 1.7 GHz) and an FPGA with several synthesized LEON3 processors. The x86
subsystem provides comparably high computation capabilities, and the LEON3 processors provide
a hardware base for time-predictable computations.

Therefore, the challenges of multi-core CPUs to time partitioning (compare Sect. 7.1.1 on page 30
below) have been responded to by simply using several independent LEON3 CPUs for the time
critical computations. However, these LEON3 CPUs have been integrated onto a single FPGA
chip (and under a single hypervisor) at least, thus reducing weight and other resource demands.

Trujillo et. al. [TCA13] discuss mixed-criticallity systems in their description of the MultiPARTES
project, but they do not mention the specific challenges of a space environment, like radiation and
the restrictions on computing power caused by it (compare Sect. 5.6 on page 15 above). Some
further reading on XtratuM in the MultiPARTES project is [CC14; FEN+13; Mas+11].

6.3.4 AIR: A Partition Management Kernel Based on RTEMS

The AIR and AIR-II projects developed a partition management kernel based on the RTEMS
operating system kernel.

RTEMS

RTEMS (Real-Time Executive for Multiprocessor Systems) is a real-time operating system kernel.
Originally designed for military applications, it is now used in a wide area of application domains,
including the space domain, in particular. It is open software distributed under a license close
to the GNU General Public License. RTEMS provides multi-tasking, intertask communication,
different kinds of scheduling, and support for homogeneous and heterogeneous multiprocessor
systems. [RTE16b]
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RTEMS is not a partitioning kernel. Thus, it does not support time and space partitioning.
However, RTEMS can be and has been used as a real-time operating system inside a partition.
(For example, Ripoll et. al. report on a use of RTEMS inside XtratuM [Rip+10], and Hardy et. al.
[HHC14] report on another such use of RTEMS in XtratuM.)

Versions and maturity: Edisoft RTEMS (version 4.8.0) has been qualified for space use by
the European Space Agency [Sil+10]. According to Silva et. al. [Sil+10, Sect. 4], “the qualified
version and tools are distributed as open source free package”. The online RTEMS Centre [Edi09],
however, states: “All the Downloads in the RTEMS CENTRE website are restricted to authorized
users (the authorization is granted by the project administration).” Furthermore, the RTEMS
Centre has been inactive since 2010. The improvements of Edisoft RTEMS appear to not have
been merged back into the further RTEMS development, according to some discussions on the
Web. The current released version of RTEMS is 4.10.2 from December 2011. In November 2014,
the RTEMS Project services have been relocated from OAR Corporation to the Oregon State
University Open Source Lab [RTE16c].

The study of Hardy et. al. [HHC14] (see Sect. 6.1.2 above for details) hints that the quality of
the Edisoft RTEMS software needs further investigation. However, RTEMS appears to have been
used on several real space missions, according to its Web site [RTE16a] (unverified).

AIR

The European Space Agency studies AIR and AIR-II (ARINC Interface in RTOS – Industrial
Initiative) developed several components for time and space partitioning [RF07b; RF07a]. They
comprise [Sch11]

• a partition management kernel,

• support libraries, drivers, etc.

• operating system APIs to be used inside of a partition,

• a configuration and compilation tool chain, and

• analysis tools.

Figure 6.3 on the next page shows the AIR architecture. It allows to sepate applications into
different partitions, each with their own memory space and own time budget. Inter-partition
communication is by queueing ports and sampling ports. All this is similar to XtratuM, see
Sect. 6.3.1 above. But there are differences, too.

The preferred operating system to be used inside a partition (“personality”) is RTEMS, possibly
extended by the ARINC 653 API (“APEX”). The partition management kernel internally uses
RTEMS as a hardware abstraction layer, too. Therefore, there are close links from AIR to RTEMS,
even though any operating system can be run inside a partition, or even a bare application. [Sch11]

The AIR project used RTEMS version 4.6.6 [RF07a].

Only the so-called “system” partitions may access hardware devices and thus perform input/output.
The corresponding drivers run in kernel mode, but are scheduled as “co-partitions”. Co-partitions
share execution windows with their client partitions, up to a pre-defined percentage (“sharing
quota”), iff critical tasks have terminated (“sharing barrier”). Efficient inter-partition communication
via shared memory is possible, too. [Sch11]
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Figure 6.3: The AIR architecture (taken from [Sch11]).

