< HSB

Hochschule Bremen
City University of Applied Sciences

Neural Network on an FPGA for Speech Command Recognition on an
Autonomous Vehicle

Fynn Hagen
Jan Hartig
Roland Helmich
Mattheo Mahnke
Dylan-Noah Schade
Florian Sommerfeld
Hagen Stover
Philipp Wittje
Prof. Dr. Jan Bredereke

City University of Applied Sciences Bremen
Faculty 4: Electrical Engineering and Computer Science

March 8, 2022

Abstract

This research focuses on solutions for executing Neural Networks (NNs) on field programmable gate
arrays (FPGAs) of comparably limited power as efficiently as possible, for use of such networks on
autonomous vehicles.

Specifically, we propose a concept of a speech command recognition using a system-on-chip (SoC), where
we implement the first data processing stages on the FPGA of the SoC. A proof of concept for acquiring
audio data via the FPGA and converting it to Mel Frequency Cepstral Coefficients (MFCCs) has been
made. Using a Quantized Neural Network (QNN) we have reached an accuracy of 90% on an audio test
set for driving commands. However the NN vyields worse results during inference. The general concept
of the data processsing pipeline in this research, enables researchers to proceed the implementation on
FPGA hardware. As demonstrated by the developed NN speech recognition is possible on comparative
performance-limited FPGA boards.

Contents

1 Introduction

1.1 Motivation of the Project
1.2 Original Task Description
1.3 Actual Scope of Work

2 Fundamentals

2.1 Basic Principles of Neural Networks and Deep Learning
2.1.1 Introduction
2.1.2 Structure of Neural Networks
2.1.3 Training Process
2.1.4 EBEvaluation
215 FormatoflnputData
2.1.6 Preprocessing of Training Data
2.1.7 Summary and Qutlook

2.2 Speech Interfaces
2.2.1 Keyword Detection

2.3 Audio Formats
2.3.1 Pulse Density Modulation (PDM)
2.3.2 Pulse Code Modulation (PCM)

2.4 Fast Fourier Transformation

25 FPGA . o e
251 IP-Cores
252 AXI-Stream

3 Design of System Architecture
3.1 Interfaces Between System Components
4 Used Materials

4.1 Hardware

4.2 Operating System and Development Environment

4.3 Software

5 Data Processing on FPGA

10
13
15
17
17
17
18
18
20
20
20
21
22
22
22

23
24

25
25
25
25

26

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

5.1 Recording Pulse Density Modulation (PDM) Samples
5.2 Converting Pulse Density Modulation (PDM) to Pulse Code Modulation (PCM)
52.1 Low Pass Filtering
5.2.2 Decimation
5.2.3 Conversion on the FPGA
5.3 MFCC Feature Extraction

5.4 Provide converted Data for further processing
6 Data Interface Between FPGA and Neural Network

7 Machine Learning
7.1 Generationof Test Data.
7.1.1 Source of Raw Audio Data
7.1.2 Data Augmentation
7.2 Neural Network
7.2.1 Neural Network Architecture
7.2.2 Training
7.2.3 Validation

7.2.4 Inference L
8 Evaluation
9 Conclusion and Outlook

A Used Material
A1l Software Packages
A.2 Standard notations for Deep Learning L

B Repository Structure
B.1 General Repository Structure
B.2 Documentation Repository
B.3 FFT Repository
B.4 Neural Network Repository
B.5 Extending the Pipeline
B.6 Training Database

List of Figures
List of Acronyms

Bibliography

31

32
32
32
32
33
33
34
35
36

37

39

40
40
41

42
42
42
42
42
43
43

44

46

47

Chapter 1

Introduction

written by Jan Bredereke

In this project, we work on solutions for executing neural networks on FPGAs of comparably limited
power as efficiently as possible, for use of such networks on autonomous vehicles. This task comprises
the areas of field programmable gate arrays (FPGAs), system-on-chip (SoC), and speech command
recognition with a neural network.

1.1 Motivation of the Project

written by Jan Bredereke

Neural networks are often used in data centers with powerful and power consuming special hardware. A
current research question is how to make full use of neural networks also at the “edge” of the Cloud. That
is, close to the sensors and the actors, or even autonomously from data and power supply connections.
The CPU of a microcontroller has too scarce data processing resources for this. A field programmable
gate array (FPGA) can offer more data processing resources, both in absolute numbers and in relation
to its power consumption. An FPGA is very well suited for a highly parallel structure such as that of a
neural network. In practice, however, many optimization tasks need to be solved before full use of the
potential of the FPGA can be made.

The motivation for this project comes from space craft engineering in particular. On-board computers
provide particularly scarce data processing resources. Access to the ground segment usually is available
only intermittently. Due to space radiation, current off-the-shelf processors would fail soon. Therefore,
one uses special processors. Their chips feature structural widths of at least 65 nm. These special
processors are sufficiently robust. But they provide correspondingly less data processing resources than
those of 10 nm currently in use elsewhere. An extremely small number of computers of this kind are
made. Therefore, they usually are not made with application specific integrated circuits (ASICs), but
with programmable standard hardware (FPGAs). Radiation-hard versions of some FPGAs are available,
which have correspondingly larger structural widths. There is increasing demand for more on-board
computing resources. Examples are on-board image processing, e.g. for autonomous rovers on other
celestial bodies, or for constellations of nano-satellites with narrow bandwidth to the ground segment
each.

1.2 Original Task Description

written by Jan Bredereke

There is a simultaneously taught course “Projekt: SoC-NN — FPGAs fiir neuronale Netze: Edge
Computing auf autonomen Vehikeln” (project: SoC-NN — FPGAs for neural networks: edge computing

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

on autonomous vehicles). Like several preceding courses [Alt421; Mul21; Mil+21; Hut+20], it employs
an autonomous model car as a practical vehicle, serving as a representative for an autonomous space
craft. See Figure 1.1. The vehicle is equipped with a camera and a SoC Zyng-7020. The SoC features
an Arm CPU and, in particular, an FPGA Artix-7. The data processing resources of the Artix-7 are
quite close to those of an FPGA suitable for space. The SoC is integrated into a PYNQ-Z1 board. In
Figure 1.1, the board can be spotted easily due to its pink colour.

In the current mini-project, however, we do not
work on visual object recognition, but on speech
command recognition. Nevertheless, we keep
the above vehicle as the application. We enter
the area of acoustic signals, new to us. This area
provides less turnkey solutions for neural networks
than there are for visual object recognition. The
parallel project SoOC-NN aims to make the vehicle
recognize simple human arm gestures and use
them to control the vehicle's driving. Now, we
aim to make the vehicle recognize simple speech
commands and use them analogously.

Full speech recognition is a complex task. It com-
prises the analog/digital conversion, the temporal
windowing, the breakdown into the frequency
spectrum by a fast fourier transform (FFT), a
filtering of the resulting frequency spectrum plus
an entailing meta-frequency analysis (Cepstrum),
and a pattern recognition using an acoustic model, :
a pronunciation dictionary and a language model, Figure 1.1: The vehicle of the simultaneously taught
in order to obtain a text in written form, finally. course, with visual object recognition on an FPGA.

This requires comprehensive knowledge of the photo: Felix Miiller

structure of language, and also considerable data

processing power. Therefore, we restrict ourselves to the first part of this processing chain. We content
ourselves with the recognition of a few, simple speech commands for our vehicle, like, e.g., the commands
“left”, “right”, “forward”, and “stop”. For this, we need to realize mainly the major processing steps
of the temporal windowing, the fast fourier transform (FFT), and the classification of patterns in the
output of the FFT by a neural network.

Before the start of the project, we devised an original plan to perform the following intermediate steps:
At first, we use the PYNQ-Z1 boards of the mini-project, but not yet embedded into a vehicle. We
implement the FFT on the FPGA, preferably based on a turnkey IP core for the FFT. We realize the
neural network on the CPU of the SoC, provisionally. This postpones the familiarization with the rather
complex implementation of a neural network on an FPGA to later. As soon as we got a grasp of the
processing steps and have put them into practice, we optimize the processing speed. For this, we move
the neural network to the FPGA, too, for example. Furthermore, we then integrate the speech command
recognition into the real vehicle. The vehicle may need to do listening pauses during driving, in order to
be able to understand speech commands. Maybe we need to add a better microphone than the one
integrated into the board. We might even need several microphones to achieve a directional characteristic,
in order to reach a sufficient range, and in order to handle noise. We do not expect to achieve all of
these steps completely in the current term already.

The high-level goal of the project is to improve the performance of the signal processing massively,
while contending with the restrictions of the existing hardware. As a practical result, we expect a
correspondingly increased quality of the vehicle’s autonomous driving. The expected over-all result of
the project is a deeper understanding of the many potential approaches to optimization, both in the area
of digital circuits and in the area of neural networks.

1.3 Actual Scope of Work

written by Philipp Wittje

As this mini-project took place as a separate part of the course at the university, the time frame was very
limited. In order to avoid leaving an unfinished project, we have already agreed at the beginning which
sub-goals are achievable and can be completed and which further goals may be developed by subsequent
projects. In accordance with the time and personnel resources, we have agreed to develop the project
separately from the vehicle, i. e. explicitly not to have the requirement that the system ultimately runs
on the vehicle and has the full range of functions. Rather, the work includes the extensive preparation
for this, i. e. the evaluation of the audio signals from the boards onboard microphone, as well as its
further processing by FFTs on the Programmable Logic (PL). Linked to this is the integration of the
corresponding intellectual property core (IP-Core) and libraries on the FPGA. In addition, it includes the
implementation of a neural network, as well as a data generator, which offers the possibility to generate
an arbitrary amount of different train and test data from a finite amount of audio data to train and
test the neural network accordingly. Since the feasibility of this project was an important aspect, we
paid attention to their further usability when selecting the hardware and software used, as well as to the
corresponding noise due to driving noise already in the test data generator, even if we did not adapt the
result to the vehicle in motion.

Chapter 2

Fundamentals

2.1 Basic Principles of Neural Networks and Deep Learning

written by Dylan-Noah Schade

This section is an introduction to Neural Networks and deep learning. Most of this section’s content as
well as part of its structure are based on the Deep Learning Specialization [NKM], an online course at
the learning platform Coursera [Inc21] co-founded by Dr. Andrew Ng, who is also the main author of
the deep learning course.

While giving an overview over the topic and introducing the most basic principles and keywords, the
underlying mathematical relationships of NNs are also summarised and explained examplarily. Since
especially these are taken from transcripts of the Deep Learning Specialization [NKM)], excessive references
to individual formulas and contexts have been omitted.

2.1.1 Introduction
Definition of Terms

The principle of Deep Learning can be roughly described as the empirical, step-by-step approximation of
a very complex mathematical function. This complex function with often thousands or even millions of
parameters is built up in a structure of different layers, which is generally referred to as a Neural Network
(NN). With the help of such a network, an attempt is made to model a real-world problem. In principle,
it is assumed that there is an arbitrarily complex mathematical function for the real-world problem that
describes it. The step-by-step process of approaching this function through systematic trial and error
and minimizing the deviation between the function's result and the expected result is called training
or learning. This way, the NN “learns” through training to produce an output, often called prediction,
based on defined inputs. The formats of in- and outputs, the exact network structure and the possible
uses are far-reaching and always depend on the application context. The term “Deep Learning” describes
networks with more than one hidden layer, i.e. multilayer NNs. [Heil7]

Historical Background

The foundation of machine learning was laid as early as the 1950s [Heil7]. In the following decades,
some techniques were already developed and papers were published, but there was a lack of technology
and especially computing power to add value from NNs as there is today. A detailed overview of early
publications and milestones of Deep Learning is provided by [Sch14].

It took until the mid-2000s for the first major successes to be achieved due to the now sufficient
computing power. Since then, interest in the many possibilities offered by Deep Learning has been
growing - not only in the research sector, but increasingly also in industry.

Application examples

The following is an unsorted and incomplete list to give a rough overview of the wide range of application
examples:

= image recognition, such as classifying images according to a simple true-false scheme or even
recognising over 9000 different objects, as the “YOLO9000" network can do [RF16].

» Speech recognition, as most smartphones offer these days.

= translations

Anomaly detection, e.g. detection of fractures in X-rays of bones or analysis of outliers in time
histories.

One of the most popular introductory examples is classifying images as those with cats and those without.
The NN receives an image as input and the output is a floating point value between 0.0 and 1.0, which
indicates the probability that the image is a picture of a cat. This example will be used throughout the
following explanations.

2.1.2 Structure of Neural Networks

The formulas introduced in this section make use of the symbol sets and notations defined in the Standard
notations for Deep Learning (see appendix A.2) [NG].

A Single Neuron

A Neural Network consists of a set of so-called neurons in several layers. The simplest network would
consist of a single neuron and thus only one layer. A neuron forms the basic unit of a NN. Each neuron
has the same structure. It expects an input z and produces an output a. Each neuron consists of a
simple linear function z(z) and a non-linear activation function g, which produces the output a.

The function z always has the form z(z) = wz + b, where z is the input, w is the so-called weight and b
is the so-called bias. The variables w and b are the two parameters of each neuron that are trained. The
training process later results in the condition that the smaller w in the neuron, the less this particular
input is weighted.

The activation function can be chosen as one of many hyperparameters, but it is always applied as
g(z(x)) to z, producing the output a of the neuron. Thus, for a single neuron this results in 2.1.

a = g(z(z)) = g(wz +b) (2.1)

Vectorization

Previously, all variables were presented as single decimal numbers. Each neuron computes an output a
to an z. However, since in a network each neuron of a layer is connected to each neuron of the previous
layer, the input x is not a scalar but a (column) vector. Similarly, each neuron must then have a weight
for each input value, making w also a (row) vector. Capital letters are subsequently used for the vector
quantities, so « becomes the neuron'’s input vector X and w becomes the weight vector W. However,
each neuron still yields a scalar output a, since the scalar product W - X is formed from W and X.
Thus, with the two vectorized quantities, 2.1 results in 2.2.

a = g(=(X)) = g(W - X +1) (22)

The bias b here is the same scalar value for all input values in a neuron. To make this clear, the bias
remains in its lowercase notation in the following. In contrast, W now represents a weight for each input
value of X.

10

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

Forming a Network of Multiple Neurons

Vectorization per Layer

So far, each neuron has been considered separately. For the further explanations, however, not only
single neurons but all neurons of a layer are considered together. For this a further vectorization of the
variables from 2.2 is necessary. This also simplifies a corresponding vectorized implementation of the
formulas.

To clarify that each layer [is a set of neurons nl, an extended vectorized notation is introduced. In
each layer, multiple values are processed, in particular each neuron of a layer processes all outputs of the
previous layer. Each layer still gets an input vector X, which is the same for each neuron in the layer.
The computation within each neuron remains unchanged to 2.2, the bias b also remains in its lower case
notation.

If all neurons in a layer are combined, the bias b, the function z, and thus the output a are vectorized.
The weights of each neuron W are also expanded by another dimension for the entire layer, so W now
becomes a matrix. Thus, for each layer with all its individual neurons, 2.2 results in 2.3, which describes
all neurons in an entire layer [.

A=g(Z(X)) = g(W - X +b) (23)

The activation function g remains the same for all neurons in the layer. The exact dimensions are
discussed in more detail in section 2.1.2. It is also shown that when 2.3 is extended to all training data,
A and Z become matrices of the same dimension, but the bias b remains a one-dimensional vector,
which is why it is still noted as lowercase here.

Deep Layers

In a multi-layer network, as already explained, each neuron is connected to each neuron in the next layer.
The output values A of all neurons of a layer [serve as input to each neuron of the following layer
[+ 1, respectively all inputs of layer [are the outputs Al of the preceding layer I — 1. Thus, for all
layers [, each of which is preceded by a layer [— 1, 2.3 gives the more general form 2.4, which describes
all neurons in a deep layer (i.e. any layer between the in- and output layer).

Al = gl 710y = gl eyl . 411 gl (2.4)

These layers, which are surrounded by other layers, are also called deep layers. gl is still the non-linear
activation function of the whole layer [, all other values are vector quantities with values for each neuron
of the layer, similar to 2.3.

Input Layer
Before the very first layer lies the input of the entire network, also called the zeroth layer, in form of the
input vector X. The first layer is a special case of 2.4 with [= 1 and A% = X as shown in 2.5.

Al Z gl 710y = g). x4 plt)y (2.5)

Output Layer

After a fixed set of layers L (the depth of the network) follows the output layer as the last layer of the
network. The output vector of the output layer ALl forms the output of the entire network Y. Thus, in
the special case of the output layer, 2.4 becomes 2.6.

V= Al = glE (2] = gLl (wlEl . g[2=1] 4 plE]y (2.6)
Considering a binary classification problem, the output layer consists of only one neuron, which returns a
scalar value, in that case §. This is usually a floating point number between 0.0 and 1.0 and gives a

probability or prediction.

11

So, in the example mentioned before, it gives the probability that the input vector (an image) belongs to
the set of cat images. If one needs a binary decision as output, one sets a threshold, here e.g. at 0.5,
above which the computed probability is considered large enough that one commits to the prediction as
True (cat image).

Clarifying the Dimensions

Since each individual neuron should always return a scalar value a, the output vector Al of each layer [
is equal in length to the number of neurons n!!l in the layer. Since Al is the result of gl!l(Z1), zl
must correspondingly have the same dimensions as A, since ¢!l is simply a (non-linear) function on all
values of ZlUl.

Now, for Z!!l to also have the length nll, WU must have the dimensions (nld, nl!'=1). This is due to
the fact that Z[L1 = WL . AL=1 The scalar product of WL and AL~1 since AL~ has length
nll=1 can only yield a vector of length nl!l if the matrix WX has the dimensions (n[l], n[l_l]).

The bias b/l does not further change the dimensions of Z[! and also has the length nl!l. Thus, it contains
only one value per neuron of the layer.

If we now additionally note that all layers of the entire network are trained with m data samples during the
training process, then for all layers of the network for all training data at the same time, the dimensions
are as follows:

AU (n[l]’ m) — 7 ¢ R x m
Wl (nll) =1 _ ol ¢ grx nlt
Al (nl) - Al ¢ gl m

ol (nll) 1) = 7zl e g

Input Layer

The input layer necessarily has the same dimension as the input vector. It is therefore a special case of
the number of neurons nl!l for any layer [, where in case of the input layer [= 0 and nl% = n,. Again,
under consideration of the fact that the network is trained with m samples, the dimensions of X reflect
the training dataset of the network:

X e R ™
Output Layer

Analogous to the input layer, the dimension of the output in the output layer is nl
in the following definition of its dimensions:

L] — ny, which results

Y e Rwx ™

So, ny is the number of neurons in the last layer. This is always n,, = 1 for binary classification problems.