The partition management kernel is a micro-kernel. There are no kernel threads. Instead, the
concurrency of drivers is implemented through the co-partitions, which are scheduled with their
client partitions. [Sch11]

Silva et. al. [SCS12, Sect. 3.1] note that the co-partition approach is more efficient than having
regular partitions for input/output, but that this comes not without a cost. A system that allows
a partition to be pre-empted before the end of its execution window in order to perform I/O
operations is more difficult to analyse, qualify, and in perspective, to fully guarantee as predictable.

The studies were performed by GMV, Portugal, together with the University of Lisbon, Portugal,
and Thales-Alenia Space. The initial target processor architecture was Sparc-Leon. [Sch11]

Santos et. al. [San+08] describe in detail the implementation of an ARINC 653 API on an
underlying POSIX layer. The AIR-II consortium decided not to implement an entirly new in-
partition operating system to provide ARINC 653 API services to hosted applications, but instead
to build the ARINC 653 API on top of available real-time operating systems.

Future work: Evaluate the AIR project reports [RF07b; RF07a] and the theses resulting from the
AIR-II project [Cra09; Ros11]. Possibly look for even more literature on the subject.
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Figure 6.4: PikeOS architecture (taken from [SYS16, Fig. 1])

6.4 Separation Kernels Suitable for Space Avionics

In this section, we survey separation kernels suitable for space avionics. These comprise PikeOS,
VxWorks 653, LynxSecure, and POK.

6.4.1 PikeOS

PikeOS is a separation kernel for real-time systems in safety-relevant and security-relevant domains,
such as the aeronautical domain and the space domain [SYS16]. Alternatively, it also can be
viewed as a virtualization solution plus an optional guest operating system. Figure 6.4 shows the
architecture of PikeOS. PikeOS is a commercial product by Sysgo, Germany.

According to the product datasheet [SYS16], the PikeOS Hypervisor runs on x86 as well as ARM,
PowerPC, SPARC V8/LEON or MIPS and can be adapted to other CPU types. The virtualization
concept supports multi-core architectures. PikeOS is completely developed according to safety
standards such as DO-178B, IEC 61508, EN 50128, ISO 26262 or IEC 62304. The available
guest operating systems, runtime enviroments and APIs are: PikeOS, Linux, Android, ARINC
653, AUTOSAR, RTEMS, legacy RTOS, POSIX, Realtime Java, ADA, and others. Optimized
implementations such as ARINC 664 (AFDX) and CAN are available for PikeOS Native partitions.
There is a development tool chain called CODEO. It is an Eclipse-base IDE with configuration
tools, remote debugging with operating system awareness, target monitoring, remote application
deployment, and timing analysis tools.

Future work: Further evaluate PikeOS.
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Figure 6.5: VxWorks 653 architecture (taken from [PK15, Fig. 2])

6.4.2 VxWorks 653

VxWorks 653 is a real-time operating system for safety-critical domains, such as the aeronautical
domain, supporting IMA standards, in particular the ARINC 653 standard [PK15]. VxWorks 653 is
that member of the VxWorks real-time operating system family that provides a separation kernel.
Figure 6.5 shows the architecture of VxWorks 653. VxWorks 653 is a commercial product by
Wind River, which is a subsidiary of Intel.

According to a white paper by the manufacturer [PK15], there is a module operating system
providing global resource management, scheduling, and health monitoring. There is also a VxWorks
partition operating system providing scheduling and resource management within a partition.
There is no mention of running bare-metal applications without any operating system inside a
partition. Accordingly, a guest operating system inside a partition appears to need adaptions to
run under VxWorks 953. VxWorks 653 provides an option for priority preemptive scheduling of
partitions. This permits slack stealing by allowing designated partitions to consume what would
otherwise be idle time in the defined ARINC schedule. The VxWorks 653 3.0 Multi-core Edition
supports multi-core processors. However, certification of this is still under review by authorities in
both the FAA and EASA. The operating system comes with a tool chain including an Eclipse-based
workbench, the simulator Simics, and further development, system configuration, and debugging
tools. The white paper also mentions some security related mechanism of VxWorks 953, but no
comprehensive security concept. VxWorks 653 is used for many avionics systems and safety-critical
applications, including systems of the Boeing 787 Dreamliner and of the Airbus A330.