For multiclass problems, it would correspond to the number of classes to be recognized. If one would
modify the example and - instead of whether the picture shows a cat at all - want to determine the breed
of the cat shown, n, would correspond to the number of cat breeds to be determined. The network
would then provide a probability per class, or in the example per cat breed, that the input belongs to the
corresponding class.

It is common for multi classification problems to use a softmax-layer as the last layer of the network.
This layer simply applies the softmax-function to the output values, so that they sum up to 1 over all
categories. The necessary calculation is shown in 2.7, where Z[L1 is the output of the last layer L before
the activation function. Thus, the softmax-function is replacing the activation function of the last layer

12

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

and producing al!l instead.
zIL]
(&
alll = zezm (2.7)

Summary

In this section the structure of the neurons in each of the layers, including input and output layers, was
explained and generalized for all layers and over m data samples. From the definitions of the individual
neurons, the construct of a NN can now be formed abstractly by linking the individual layers and their
neurons. The whole network always receives an input vector X as input. When this input vector is
created, all its values are then used in different weights to compute a single output or prediction Y
across multiple layers, indicating a probability. This value forms the output of the network.

Such a construct is exemplified in figure 2.1, which shows a simple NN with three layers, thus L = 3.
The input vector X of length n, = 4 has been divided into its individual values acgi) . xff), where (7)
represents one sample each of the training data, e.g. a single image. Since the output layer (I = L = 3)
consists of only one neuron, the network provides one scalar output per data set: the prediction gj(i).
Each neuron, represented by a circle in the figure, contains the previously explained computation
all = g(z1(Al=11)), which is generally obtained for each layer represented by substituting A1) for X

in 2.2.

Figure 2.1: Neural Network with three layers (L = 3), input vector X and output value § Source: [NG]

2.1.3 Training Process

The static structure of a classical NN was explained in detail in the previous section. One could now
apply an input vector to the network and would get an output. However, this output would not be
related to the input. Therefore it is necessary to train the network in advance. In this training process the
weights, which are usually initialized randomly at the beginning, and the respective biases of each neuron
are changed step by step in such a way that the output corresponds more and more to the expected
result and the predictions become increasingly more accurate. The two methods Forward Propagation as
well as Backward Propagation play a crucial role here.

Forward Propagation

Letting the network initialized with random weights process an input vector, one obtains corresponding
output values for each neuron in each layer. For each layer, a vector Z!!l as well as Al is computed.

13

These are cached for subsequent backward propagation along with the bias vector bl and the weight
matrix W of each layer, both of which still contain arbitrary values at the beginning.

Forward propagation is thus nothing more than computing an output to an input vector. Since this is
the logical path “forward” through the network, this process is called forward propagation. It is also
applied later to use an already trained network for predictions, which is then called inference.

Labeling of Training Data

To train a network, pre-labeled (sometimes also called ground truth) training data is needed. For each
data set or each sample from the training data there is an expected result. In the simplest case, as in
the cat image recognition example, this can be a binary value. For example, if the network should return
a value close to 1.0 for cat images, the label in the training dataset would be 1 for each cat image and 0
for every other image. The expected outputs are recorded in what is called the label matrix Y, which
has the following dimensions:

YERnyX m

For a single training sample 7, e.g. an image, Y contains the label y(). Similarly, the prediction matrix
Y contains the single prediction (). The comparison of the output §(*) of each sample i with the
expected value y(l) is used in backward propagation in a cost function to optimize the network.

Backward Propagation

If one imagines the whole network as a complex function, the training tries to find the minimum of a
so-called cost function J. For this purpose, the principle of gradient descent is used. One “moves”
on the function in the direction of the largest or steepest descent to reach the minimum. The cost
function J forms the difference between the expected value Y and the prediction Y of the network. The
cost calculated in this way is now used “backward” through each layer to update the weights with the
derivatives of the previous layer such that the cost function is minimized.

The gradient descent process is shown in figure 2.2 as an example for two-dimensional space. Accordingly,
the principle is carried out by partial derivatives of each parameter for each neuron starting at the last
layer and ending at the first layer. The dimension of the function to be optimized corresponds to the
number of trainable parameters in the network. This already exceeds four to five digit values for small
networks, for very complex networks, e.g. for image or speech recognition, it can be several million
parameters. This can no longer be visualized and is difficult to imagine.

Cost Function

The training process is used to optimize or find the minimum of the cost function J by using the gradients
to move step by step further towards an optimal minimum. The cost function is sometimes called a
“loss” or “error” function. A simple example of a cost function is shown in 2.8.

J=|v v (2.8)

Another, more complex cost function, based on the cross-entropy loss function averaged over al m
training samples, is shown in 2.9.

J = _% f: [yn 10g gn + (1 - yn) IOg(l - gn)} (29)

n=1

The deduction of the derivatives of individual parameters for all layers of a NN is omitted here. However,
a good visualization of backward propagation and the influences of individual neurons and their weights
on the cost function can be seen in [3BI17].

14

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

Starting
f(x) A / Point

.\-

lteration 3

Iteration 4

Convergence

Y

Final
Value

Figure 2.2: Gradient descent in several steps using a two-dimensional function Source: [McD17]

Parameter Updating
Each trainable parameter ®, i.e. the parameters W and bl!l of each layer, is generally updated in the
following way:

oJ

P=d—a oo (2.10)

Here « is the so-called learning rate and g—&l) is the partial derivative of the cost function in respect to .

Performing Training

In the actual training process all of the collected training data is often processed multiple times in the
network to drive the learning. It is also referred to as an epoch when the network has processed the
entire data set once. For example, one could have 10,000 training images trained in 20 epochs. It is
self-explanatory that this requires as much computing power as possible.

In order to reduce the computation time, several samples are often combined in so-called minibatches or
simply batches. The calculated costs are then averaged for all samples of the minibatch.

Depending on the application, a few thousand samples as a training set can already be sufficient to
achieve results, but it can also be significantly more. One of the biggest problems in Deep Learning is
the compilation of the labeled training data. This can often only be done by hand and thus takes a
corresponding amount of time. However, there are some standard datasets that are freely available for
experiments, exercises etc., such as the MNIST dataset, which contains 70,000 images of handwritten
numbers from 0 to 9 [LCB].

2.1.4 Evaluation

Once a network has been trained on sufficient data, the accuracy and performance of the network must
then be evaluated. For this purpose additional data is used, which was not part of the training data set.
This so-called test set has therefore never been “seen” by the network before. The performance of the
network can be determined on the basis of the predictions on the test data, which are also provided with
labels. If noticeably more than half of the test data is classified correctly, it is proven that the network
does not only produce random output, but has learned correlations in the input data.

15

Various metrics can be used to evaluate a network. First, there are basically four types of results how to
classify each test sample:

= correct positives: the number of correctly detected positive samples.
= correct negatives: the number of correctly recognized negative samples.
= false positives: the number of samples falsely detected as positive.

= false negatives: the number of samples falsely recognized as negative
From this, we can derive the following ratios, among others:

= Accuracy: Ratio of correctly positive and correctly negative samples to the total number of samples
in the test data set.

= Precision: Ratio of correctly positive detected samples to the total number of all samples detected
as positive (correct and false positives).

Recall: Ratio of correctly positive detected samples to the total number of positive samples in the
test data set.

. _ Precision x Recall
= Flscore: F1=2x Precision+Recall

Hyperparameters

In order to optimize the network for the corresponding application, it is necessary to adjust the so-called
hyperparameters. Hyperparameters are all variable values of the network architecture and the training
process that are not optimized by the training itself. There are different hyperparameters depending on
the architecture of the network and the algorithms used.

Some examples of common hyperparameters are
= the activation functions ¢!/ in each layer.
= the number of neurons per layer n!
= the number of layers L in total
= the number of training epochs
= the size of minibatches
= the calculation of costs, i.e. the cost function J

= the learning rate «

Improving the hyperparameters so that the performance of the network is optimized is called hyperpa-
rameter tuning. This can be done manually in the simplest way, by training and comparing the network
several times with different configurations. However, since this requires a lot of time and structure, it is
useful to find an automated solution that tries different hyperparameters and chooses the next set of
parameters based on the results.

16

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

2.1.5 Format of Input Data

In subsections Labeling of Training Data (2.1.3) as well as Performing Training (2.1.3) it has already
been discussed that one of the most important requirements for the successful training of a NN is an
appropriately labeled and extensive data set. However, another important property of this dataset is that
all samples are in the same format or dimensions. So, in the example of an image dataset, all images
must have the same dimension and should use the same encoding for their pixel values, e.g. RGB color
values between 0.0 and 1.0 for each pixel. This is due to the static architecture of a NN, in which the
first layer expects a fixed number of parameters or a fixed length of the input vector X.

For any future use of the network, it must likewise be ensured that the format of the data matches
the format of the training data in order to obtain plausible outputs. This may need to be ensured by
appropriate conversion measures.

While an end user of a trained network only has to care about the correct format of the input data to get
the corresponding output, the underlying structure of the NN with its various layers can remain hidden
to him. In this way, NNs can also be used as an Application Programe Interface (API) that promises a
corresponding output if the input is correct.

2.1.6 Preprocessing of Training Data

A step in Artificial Intelligence (Al) projects that should not be underestimated is the preprocessing of
input data. It often makes sense not to train a NN with raw data, but to process it in advance in the
same way. There are various methods, depending in particular on the use case and the data format,
to preprocess training data. Since every input into a network, independent of the actual data format,
always ends in an input vector X of floating point numbers, it is often useful to normalize it. Likewise,
it must be decided how to encode the input data into such a vector.