Future work: Further evaluate VxWorks 653.
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Figure 6.6: LynxSecure architecture (taken from [Lyn16, Fig. 3])

6.4.3 LynxSecure

LynxSecure is a real-time operating system for security-relevant systems with a separation kernel
[Lyn16]. Its emphasis is mainly on security and only to a lesser extent on safety. It supports multi-
core processing. Figure 6.6 shows the architecture of LynxSecure. LynxSecure is a commercial
product by Lynx Software Technologies, CA, USA.

Future work: Further evaluate LynxSecure.

6.4.4 POK

POK (“a partitioned operating system”) is an open-source real-time embedded operating system
intended for safety-critical systems such as aeronautical systems [DL11], providing a separation
kernel. The project appears to be dormant since 2012. Nevertheless, we briefly report its main
features here.

According to Delange and Lec [DL11], the tool Ocarina is an important feature of POK, which
serves to configure and deploy applications based on descriptions in the Architecture Analysis
and Design Language (AADL). There is also a tool to enforce modelling rules, safety rules, and
security rules. POK supports the x86, PowerPC, and SPARC/LEON architectures. It has been
used by different research projects.

6.5 Component Based Software Architectures

Watney et. al. [WRC14] write on partitioning and multi-core flight software systems. They are
mostly interested in component frameworks. The aspect of criticality and the aspect of the high
effort for validating a monolithic system is missing. They authors use the object oriented language
C++. However, they do not discuss how to meet timing constraints and memory constraints
while using object orientation. The key word “multi-core” appears in the title of the paper. But it
is not substantiated in the body of the text.
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Chapter 7
Research Challenges

In this chapter, we collect some open problems in the area of time and space partitioning. They
deserve further research.

7.1 CPU-Related Challenges for Time Partitioning

Current CPUs pose challenges to time partitioning. They are, in particular, the intricacies of
multi-core CPUs and of direct memory access.

7.1.1 Multi-Core CPUs

Current multi-core CPUs make it difficult to achieve true time partitioning. Advances in chip
technology allow for more transistors per chip than a CPU core requires. Therefore, the trend is
to integrate several CPU cores onto a single chip, in order to increase the computing power per
chip further. However, these cores are not totally separate CPUs, but they share some resources
for efficiency reasons. In particular, often they share memory caches. A cache can improve the
speed of execution considerably, if the data to access is already present in the cache.

A cache shared between CPU cores therefore causes a dependency of the worst-case execution
time of a piece of code running on one core on the behaviour of code running on another core.
If the other core has flushed some data of the first core from the cache, the first core will run
slower. Using a cache for a core therefore does not improve the worst-case execution time, and it
makes it much harder to determine this worst-case execution time. A simple solution is to disable
all caches. But this comes at a speed penalty that might be larger than the gain by using more
than one core in the first place.

In the case of a single-core CPU, a cache can be used without destroying temporal separation of
the partitions. On every partition change, the cache must be flushed. If partition changes occur in
a deterministic way, the remaining gain by the cache is guaranteed. Furthermore, a defined initial
(cache) state and determinism together prevent timing anomalies to occur (compare Sect. 3.1).
In the case of a multi-core CPU, this is more complicated, since the partition changes of the
different cores usually do not happen at the same points in time, or coordinated at all.

Several research projects already investigate this subject. Some of them are listed by Crespo et. al.
[Cre+14, Sect. 2.3] (even though none of them primarily addresses the space domain).

Future work: make an overview of research work on multi-core TSP.
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7.1.2 Direct Memory Access (DMA)

There are also other components than further CPU cores that compete with a first CPU core for
the memory bus. Direct memory access (DMA) is a technique by which a dedicated controller
transfers data from and to a mass memory storage device, without involving the CPU. Nevertheless,
a DMA controller can slow down the CPU by contending for the memory bus. If at least one of
the partitions uses DMA, all of them can be slowed down by this effect. Therefore, a non-real-time
partition can affect a real-time partition adversely in this way.

Future work: Have a closer look into DMA and its bus use. See also [SCS12, Sec. 4.4] on this.

7.2 Challenges for Real-Time Property Proofs

Proving real-time properties poses many challenges, including those from processor architecture,
virtualization, and distributed computing.

7.2.1 Processor Architecture

The following two processor architecture aspects are relevant when validating real-time properties:
worst-case performance and timing anomalies.