Example of an Input Vector for Images

For images, one often chooses a square format, e.g. 256 x 256 pixels. Thus, when dealing with RGB color
images, the dimensions of the images are 256 x 256 x 3. Since this three-dimensional matrix cannot serve
as input for the network, it is flattened into the one-dimensional vector X by writing all columns one
after the other for the three color values. This input vector X of length n, = 256 x 256 x 3 = 196, 608
then serves as input for the network. Accordingly, each neuron of the first layer of the network has
ny = 196, 608 weights w.

2.1.7 Summary and Outlook

An introduction to the topic of deep learning and Neural Networks was given and the mathematical
foundations of a simple network were derived and explained. An attempt was also made to place the
theory into an overall picture. By appropriately explaining the preprocessing, the training and evaluation
process as well as the outputs and their interpretation by means of some examples, a basic end-to-end
use of a NN was circumscribed.

Thereby it was limited to the most necessary basics. Below is a list of some more advanced topics that

were not covered in this introduction:

= more complex network architectures, such as Convolutional Neural Networks (CNNs) for image
analysis, Recurrent Neural Networks (RNNs) as well as Long Short Term Memorys (LSTMs) for
time-critical data or data histories, Generative Adversarial Networks (GANs) etc.

= mathematical optimization and regularization methods, such as. “Batch Normalization”, “Weight
Initiliazation"”, "“L2-Regularization”, “Dropout”, “Adam Optimization” etc.

= different approaches and exceptions to the explained proceedings, such as unlabed training or
various activation functions, like tanh or ReLU

17

2.2 Speech Interfaces

written by Florian Sommerfeld

Speech is regarded as the primary means of human communication [Jou08]. It is natural for humans and
thus can be used for Human Machine Interaction without the need of a special training. Furthermore
a speech interface provides several advantages over traditional interfaces, such as the improvement of
multitasking by leaving hands and eyes free for use. Current Automatic Speech Recognition systems have
shown that they are applicable to various HMI tasks. It is already being used successfully in numerous
fields such as Smart Home [PWS18]. ASR seeks to create a system capable of converting audio signals
into a linear sequence of words.

2.2.1 Keyword Detection

Speech interface systems most commonly make use of the Wake-Up-Word concept. Amazons Alexa
for example starts streaming user speech to the Alexa Voice Service when the wake word engine has
detected the wake word "Alexa" [wake-word-verification]. The stream is closed as soon as an intent has
been identified or the user stopped speaking. The WUW speech recognition paradigm was first proposed
as a method to explicitly request the attention of a computer using a spoken word or phrase by Képuska
V in 2009 [Kepll]. The method consists of multiple components: Frontend, Voice Activity Detector,
Backend and a Support Vector Machine Classifier. As illustrated:

Frontend Backend Classification
- T — HMM Evaluation » SVM Classification
v
' o o Ve e
Signal Processing 00 0 '0 'O i T
v @ 0 0 0 0 P
R © 20 0 %0 ‘0 v, 5P
YN Y A
Lapt e w i b aas v ¥
v Multi Scoring INV/OOV Decision
Feature Extraction - hA
VAT

() ™

»
>

1

Figure 2.3: WUW system design Adapted from: [Kepll]

The frontends task is to extract features of the input signal using MFCCs and Linear Predictive Coding
Coefficients (LPCs). The extracted features will be anaylzed for any voice activity and if the input frame
is speech-like it will be send to the backend for a recognition procedure based on Hidden Markov Models.
The models are trained to recognize a specific word as the WUW. When the WUW was detected, the
speech input will be forwarded to the classification component which classifies a word as In-Vocabulary
or Out-of-Vocabulary using Support Vector Machines.

In comparison to the work of Képuska V. we are using a neural network as our backend, so hereinafter
we focus on the fundamantals of feature extraction, more specifically the MFCCs analysis since studies
have shown that it has the highest performance rate and lowest complexity [McL09].

Feature Extraction

Feature extraction is the process of determining a value or vector that may be utilized as an object
or individual identifier in the classification process [Aul19]. MFCC analysis is the standard method for

18

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

feature extraction in ASR [Mot02]. The anylsis is based on possible frequency differences detected by
the human ear and commonly shown on a Mel (derived from Melody) scale. The following ilustration
shows the feature extraction process with MFCC:

- - AN "‘. A Y o 'Fyr-equemy

Time

Speech o\
Signal Windowing FFT

Mel Fil&r Bank

. h“ | I‘ H i ||I :' II‘ rl'II "' I
; : Al | ; \
"||_||‘|I|. I\ I 'll' \(:

‘_Hl" ill I 'I |I ’ ’I
|

MFCC value

I iy | TR
.lm ”Il'_l | | 2LV
Frequency

MFC-Coeft

“Coef. number
MFCC features DCT

Figure 2.4: MFCC analysis block diagram Source: [Aul19]

At first a pre-emphasis is applied on the analog signal which emphasizes high frequencies to remove
noise. The pre-emphasis filter increases high frequencies and reduces low frequencies of the signal:

y(t) =z(t) —ax(t—1) where filter coefficient o € [0.9,1.0] (2.11)

The filter output will then be split into short time frames to deal with common problems such as aliasing,
spectral leakage, and discontinuity. After splitting the frames, a Hamming window will be applied to the
signal before it is passed to the FFT. The N variable of the window function equals the samples of a
frame:

w(n) = 0.54 — 0.46 cos(2%) where 0 <n < (N —1) (2.12)

The windowed signal is transformed from the discrete time domain to the frequency by taking the discrete
Fourier transform (DFT) of that sequence using an FFT algorithm for efficiency [GD15]. In our case z,
equals the nth value of the windowed signal in the following mathematical definition of a DFT [JC14]:

_ j27mnk

Xp =SNG w e k=0,...,N—1 (2.13)

The result of the FFT is a spectrum which then will be mapped to the Mel scale by applying a triangular
function [JC14] to compute Mel filter banks:

Mel(f) = 2595log;(1 + =L5) (2.14)

After computing the Mel filter banks, a base 10 logarithm is applied:

Xi = logio(Thg | X (k)| Hi(k)) (2.15)

19

“X; is the value of frequency spectrum to i, N is the number of coefficients of FFT, and H;(f) is the
filter value to i on the frequency spot f.” [Aull9]

Finally the Mel cepstrum (power spectrum of the logarithmic filter bank) is converted using a Discrete
Cosine Transform to decorrelate the log filterbank. The following DCT formula is used to compute the
MFCCs [Aul19]:

Cn = 211 (log (X)) [n(M —

N[=
~—
=

(2.16)

2.3 Audio Formats

written by Jan Hartig

The used SoC has a Micro Electro-Mechanical System (MEMS) microphone onboard [PZ1]. This kind
of microphone is used in most modern devices because of its small size, low cost and low power usage
[pdm]. In case of the PYNQ-Z1 board, the microphone provides Pulse Density Modulation (PDM)

encoded data. For further processing, PDM encoded voice data has to be converted to Pulse Code
Modulation (PCM) encoding.

2.3.1 PDM

PDM encoded (audio) data is a stream of single bits at a comparably high sample rate (often around
one to three Mhz). The value of a single bit is determined by a process called delta-sigma modulation
as seen in 2.5. This circuit consists of an integrator and a feedback loop of the last PDM value to
be added to the analog input. The maximum frequency is a stream of only '1's and the lowest only
'0’s. Because of the high sample-rate (fs, rate at which a signal is sampled to produce a discrete-time
representation) the bandwidth (maximal frequency that can be sampled (following rules of Nyquist and
Shannon [nyquist-shannon49])) is very high for most use cases (%2). To deal with PDM data, it has to
be decimated (removing unnecessary frequency levels with digital filtering). An example (PDM encoded)
sine wave can be seen in 2.6. [digital-audiol2] [pdm]

Int I lip-FI
Analog n?gra F:I o EDM

- clk .Y

Figure 2.5: delta-sigma modulator Source: digilent.com [PZ1]

Sine Wave /\/
FDM Signal | | | || —L

0101101111111 111 10210110101 0010000000000000L00010Q

Figure 2.6: PDM signal modulation Source: digilent.com [PZ1]

2.3.2 PCM

PCM data is a series of samples with a fixed wordlength. The bandwidth characteristic is the same as in
the PDM modulation. Oppose to PDM data, a lower sample-rate is used (usually 48 kHz). The quality

20

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

of the signal is determined by the wordlength (N). A higher wordlength z means more quantization levels
(n = 27). The more quantization levels there are, the smaller is the difference in (voltage) frequency that
can be distinguished. The result of this is a lower quantization noise (error of real signal and output)
which leads to a better representation of the actual signal. To evaluate the quality of a signal the signal
to noise ratio (SNR) is used (SNR = (6.02N + 1.76)dB). [digital-audiol2]

2.4 Fast Fourier Transformation

written by Jan Hartig

Algorithm to (efficiently) calculate the DFT. A DFT is a (limited) timeframe of a signal decomposed into
discrete frequencies components. There are different implementations (see figure 2.7). Most commonly
the Cooley-Tukey algorithm is used [CoolTuk65]. Parameters for the FFT have to be set according to the
incomming signal and the desired output singal quality. The incomming signal (left side of 2.7) has to be
sampled with a sample-rate (fs) and a chunklength (C'L, power of 2) for the DFT decomposition has to
be adapted to the application case. The result of the transformation is a spectrum of all frequencies the
given chunk consists (right side of 2.7). [FFT]

Signal paramters

» bandwidth f,= fs/2
= timeframe (length of chunk) D = CL/fs

= frequency resolution (minimal frequency step) df= f<s/CL

/ frequency

time

Figure 2.7: fast fourier transform picturized Source: nti-audio.com [FFT]

For the FPGA used in this project, XILINX is providing a IP-Core with different alogrithms to use for
(chip) size and speed requirements (view the documentation [xFFt21] for more detailed information).
In most cases the Radix-N algorithm is used to calculate the FFT. Compared to the Cooley-Tukey
algorithm the number of multiplications needed is reduced significantly (Radix-4, 25% less) [xFFt21].

21

2.5 FPGA

written by Philipp Wittje

An FPGA is a digital component that can be used to realize different circuits by means of different
programming. This is also the main advantage of FPGAs over ASICs, which are chips that are
manufactured for a special case. An FPGA can be deleted and reprogrammed again and again, which
makes them very flexible in their application. Especially for smaller quantities, they are also cheaper in
production than ASICs, although usually with a smaller number of gates, so it tends to be lower clock
frequencies than conventional ASICs.

In detail, an FPGA consist of a large number of logic elements, often these are flipflops with logic circuits
stored in front of them and look-up table (LUT) with which the logic functions are realized. A LUT
can realize any combinatorial function (NAND, XOR, AND, multiplexer, etc.) from the input signals.
The number of input signals per LUT depends on the FPGA. For functions that require more inputs
than a single LUT has (high fan-in), several LUTs are connected directly to each other. The flipflops are
used to cache signal values so that they can be processed in the following clockcycle. As universally
applicable digital integrated circuits (ICs), FPGAs support a variety of signal standards in order to be
able to communicate with the different digital components on the market. The /O behaviour is set in a
file along with many other parameters. [mik21]

2.5.1 IP-Cores

For frequently used circuits, it is advisable to combine certain functions already pre-made into reusable
units, analogous to libraries in programming languages. These prefabricated design blocks are called
IP-Cores. The main advantage of IP-Cores is the saving of development time by using prefabricated
blocks and reusing self-developed blocks. This advantage is particularly noticeable for large and complex
circuits. [Pog03]

2.5.2 AXI-Stream

The Advanced eXtensible Interface Bus (AXI)-Stream is an interface for connecting peripheral components.
Usage data is also transmitted via this bus, while configuration data is transmitted via other interfaces,
such as AXI or AXI-Lite. Unlike AXI or AXI-Lite, the AXI-Stream does not use address lines to address
the target. Differences are still made between the direct transfer of data from the main memory to the
IP cores and the transfer of data from the local memory. [kam22]

22

Chapter 3

Design of System Architecture

written by Hagen Stéver

coauthored by Jan Hartig

Spoken Word

Y

(Microphone)

a

Clock

PDM stream PCM stream MFCC Feature

>
>

extraction

Direct Memory MFCC feature
Access (DMA) stream

recognized
word

Console Print

Figure 3.1: System architecture as block diagram
The Architecture of this project consists of two main blocks, the PL (FPGA part of ZYNQ SoC) part
with IP-Cores to fetch microphone input and convert it to MFCC-Features. The Processing System (PS)
(Central Processing Unit (CPU) with different interfaces and controller, see reference [17] for details) is

running the NN with a Python program. To transport data from PS to PL a DMA is used. [17, p.3]

At the beginning, the microphone on the PYNQ-Board will record audio and send it to the PL-block.
There the audio will be processed through various steps. After this, the result will be send to the PS and
the NN where the audio-data will be analyzed. Finally, the NN will output a recognized command ! in
the console.

3.1 Interfaces Between System Components

The many components and parts of the system work with different representations of data. At the
beginning, the data is transmitted as words through sound waves. Those waves are being picked up
by the microphone installed on the PYNQ board. Inside the microphone the data is converted into
a bitstream and send to the PL-block. Before this block can work with the data, it first has to be
transformed, because the bitstream send from the microphone is encoded with PDM, however, the PCM
encoding is needed to work with the data.

After the Audio Processing the component on the FPGA will send a stream of numbers to a Python
program running on a SoC. There, the stream of bits will be segmented into an array with a fixed data
type.

This array will then be read by the NN, that finally prints a recognized command into a console.

Lleft, right etc.

24

Chapter 4

Used Materials

4.1 Hardware

written by Roland Helmich

The target platform for the project is a PYNQ-Z1 development board, featuring a ZYNQ XC7Z020-
1CLG400C SoC. Notable features of the SoC are that it integrates two ARM Cortex-A9 processor cores
with an Artix-7 FPGA. The board contains 512 Megabytes of random access memory (RAM) which can
be used by the SoC. A Knowles SPK0833LM4H-B PDM microphone is integrated into the development
board. It is used to record the audio samples. [17]

A standard class 10 8 GiB microSD card is utilized as the boot medium for the PYNQ-Z1 board. To
connect the PYNQ-Z1 to power and network, the included power brick and network cable are utilized.

4.2 Operating System and Development Environment

written by Roland Helmich

Xilinx provides a pre-built operating system image for the PYNQ-Z1 board. Version 2.7 of the image is
used for this project. The PYNQ image provides Python 3.8.2. A development environment for Python,
Jupyter Notebook, is also pre-installed and configured. [21]

To develop FPGA code, the Vivado ML Design Suite 2021.2 is used.

4.3 Software

written by Fynn Hagen

For the development of the neural network the Python library Brevitas, a PyTorch research library which
provides support for quantization-aware training of neural networks, was used. Brevitas offers an interface
to the FINN-framework [Pap21]. The framework is capable of compiling a quantized NN into a format
that can be deployed on a FPGA. The FINN-framework itself was not used in this project scope. But in
order to provide a NN for further future development which then in the next step is able to be deployed
on a PYNQ-FPGA, all relevant interfaces to the FINN-Framework were needed to be respected.

The neural network was trained using multiple audio files containing the commands to control the vehicle.
To make the net more robust against variations in the audio signal, the original audio samples used for
training were post processed using the Python library Numpy and PyDub. Both of these offer an easy
support for .mp3 files which are used as data format for the audio samples. Additionally a few other
Python packages are used as well. An overview over all used packages can be found in appendix A.

Chapter 5

Data Processing on FPGA

In this chapter, all preprocessing steps (every step before the DMA controller of 3.1) will be elaborated.
The sections are orientated to the flow of audio data through the system.

5.1 Recording PDM Samples

written by Roland Helmich

In order to analyze audio samples, they first need to be recorded. The development board used in
this project features an onboard microphone that will be used for this. The microphone (Knowles
SPK0833LM4H-B) is a PDM type microphone. It has two connections, a clock line and a data line [mic].
Both are connected directly to the Actix-7 FPGA of the SoC. The microphone can operate in HIGH
and LOW mode, the difference being when valid data is made available on the data line [mic]. On a
PYNQ-Z1 board, the LOW mode is always selected [PZ1, p. 17]. This means valid data is present at a
rising edge.

Clock : /o
R . I

[P 1

| : o Il

4’: talia Ftserup —¥ | thotd : :

| I

: [

DATA_H HighZ | | /

_ 1

[

X

—* lvalid :4* tsetup —® | r_thold

DATA_L
(Default)

Tclock /2 = Tedge + Tvalid + Tsetup

Figure 5.1: SPK0833LM4H-B Timing Diagram Source: [mic]

The clock signal for the microphone has to be generated by the FPGA. Supported clock rates for the
microphone lay between 1 and 3.25 MHz [mic]. Because of the way PDM microphones work, the clock
rate is also the sample rate. The last sampled value can be read directly from the data line, since the
PDM format supports only binary values anyways.

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

The entire processing pipeline on the FPGA is connected together via AXI-Stream interfaces. Since
AXI-Stream interfaces have a minimum width of at least a byte [stream-spec10], values read from the
microphone need to be collected into small packages before they can be send to be processed further.

pdm_clock

e
]

AXI Stream
Manager Interface

pdm_data
pyng_mic p

start_recording

L 4

¥

Figure 5.2: Interface of pynq_mic IP-Cores

To manage clock generation, data acquisition and output to an AXI-Stream, a prototype for a custom
IP-Cores named pynq_mic was implemented. The core includes a clock generator that can generate a
configurable PDM clock based on the AXI bus clock. It also acts as a AXI-Stream manager 1. Data is
sampled from the microphone whenever the clock generator produces a rising edge. If enough samples
to fill a single AXI-Stream transaction have been collected, they are output on the AXI-Stream manager
interface. After a certain amount of packages have been sent on the AXI interface, tlast will be asserted
by the core, signaling downstream subordinates that a complete frame has been send. This behavior
is needed because many AXI-Stream IPs do expect to receive tlast at some point. After how many
transaction tlast is asserted can be configured as well. To reiterate, a single AXI-Stream transaction
consists of multiple individual sample values (how many depends on the configured bus with), and a single
frame is made up of multiple AXI transactions. The pynq_mic core will start to sample data after the
start_recording signal was high. It will stop recording after a frame has been finished if start_recording
is not high.

The design of the core is deliberately kept relatively simple, especially compared to the audio core
included in the PYNQ baseoverlay, to allow quick changes to the behaviour and interface of the core.