Worst-Case Performance and Processor Architecture

Conventional processor architectures aim to optimize the average-case performance. However,
when validating real-time properties, this usually is irrelevant. Instead, the worst-case performance
matters. Consequently, hard real-time tasks require an entirely different processor architecture
design. A processor feature that improves the average execution time, but not the worst case
execution time, does not help to meet hard real-time constraints. When choosing a processor
architecture, it should be left away, if not needed otherwise.

We continue this line of thought in Sect. 8 below.

Future work: Look for possible literature on processor architectures for hard real-time proofs.

Timing Anomalies and a Processor Architecture for Space Use

Timing anomalies occur in complex processor architectures, and they complicate real-time property
proofs greatly. This is because they make it much more difficult to determine the worst-case
execution time (compare Sect. 3.1). In consequence, a found upper bound can become so loose
that one can find a lower upper bound for a simpler processor. Then, the simpler, less capable
processor becomes the better choice.

The space domain uses simpler processors than other domains because they have to be more
robust with respect to radiation. Selecting or designing a processor architecture for space use
that is not susceptible to timing anomalies may prove useful for achieving acceptable real-time
performance and validating it.

We continue this line of thought in Sect. 8 below, too.
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7.2.2 Virtualization

Virtualization poses additional challenges when performing a real-time property proof. Virtualization
aims at presenting a virtual machine to an application software which is exactly like the real
machine. However, it cannot hide that the machine instructions are not executed evenly in the
time sense anymore (compare Sect. 2.3.2). Any real-time property proof must account for this. If
the hypervisor employs a static cyclic scheduling, this can be done.

Future work: Survey the literature on real-time proof techniques and tools which can handle
virtualization.1

A separation kernel is another mechanism to achieve time and space partitioning. A real-time
proof for code running under a separation kernel must take its scheduling policy into account, as
well as the timing of calls to the separation kernel.

Future work: Survey the literature on real-time proof techniques and tools for separation kernels.
In particular, approaches for the IMA architecture in the aeronautical domain (compare Chap. 4)
are interesting.

The interplay between the scheduling of a hypervisor or of a separation kernel on the one hand
with the scheduling of a communication bus on the other hand poses its own difficulties, which
result in corresponding challenges with respect to the according real-time property proofs. Silva
et. al. [SCS12] found that scheduling partitions that communicate via the MIL-STD-1553B bus
poses a particular challenge. The design of the MIL-STD-1553B bus protocol assumes that the
communicating system is scheduled synchronously to the bus schedule. Additionally, the bus
schedule is at a high rate, usually in the order of dozens of Hertz. This combination of properties
is difficult to achieve when independent systems shall be integrated onto a single platform using
virtualization. The global schedule of the hypervisor can be synchronized to at most one external
schedule.

7.2.3 Distributed Computing

Distributed Modular Electronics (DME, compare Sect. 4.4) and other approaches which combine
time and space partitioning with distribution add corresponding challenges to proving real-time
properties. Here, we need to determine the reaction time of a computation which is distributed
over several processing nodes. In general, there will not even exist a global scheduling cycle, such
that the local scheduling latencies will add up with their worst-case values.

Brocal et. al. [Bro+10] and Ripoll et. al. [Rip+10] present work on a special case, in the context
of the Xoncrete tool for the XtratuM hypervisor. They consider an End-to-End flow (ETEF).
This is a sequence of tasks with temporal attributes. The tasks can belong to different partitions.
However, this approach assumes that all tasks run under the same supervisor, and that they are
scheduled by a single global scheduling scheme.

Future work: Survey the literature on real-time proof techniques and tools for distributed systems.

We performed a case study on grid computing using space hardware [Ber+14]. The project was
performed in a collaboration of the City University of Applied Sciences Bremen with Astrium,
Bremen (now AirbusDS). The study aimed at providing currently unused computing resources
in a network of space computers to computing-intensive tasks, such as image recognition. The

1 The Xoncrete tool for the XtratuM hypervisor (compare Sect. 6.3.1) is not such a tool. Xoncrete can perform
a scheduling analysis in the presence of virtualization, but it cannot do a timing analysis for a snippet of code
running on a specific processor. The worst-case execution time resulting from such an analysis must be fed as
input to Xoncrete. [Bro+10]

32



means for distributing the tasks were grid computing software tools. However, grid computing
intrinsically is a best effort approach, making the most out of the computing resources available
currently. Therefore, despite other merits, grid computing probably is no viable way for providing
high-speed real-time computing.

7.3 Separation Kernel vs. Virtualization for TSP

As discussed in Sect. 2.3.3, both a separation kernel and virtualization are mechanisms to achieve
time and space separation. It should be investigated which mechanism has which relative pros
and cons, under which conditions.

7.4 Identification of the Common Properties of the
Aeronautical and the Space Domain With Respect
to TSP

As already discussed in Sect. 6.1.1, the original IMA-SP project apparently did not do a generaliz-
ation step by identifying common requirements of the aeronautical domain and the space domain
first, before adding the space specific requirements. Instead, the project put an emphasis on
preserving long-proven ideas, approaches, and even hardware from the space domain. Therefore,
it has become less visible which conceptual changes are necessary for the transfer of IMA from
the aeronautical domain to the space domain, and what are just customizations to a the specific
application area.

Accordingly, it is still an open research challenge to identify the common properties of the
aeronautical and the space domain with respect to time and space partitioning.

7.5 Adaption of IMA-SP to Launchers

In addition to the previous section, the original IMA-SP project is tailored more to satellites than
to launchers (see Sect. 6.1.1). Launchers have no opportunity to do flight software maintenance,
and often there is no time for recovery from a safe mode. Compare Sect. 5.7 and also Sect. 5.4.

Consequently, the results of the original IMA-SP project could be adapted to the peculiarities of
launchers.

7.6 An Existing Survey on Research Challenges for
Mixed-Criticality Systems

Crespo et. al. [Cre+14, Sect. 2.2] summarize some technical reports dealing with the future
challenges of mixed-criticality systems (MCSs). They are:

System modelling: Notations are required for describing a model of the system under develop-
ment: for the functional components, the partitioning, and the deployment.

Methodology and development tools: Additional activities, such as partitioning and system
integration, require according extensions of the development methodology. An example is
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the “system integrator” role. The methodology extensions must be complemented by tool
support.

Scheduling techniques for MCS: Partitioned systems demand solutions for the incremental
scheduling of partitions.

Support for multi-core platforms: The cores of multi-core platforms interfere because of
shared resources such as L2/L3 cache, memory, bus, IO, etc.; this must be addressed.

We discussed this aspect in Sect. 7.1.1 above.

Crespo et. al. [Cre+14, Sect. 2.3] list nine research projects in this area (ACROSS, ARAMiS,
CERTAINTY, IMA-SP, MCC, MultiPARTES, perMERASA, RECOMP, and vIrtical). However,
they provide the projects’ URLs only instead of references to publicized work. IMA-SP ist the only
of these projects where the primary application domain is the space domain. All of these projects
except IMA-SP include the “multi-core” aspect in some way.

7.7 Probably Not: Hierarchical Scheduling for Mixed-
Criticality Systems

In the context of virtualization (compare Sect. 2.3.2 above), we often get the problem of hierachical
scheduling. On the one hand, the partitions are scheduled by the hypervisor, and on the other
hand, the operating systems inside the partitions schedule their processes/tasks.

According to Ripoll et. al. [Rip+10, Sect. 5], there are several open research questions on hierachical
scheduling. There is no decision procedure yet for some of the more complex scheduling strategy
combinations, whether a given system is schedulable.

However, we think that any proof of separability of the partitions depends on the simplicity of
the architecture. It might be tempting to improve the efficiency of a system by a new, elaborate
hierachical scheduling scheme. But this must decrease our trust in the composed system. Even
if there is some proof for the new scheme, its implementation is more prone to errors than the
implementation of a simple scheme.
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Chapter 8
Idea: A Processor Architecture for Time
Partitioning in the Space Domain

Based on some of the research challenges in the previous chapter, we propose to design a multi-core
processor architecture that avoids the problems of the current, ever more powerful multi-core
processors with respect to time partitioning, and that can be used in the space domain.

8.1 The Proposed Processor Architecture

As we have seen in the previous chapter, the increasing complexity of modern processor architectures
poses increasing challenges to time partitioning in the space domain. Some of the reasons are
shared caches in multi-core CPUs and timing anomalies in complex processor architectures. A
more radical approach to this than the approaches in the previous chapter is to design a processor
architecture with less obstacles for time partitioning.

A fundamental cause of the increasing problems is the following: the advances in chip technology
allow for an ever larger integration of tasks on a single chip. This allows to have several tasks
processed on a single such chip, provided we can guarantee that they don’t interfere.