5.2 Converting PDM to PCM

written by Roland Helmich
coauthored by Jan Hartig

The Xilinx xfft IP-Core that will be used later in the audio processing pipeline supports input values
between 8 and 34 bits in length [xFFt21]. In order to effectively use the single bit samples acquired from
the microphone, it is thus necessary to convert them from the PDM format into the PCM format. To
achieve this conversion, the PDM signal from the microphone should first be low pass filtered. After
filtering, the signal then needs to be decimated until a reasonable sampling frequency (for example 48
KHz) is reached.

Filtered

PDM FOM PCM

|:> Low Pass Filter y Decimation ;)

Figure 5.3: Conversion from PDM to PCM

!Note: older version of the AXI specification use master and slave terminology instead of manager and subordinate

27

5.2.1 Low Pass Filtering

Low pass filtering of the input signal is needed because PDM samples are acquired at a very high
sampling rate. In our case, at least 1 MHz and potentially up to 3.25 MHz. At such high sampling rates,
unwanted high frequency noises will be present in the signal. If the sampling rate is lowered, these high
frequency noises can lead to aliasing [nyquist-shannon49]. Also, only frequencies in the audible spectrum
(generally between 20 Hz and 20 KHz [Ros07]) are relevant for analysis of spoken words. Thus, by low
pass filtering before further processing the signal, those unwanted high frequency noises can be safely
removed. A filter that accepts frequencies up to 48 KHz should be a good choice for this particular
processing step, as it - considering the sampling theorem by Nyquist [nyquist-shannon49] - would cover
the entire audible range of humans with a small bit of headroom.

5.2.2 Decimation

After low pass filtering, the signal still has its original sampling rate in the megahertz range. In order to
reduce the sampling rate, the signal is now decimated by a constant factor - the decimation factor. To
calculate a decimation factor M, the following simple equation can be used:

f _ foriginal
target M

The decimation by an integer factor n effectively means that only every n-th sample will be kept. All
other samples will be discarded. For an input signal with a sampling rate of 3.072 MHz, a decimation
factor of exactly 64 would result in a 48 KHz output signal.

5.2.3 Conversion on the FPGA

—ack event_s_data_tlast_missing ———
—— | aclken event_s_data_tlast_unexpected [————»

event_s_data_chanid_incorrect |———#
—®aresetn event_s_config_tlast_missing f———

event_s_config_tlast_unexpected [———»
event_s_reload_tlast_missing [——®
event_s_reload_tlast_unexpected F———»

s_axis_config_tvalid m_axis_data_tvalid f——

s_axis_config_tready =~ m_axis_data_tready [———
i i m_axis_data_tdata [

s_axis_config_tdata _axis_| _ ;

—>

-

e S_axis_conﬁg_ﬂast miaXiS_idataituser
m_axis_data_tlast >
—®| s_axis_reload_tvalid
~&— s_axis_reload_tready
—¥ s_axis_reload_tdata
— | 5_axis_reload_tlast
—— | 5_axis_data_tvalid
-¢—— s_axis_data_tready
—- S5_axis_data_tdata
— - 5_axis_data_tuser
—® s_axis_data_tlast

X12179

Figure 5.4: finite impulse response (FIR) Compiler Core Ports Source: [Xil21]

For digital signal processing, Xilinx provides the FIR Compiler IP-Cores. With this IP-Cores, different
types of FIR filters can be implemented on the FPGA [Xil21]. The filter type polyphase decimator of this
core executes both of the previously described steps. It behaves similarly to MATLABs FIRDecimator
[Xil21] [FIR].

28

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

O— ho(n)
O— hs(n)
x(n) ——
o— Pura(n) vin)
O— hw-2(n)

%O_‘ hu.1(n)

Figure 5.5: M-to-1 Polyphase Decimator Source: [Xil21]

Sample data is accepted by the core via a AXI-Stream subordinate interface and the filtered data is
output via a AXI-Stream manager interface [Xil21]. It is thus easy to integrate the core into the pipeline.
Additionally the core also has a configuration channel and a reload channel (both AXI subordinates).
These two channels are used to load and select filter coefficients for the FIR filter. Filter coefficients can
be designed with the MATLAB filter designer [FIRD] and exported in a Xilinx compatible format.

5.3 MFCC Feature Extraction

written by Florian Sommerfeld
coauthored by Jan Hartig

As previously mentioned, see 2.2.1, MFCC is based on the human sound perception. Common steps to
extract the features using the MFCC algorithm are (based on 2.4):

= pre-emphasis

= framing

= windowing

» FFT

= Mel filter banks

« DCT

For our use case we would serve the PCM speech signal as the input for the MFCC algorithm. At the
beginning of processing a time discrete signal is already preset. The sample-rate and wordlength (number
of bits used to represent a sample) for the FFT should be adopted from the previous decimation 5.2.2.

To implement a MFCC core on the FPGA two main researches have been taken into consideration:
[mfcc-core] and [Dao+17]. For the pre-emphasis filter the typical filter coefficient is o € [0.95,0.97].
Using a = 1 — 3% = 0.96875 which is in the range, this can be implemented with a shift register
[mfcc-core]. The filtered signal would then have to be segmented into small frames. Therefore [Dao+17]
uses a length within the range of 20 to 40ms and divides the signal into 256 frames. For the hamming
windowing w(n) = 0.54 — 0.46 cos(=%) would have to be implemented with 0 < n < (N —1). Next
the windowed frame would go through the FFT (with parameters from the decimation). An approach
would be to load data samples into the memory, then apply the FFT and finally samples can be read.

[mfcc-core] uses a Decimation-in-time (DIT) Radix-2 FFT algorithm block which rearranges the DFT

29

equation into two parts for achieving a faster computation [GEO19]. The power spectrum is then being
applied to a Mel filter bank with 32 triangular filters. Afterwards the logarithm is computed based on the
algorithm presented in [Turl0]. Finally a Type Il DCT is used which uses less arithmetic operations than
conventional algorithms without sacrificing numerical accuracy [SJ08] to compute the MFCC features.

5.4 Provide converted Data for further processing

written by Hagen Stéver

The data provided by the mel-frequency cepstrum (MFC) will be put onto an AXI-Stream. The consumer
of the data will be a DMA coontroller. Through a DMA controller the system is able to directly save the
data from the MFC in the RAM of the SoC without the CPU needing to be involved. This will relieve
the CPU, since it does not need to be used to transmit the data and in total the transportation of data
through a DMA-Controller should be faster than through a CPU.

To reduce complexity and potential timing problems, the MFC will always override the output data,
whether the data was read or not. The data itself is a stream of MFCCs.

30

~NOoO O~ WN =

Chapter 6

Data Interface Between FPGA and
Neural Network

written by Hagen Stéver

The FPGA will send a bitstream of data directly to the Python program. To do so, a DMA controller
will be used. The address of the RAM will be provided by Vivado. The Python program will access the
data at that address and save it into a Numpy buffer-array. The X1nk class from the pynq package will
do all the work in the background. The only setup needed is the specification of the data type, the size
of the buffer and the loading of an overlay, where a DMA-Controller is configured.

The example below, shows how the DMA-Interface can be loaded and used to access data from a
DMA-Controller. The buffer will contain 5 integer numbers.

Listing 6.1: Accessing data from a DMA-Controller [DMA-PYNQ]

overlay = Overlay(’'example. bit ")

dma = overlay.axi_dma

output_buffer = xInk.cma_array(shape=(5,), dtype=np.uint32)
dma.recvchannel.transfer (output_buffer)
dma.recvchannel.wait ()

print (output_buffer)

As soon as the specified buffer is filled, the Python program then gives the array to the NN. The length
of a number, sent by the FPGA component, should be a multiple of 8 bits. If the default length of a
coefficient from the MFC is for example 12 bits long, than the number should be padded with 4 bits. In
Python, the data type of the numbers also have to match the provided coefficient from the MFC. If a
coefficient is 4 Byte long, than the data type could be, for example, uint32.

Since the audio sample is split into smaller segments, the program also has to read the result multiple
times.

Chapter 7

Machine Learning

7.1 Generation of Test Data

7.1.1 Source of Raw Audio Data

written by Dylan-Noah Schade

The raw audios used for generating the training and test data were recorded by the authors of this
document using mobile devices or headsets. To mimic the rather low quality of the onboard microphone
the use of high-end recording equipment was omitted. The background noise of the radio-controlled car
(rc car) was also recorded using a smartphone driving along with the car.

To have a mixture of different voices and pronouncements everyone recorded each trigger word several
times, each time saying the word a bit different. Afterwards the audios were manually processed in a
Digital Audio Workstation (DAW). In particular each audio was trimmed, so that it contained only the
word. Also, the audios were all normalized to have more or less the same volume. Afterwards they were
all exported in the same format and with the same sample rate. In the end there were about 400 audios
containing one of the trigger words each and another 75 containing other spoken words.

7.1.2 Data Augmentation

written by Fynn Hagen

Sample Processing

In order to enhance the variety of training samples to train a NN different processors are applied on each
sample. Each of these processors can be added independently onto each training sample. The processors
either add another background to the sample or vary the volume or speed of the sample. The processors
that can be used are the following:

Adjust Playback Speed Processor

This processor speeds up or slows down the given sample. In order to adjust the playback speed of the
sample a simple pitch control is used. In multiple tests a range of 25% slowing down and 25% speeding
up were considered to be a good value range for this. Due to the physics of audio pitch control, an
increase in the playback speed results in a pitch shift to the upper range, leading to the sample sounding
pitched up. The opposite effect can be seen, when slowing down the sample. This results in a lowered
pitch for the sample.

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

Adjust Volume Processor

This processor adjusts the volume of the given sample. A range of changing the volume between 60% to
110% of the original volume has been identified to be a good starting point. Especially the value for
the increase of the volume should be handled with care. Values greater then 115% tend to lead to a
distortion of the audio signal.

Distortion Processor

The distortion processor is technically the same as the volume processor. The only difference is that the
volume is increased up to 135% of the original sample volume. This leads to a distortion effect on the
sample.

Background Noise Processor

This processor is used to imitate driving noises of the car that should be controlled. Therefore it adds
background noise to a given sample. The background sample to add is applied with a 50% reduced
volume. The sample to add is a sound recording of a driving rc car, which might not be accurate
comparing to the real used vehicle. The used sample can be configured in the config file and can be
extended to other backgrounds, i.e. white noise.

Background Voice Processor
This processor is used to mimic the case of people talking to each other besides the input of the original
voice command. For this a random selection from all negatives (samples that shall not be recognized

as any of the categories) is taken and added with a reduced volume at a random point of the original
sample.

7.2 Neural Network

written by Mattheo Mahnke

A neural network was used to classify the recorded samples. The process to create this network is
described in the following sections.

7.2.1 Neural Network Architecture

The used neural network has a three layer architecture as shown in Figure 7.1.

33

input: | [(None, 1990)]
output: | [(None, 1990)]

l

input: | (None, 1990))
output: | (None, 199())

l

input: | (None, 1990)
output: | (None, 3980()

l

input: | (None, 3980)

input_1: InputLayer

dense 3: Dense

dense 4: Dense

dense 5: Dense

output: (None, 6)

Figure 7.1: The used neural network topology

It uses three dense (fully-connected) layers, where the first two use RelLUs as activation functions. The
last layer does not have an activation directly attached to it, since the cross entropy loss of PyTorch
expects logits. The layers do not use a bias.

The input of the network are the MFCC which were computed from the audio input. The outputs are
the logits for the classes the network shall classify (in its base version "forward", "back", "left", "right",
"stop", and "none"). To get the probabilities for the classes from the logits one has to apply the softmax
function.

To later be able to use the network on an FPGA this was converted to a QNN. QNNs do not work on
floats or doubles but use small integers to speed up the computation in hardware, since no floating point
units are used. The weights of the layers were limited to 3-bit integers, the ReLUs are 4 bits wide to
prevent overflow.

This architecture was chosen because of its simplicity. The first iteration of the architecture was based
on a RNN, but this was changed because of Brevitas not having RNN support in the the current version
(see Appendix A for the used versions). This simple network does also take up less space than a more
complex architecture while implementing it on the FPGA, which allows it to also be used for other
applications. Since this structure showed good results during training (see 7.2.2), there was no need for
changing it since then.

7.2.2 Training

The model was trained with the synthesised samples and their corresponding labels. The model was
fit to the labels by minimizing the cross entropy loss of the network output. To minimize this loss the
Adam optimizer with a learning rate of 0.02 and the defaults of PyTorch was used. The model was
trained for 100 epochs, while halving the loss every 40 epochs, resulting in the following loss values:

» Epoch 0-39: 0.02
= Epoch 40-79: 0.01
= Epoch 80-100: 0.005

From the 401 input samples, which were split into a train and test dataset (see Section 7.2.3) 20000
samples were synthesized for training and test. Both for training and test a batch size of 512 was used

34

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

to limit the loss difference between batches by diversifying them.

For each epoch the batches were re-shuffled, to further limit big changes in the loss caused by the
input. To speed up training and make the output more stable a batch normalisation layer was used
after the last dense layer of the model. This normalises the output of the model based on the batch
properties during training and during inference using a mean and variance which was fit on the training
data during training. This layer is not quantized and because of that has to run on the microcontroller
of the SoC. But since this runs on the output of the network, which is composed of 6 integers, this is
not computationally expensive.

Loss Loss
[1] 0.6 [1] ’
0.5
0.9
0.4
0.3 0.8
0.2 0.7
0.1 0.6
0 0.5
Epoch Epoch
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Figure 7.2: The loss of the model on the train Figure 7.3: The loss of the model on the test
set during training set during training

Figures 7.3 and 7.2 plot the loss for the test and train set for each epoch. The light orange graphs show
the real values, while the darker orange graphs are smoothed. One is able to see that the loss on the
train set steadily decreases, while the loss on the test set also tends to decrease, but not as steadily as
the train loss. This is because the model is only fit on the train set. See Section 7.2.3 on how this is
used to select the model to use for inference. A training run of 100 Epochs, together with synthesizing
the samples pre-training, takes approximately 45 minutes on an AMD Ryzen 9 5950X without a GPU.

7.2.3 Validation

To validate the performance of the model the raw input samples were split into train and test data.

A test/train split of 20% test data from the 401 samples, which were then synthesised to be 20000
samples, was used.

Train data is used to fit the model, while the test data is only used to measure accuracy, i.e. the model
is never explicitly fit on the test data. This is used to detect overfitting of the model to the train data.
If the test loss increases and accuracy decreases while the loss on the train data decreases, the model
overfits to the train data. This would increase accuracy on the training data, but decrease accuracy
during inference, which is where the model is used. This can be compared with memorizing results
instead of learning how to compute them.

This simple architecture is able to produce an accuracy of about 90% on the used test set, meaning that
90% of the time the model correctly predicts the word, even after applying the sample processors to the
base data.

35

Accuracy

[@6]0.9
0.85
0.8
0.75
0.7
0.65

Epoch
0 10 20 30 40 50 60 70 80 90 100

Figure 7.4: Accuracy of the model on the test set during training

The accuracy of the model on the test set was computed after each finished training epoch. Figure 7.4
plots the accuracy of the model on the y-axis with the epoch ID on the x-axis. The most accurate model
was produced on epoch 93, where an accuracy of about 90% is reached. The graph in light orange
shows the real values, the values plotted in dark orange have had jumps smoothed out.

The accuracy value is computed by getting the outputs of the model for the test set and counting the
number of times where the prediction of the network matches the label. This is then divided by the
number of elements in the test set. The loss of the model over the training set is also computed for each
epoch (see Figure 7.3), but is not as relevant for selecting a model. While the loss and accuracy are
correlated, having a slightly lower loss does not necessarily increase accuracy. The decreased loss could
just be the symptom of increasing the confidence for some parts of the test set, which does decrease the
difference between a theoretical 100% confidence for each sample and the output of the network. This
does not imply that more labels produced by the network are now matching the true labels. This is why
the accuracy was used to select the best model, which is an accurate representation of the models ability
to predict the correct labels.

7.2.4 Inference

For inference the model with the highest validation accuracy (see Section 7.2.3) was used. When running
on the PYNQ-Z1 board it is intended to use the FPGA for reading the data from the microphone
and processing it to get the Mel Frequency Cepstral Coefficients. During testing and development a
development machine was used to test inference. The repository contains code to be able to record
samples with a builtin microphone and get the classification from the network. While the model has a
00% accuracy on the test set, the accuracy during inference is about 10%. This could be a symptom of
401 raw input samples not being enough input data, although they are altered through the data synthesis
pipeline. The model is also very sensitive to using different microphones. Having more diversity in the
input data should increase accuracy during inference.

36

Chapter 8

Evaluation

written by Roland Helmich
written by Fynn Hagen
coauthored by Jan Hartig

This chapter focuses on the evaluation of the results achieved within this project. It will be highlighted
which aspects were successful/ approches were wrong to carry this knowledge into a possible follow-up
project. In addition a review and evaluation the current project status/ findings will be done.

Due to the lack of final integration of the entire system, each component (neural network, recording
and preprocessing of microphone data) are evaluated by themself, but no final system evaluation can be
performed.

Processing Pipeline on Programmable Logic

Over the course of the project, a general concept for a processing pipeline on the Artix-7 FPGA has
been developed. However, no real implementation on the target hardware could be tested due to time
constraints. Generally, audio acquisition, filtering and conversion of the sampled data into the frequency
domain should be handled by the FPGA - both because of the high performance requirements and the
fact that the onboard microphone is connected only to the FPGA.

To handle audio acquisition, a prototype for a custom IP-Core (pynq_mic) was developed. This core is
capable of controlling the onboard PDM microphone and transmitting recorded data via an AXI-Stream
interface. During the early phases of the project, some tests were conducted with the Xilinx provided
audio_direct core. However, the core proved to be limited to recording fixed sized samples to pre-allocated
memory locations (instead of a continuous recording). It also only supports normal AXI transactions,
not the stream type used by all other parts of the pipeline, making integration rather difficult.

To filter the recorded audio signal and convert it into the easier to process PCM format, the FIR Compiler
IP-Core from the Xilinx library should be used. This core handles data input and output via AXI-Stream
interfaces and is thus well suited to processing a continuous data stream. It provides configurable filtering
and decimation capabilities. While the decimation factor can be easily calculated, finding correct filter
parameters (coefficients) for the wanted behavior is more difficult. During research, it was discovered
that the MATLAB filter designer [FIRD] can be used to create these parameters. The desired behavior
for the FIR Compiler as part of the pipeline is that of a low-pass filter, followed by a decimation to the
target PCM sampling frequency. Handling a single audio stream should be well within the capabilities of
the core, this however could not be verified because the project did not progress far enough to test the
actual design.