A first answer to this was time and space partitioning. But the increasing integration also allowed
for optimizations transcending a single processing unit, such as shared caches and out-of-order
execution. These optimizations create problems when the ultimate goal is to execute the tasks
without any interference among them.

A more substantial answer therefore is to take the advantages of modern chip techonology, but to
design a processor architecture that allows to execute several small tasks in parallel and without
any interference among them. In this context, transcending optimizations are not helpful and
even have an adverse effect. Therefore, they should not be part of such an architecture.

8.2 Implementing a Custom Processor Architecture for
a Small Market

How can we implement such an architecture at affordable costs? The market for space computers
is small. We cannot expect a mass production of custom microcontrollers.

The answer is that modern chip technology also offers field programmable gate arrays (FPGAs).
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kind of task kind of core assigned
large task large core
small task small core
several very small tasks small core with time and space partitioning

Table 8.1: Assigning a CPU core to a task.

These are generic chips which can be loaded with an arbitrary digital design by an end user. The
gates and flipflops in an FPGA are fixed, but the connections among them are programmable.
Furthermore, a wealth of IP cores is available (complete digital designs to be loaded as building
blocks into an FPGA), including many CPU designs from a broad spectrum of architectural
complexity. Therefore, it is feasible to combine several such ready-made CPU cores onto a single
FPGA, according to our own architectural considerations.

8.3 Employing the Architecture for Time Partitioning
in the Space Domain

How can we assign tasks with different computing power demands to CPU cores? When the
capabilities of a CPU core roughly match the demands of a task, we can simply allocate the task
to this single CPU core. When a task has large demands on computing power, we can include a
CPU core with correspondingly larger capabilities into the FPGA. When there are several tasks
with small demands on computing power, we can assign them together to a simple CPU core,
which must not have the problematic complexities discussed above, and employ a time and space
partitioning regime. Table 8.1 summarizes this.

Designing such a custom-tailored FPGA requires that the size of the tasks is static and known
beforehand. (However, dynamic reconfiguration of FPGAs is available for some models. But we
suspect that the validation effort for this approach would be prohibitive.)

If the properties of tasks are more dynamic, a more generic and less custom-tailored processor
architecture can be employed: it provides a few classes of CPU cores with different computing
power. A task is then assigned to a roughly matching CPU core, as described above.

8.4 Discussion of the Approach

The key idea of this architecture is that there are no performance optimizations which transcend
the individual CPU cores, or the individual processing units inside a core. This is different to
current multi-core CPUs. They are optimized to increase the average overall performance, at the
price of bad performance in rare worst case scenarios, and at the price of interactions which let
the costs for temporal analysis explode.

Employing a set of independent cores for a set of tasks can be viewed as a return from a TSP
architecture to a federated architecture (compare Sect. 4.1). At first glance, this appears as a
contradiction. But it does make sense. The disadvantage of the orginal federated architectures
was the overhead of having several computers, and that the CPUs had become so powerful that
using them for a single task was a waste. Both arguments are not true when using an architecture
of federated, tailored, independent cores on a single chip. It is important that these cores are
independent from each other. This avoids the time separation problems that appear when using
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conventional multi-core CPUs. The resulting line of the proposed historical development is:

1. several federated, independent single-core CPUs
2. TSP on one more powerful single-core CPU
3. several federated, independent cores in one even more powerful multi-core CPU

(possibly employing TSP on a few of these cores for very small tasks)

The use of conventional multi-core CPUs, where the cores are not independent, appears to be a
difficult path, when it comes to validate real-time properties.

An FPGA is more expensive than an off-the-shelf CPU with the same computing power. But
aligning the processor architecture more to the problems of time partitioning and temporal
analyzability might very well be the cheaper solution, in the end.

8.5 Related Research

There is some research related to our approach, already.

8.5.1 Non-Mainstream Trends in Processor Architecture

In Section 3.2, we surveyed trends in processor architecture with relevance to timing analysis. One
(non-mainstream) trend is that many new processors are designed by using several simple cores
instead of a single or a few complex cores.

Another such trend is to use several simple processors with private memories instead of shared
memory. (For more details, see Sect. 3.2.) In particular the latter trend in general processor
design is related to our proposed processor architecture for the space domain.

8.5.2 The T-CREST Project: a Time-Predictable Multi-Core Archi-
tecture

One particlular project is particularly close to our ideas described above: the T-CREST project
developed a time-predictable multi-core architecture which eases temporal analysis [Sch14].

The project’s idea starts out with the observation that worst-case execution time analysis is about
ten years behind current processors, and that multiprocessors are therefore currently not analyzable.
The project then designs a new computer architecture, where the worst-case execution time is
the main design constraint, and the average-case performance is not (so) interesting. The entire
multiprocessor is put onto a single chip, employing an FPGA.

This system-on-a-chip (SoC) comprises

• newly-designed, bare-essentials processor nodes, with local memory (caches and scratchpad
memory)

• a network-on-a-chip (NoC), applying deterministic time-division multiplexing

• an SDRAM memory controller node

Figure 8.1 on the following page presents an overview of the T-CREST architecture.

Integral part of the project was the co-design of the processor node, the compiler, and the
worst-case execution time analysis tool.
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Figure 8.1: T-CREST architecture (taken from [Sch14, p. 9])

Most artifacts are open-source, and usage and collaboration are welcome, according to Schoeberl
[Sch14]. Quite a number of further papers were published, on individiual aspects of the project,
according to its web site [Han16]. The project war partially funded by the EU, and it ran from
2011 to 2014.

One result from the project is its experience with the network-on-a-chip. The time-division
multiplexing employed wastes bandwith, but there is plenty of bandwith on-chip. Therefore, this
is no problem, since only bandwith relative to cost matters. Having everything on a single chip is
a crucial advantage here.

The T-CREST project touches only some aspects of our idea described above. All processing nodes
are the same in T-CREST, the aspect of tailoring the core to the task is not covered. Furthermore,
the project stops at the compiler level, no operating system research is done. Therefore, the time
and space partitioning aspect is excluded, too.
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Chapter 9
Sketch of an Idea: a Processor Architecture
Specifically Supporting WCET Measurements

The following is a further idea, the potential of which we did not yet evaluate, due to limited time.
Current proof tools for real-time properties determine the worst-case execution time (WCET) of a
piece of code on a specific processor by simulating it, compare Sect. 3.1 on page 5. All relevant
execution paths are simulated. Of course, a simulation is orders of magnitude slower than the
execution on the real hardware.

When we think about adapting the processor architecture to the problem of temporal analysis,
there is a further way for doing this: We could use the real hardware for determining the WCET,
if there is hardware support for initializing rapidly the run of each execution path.

There has been similar hardware support built into microcontrollers, since long, for debugging the
functional behaviour of the code. But it might be interesting to adapt this to support WCET
measurements specifically.

Future work: look for research in this direction maybe already done.
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Chapter 10
Summary

We presented a survey of the current state of the reseach on time and space partitioning for space
avionics. There is already a body of existing work, it has been presented in Chap. 6:

• the IMA-SP project, which is an adaption of the aerospace Integrated Modular Avionics
(IMA) architecture for space avionics

• the SAVOIR-IMA initiative, which is a time and space partitioning based software reference
architecture

• virtualization solutions suitable for space avionics like XtratuM and AIR

• separation kernels suitable for space avionics like PikeOS, VxWorks 653, and others

• further work, e.g., on component base software architectures

But substantial research challenges remain to be tackled, as shown in Chap. 7:

• CPU-related challenges for time partitioning like multi-core CPUs and direct memory access
(DMA)

• challenges to performing real-time property proofs, including those from processor architec-
ture, virtualization, and distributed computing

• an investigation of the mechanisms separation kernel and virtualization with respect to time
and space partitioning

• the identification of the common properties of the aeronautical and the space domain with
respect to time and space partitioning

• an adaption of IMA-SP to launchers

• further ideas from an existing survey on research challenges for mixed-criticality systems

In contrast to others, we rather don’t think it is helpful to investigate hierarchical scheduling for
mixed-criticality systems.

Based on some of the above research challenges, we propose to design a multi-core processor
architecture that avoids fundamental problems of the current architectures with respect to time
partitioning, and that can be used in the space domain (Chap. 8). One key idea is to optimize
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the processor architecture for the worst case, instead of for the average case. Another important
idea is to strip away optimizations transcending a single processing unit, such as shared caches
and out-of-order execution, since they make real-time property proofs much harder, due to the
interferences they introduce. Such an architecture can be implemented even for a small market
such as the space domain, by using field programmable gate arrays (FPGAs). We discussed how
the capabilities of the CPU cores can be matched to the demands of the tasks to perform. For
small tasks, this can include time and space partitioning, again.
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