As the last step of the audio processing pipeline, we intend for MFCC feature extraction to take place
on the FPGA. It has been proven by other research ([Dao+17]) that implementing feature extraction on
a FPGA is possible using a custom IP-Core. Instead of implementing a custom IP-Core, it might also be

possible to chain together existing cores though AXI-Stream to handle the data processing. For example,
Xilinx provides the xfft core for FFT processing - and the earlier mentioned FIR Compiler core for many
different filtering operations. Because of the use of AXI-Stream interfaces in the pipeline, adding new
processing steps with new IP-Cores should be relatively easy.

The results of the MFCC feature extraction would be committed to the main memory of the ZYNQ SoC.
This can best be achieved by using the Xilinx provided AX/ DMA IP-Core. It can receive data via an
AXI-Stream subordinate interface, write it to a predefined memory location all while being relatively
CPU efficient through the use of interrupts.

Processing Pipeline on Processing System
As seen as in 7.2.3, when testing the network with a random sample (generated the same way as test
data 7.1 but not included in the sample set) an accuracy of ~ 90% can be achieved.

When testing the neural network in a simulated "real" environment, not on the PYNQ-Z1 board itself,
but with the builtin microphone of a development machine the accuracy drops to ~ 10%. This value is
way to low for a real world deployment but could be improved in future projects by adding more variation
to the training (microphone, voice, pitch, emphasis, etc.) sample base.

38

Chapter 9

Conclusion and Outlook

written by Jan Hartig
coauthored by Philipp Wittje

This project was focused on creating a simple speech regocnition for five commands. In order to achive
this a preprocessing pipeline for (raw) audiodata, conversion to NN workable data and the NN itself is
needed.

For now only the theoretical data processing (pipeline) is finished. The implementation has been started
but is lacking. Audio data from the on-board microphone can be sampled with the created IP-Core
pyng_mic (see 5.1). The needed filtering via FIR and decimation (5.2) is not yet implemented. Signal
samples are part of a AXI-Stream which should make processing straight forward. Documentation of
contemplated pipeline steps as far as it was possible to plan can be found in 5. Before planning more
features these should be implemented and tested thourougly.

In the current scope, the NN should not yet be on the Programmable Logic part of the PYNQ-Z1 board.
The needed transport for MFCC-Features through DMAs has been planned and prepared in form of
python snippets (see 6).

The neural network for evaluating audio signals, is ready to interpret the audio signals accordingly. A
generator of test audio data has been implemented. To make the network more robust and viable it
should be trained with data from the onboard microphone. This depends on the previous implementation,
making the completion of preprocessing a very high priority.

To implement this project in the context of an autonomous space craft with limited computational
resources, the results of the NN have to be mapped to motor pins on the board, bringing together the
entire system.

Appendix A

Used Material

A.1 Software Packages

written by Florian Sommerfeld

Resource type | Description Usage Version
Board PYNQ-Z1 Platform for the embedded system | Z1
Computer MacBook (macOS): M1 chip Development of NN 2020
PC (Win 10 Pro): AMD Ryzen 9 5950X | Training of NN -
Boot Image PNYQ-Z1 SD card image PYNQ software environment 2.7
Flash memory micro SDHC 8 GiB Class 10 Boot PYNQ-Z1 -
Power supply 12V, 3A power supply Power source for the PYNQ-Z1 -
Cable Ethernet CAT 5E Communication with PYNQ-Z1 -
Development PyCharm Python IDE for NN development 2021.*
Vivado Development of FPGA code 2021.2
tool . .
Git Version control *
Programming Python Development of NN 3.8
language VHDL Hardware description of the system | VHDL-2008
numpy Math 1.22.1
pydub Audio manipulation 0.25.1
tomli TOML configuration parser 2.0.0
SQLAIchemy Object Relational Mapping 1.4.31
Python python-speech-features MFCCs and filterbank energies 0.6
package scipy Math 1.8.0
torch Machine learning 1.10.2
tensorboard Visualisation for machine learning | 2.8.0
brevitas PyTorch research library for NN 0.7.1
pyaudio Python bindings for PortAudio 0.2.11
Audio sample 401 .mp3 files NN training samples -

Standard notations for Deep Learning

This document has the purpose of discussing a new standard for deep learning
mathematical notations.

1 Neural Networks Notations.

General comments:

- superscript (i) will denote the i*" training example while superscript [1] will
denote the {*" layer

Sizes:

-m : number of examples in the dataset

‘ng : input size

‘n, : output size (or number of classes)

-n%] : number of hidden units of the ' layer

[0]

In a for loop, it is possible to denote n, = n,, [number of layers +1]

and ny, = ny,

-L : number of layers in the network.
Objects:

-X € R"™*™ is the input matrix

() € R is the i*"example represented as a column vector

Y € R™*X™ is the label matrix

() € R™ is the output label for the i** example

W[l] c Rnumber of units in next layer X number of units in the previous layer is

the
weight matrix,superscript [1] indicates the layer

blll ¢ Rnumber of units in next layer jg the hias vector in the It layer

. € R™ is the predicted output vector. It can also be denoted al*} where L
is the number of layers in the network.

Common forward propagation equation examples:

a = gl(W,z® + b)) =
function

g(z1) where ¢! denotes the I*" layer activation

7 = softmaz(Wyh + by)

1
_9 (Zk [Ila’k

- J(x, W,b,y) or J(,y) denote the cost function.

- General Activation Formula: a 1] + bg,”) = gt (Z][,l])

Examples of cost function:
: JCE(:&,?J) = _ZZZO

S N(@y) = 1y g

D log §0

Appendix B

Repository Structure

written by Mattheo Mahnke

B.1 General Repository Structure

The project is divided into three repositories:

= The documentation repository (https://gitlab.com/embedsprojekt_wise21/dokumentation)
» The FFT repository (https://gitlab.com/embedsprojekt_wise21/fft)

= The neural network repository (https://gitlab.com/embedsprojekt_wise21/ki)

They can all be found under the group https://gitlab.com/embedsprojekt_wise21.

B.2 Documentation Repository

The documentation repository contains the sources to this document which is created by LaTeX. It also
contains a few markdown files on how to do certain things, e.g. using the microphone of the PYNQ Z1
board, starting a Jupyter Notebook and some other stuff that can be helpful when recreating this project.

B.3 FFT Repository

The FFT repository was created for recording with the on-board microphone and pre-processing the data
for the neural network. It contains the Vivado projects for reading and processing the data. Additionally
the python code used to read the results of the pre-processing (the Mel Frequency Cepstral Coefficients)
from the FPGAs to be able to use them in the neural network, which would currently run on the
microcontroller, is also there.

B.4 Neural Network Repository

This repository contains a python script to be able to generate training data and use it to train the
network. The script has a few command line arguments for easy configuration but reads most of its
configuration from the config located in the config folder. Call the script with —help for further info on
the command line interface. The configuration file uses Tom's Obvious Minimal Languages (TOMLs)
and is separated into the steps of the data pipeline.

https://gitlab.com/embedsprojekt_wise21/dokumentation
https://gitlab.com/embedsprojekt_wise21/fft
https://gitlab.com/embedsprojekt_wise21/ki
https://gitlab.com/embedsprojekt_wise21

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

"input_data" contains the configuration for the raw input samples. Each input section has to have
its own section defined which contains the name of the category and the path where the samples are
located. These are the categories the neural network will use for classification.

The synthesis block is used to configure the data synthesis. It allows configuration of the individual
sample processors, which are used to diversify samples as mentioned in 7.1. It can also be used
to overwrite the configuration of a sample processor for a specific synthesis step, which is done by
including that configuration in the configuration block of the step. This is mostly used to set the apply
probabilities for processors, but could also be used to e.g. change out the backgrounds to load for
the BackgroundNoiseProcessor. Note that apply probabilities are normalized and use a default value
of 0.5. This results in the values not being in percent, because they are changed based on the apply
probabilities of the other processors. The processor to use the config for is resolved by the name of the
class, which has to match the name of the section. The next section allows configuration of parameters
used during training, e.g. the learning rate. The last block configures the small inference script built
into the program. The configuration file is heavily commented and its recommended to have a look at
these to understand the configureability of the pipeline.

B.5 Extending the Pipeline

The code was written with extension of the data preparation pipeline in mind.

Adding a new word category that the network shall be able to detect can be done by adding a configuration
block for it under the input data configuration and providing input samples. Note that this will break
compatibility with any previously trained networks since it changes the topology of the network.

The folder "src" in the neural network repository contains the sources that back the script for the training
pipeline and inference.

Audio samples are loaded using an Audioloader,

they are located under trainingData/inputLoading/audiolLoaders. New loaders, other than MP3 which
is already implemented, can be provided by creating a class that inherits from AudiolLoader. The
AudioloaderFactory will automatically detect this class, after adding it to the ___all __ attribute of the
audioloaders package (note that this depends on the class being in the audioLoaders package). The
factory will use the loader for the files with the extension it returns when calling get_loader_extension. To
add a new sample processor one has to create a new class under trainingData/synthesis/sampleProcessors
that inherits from SampleProcessor. The class has to be added to the ___all ___ attribute of the
sampleProcessors package. This new class is automatically loaded whenever sample processors are used,
and is configured using the configuration block with the same name.

Under trainingData/synthesis/steps one is also able to create entirely new pipeline steps. A new pipeline
step has to be added in the initialiser of the SynthesisStepPipeline in the same module, but configuration
is autoloaded by the superclass, as its done for the sample processors.

If one wants to use sample processors in the new pipeline step, it is recommended to inherit from
SampleProcessorStep which includes code to load the sample processors and configure them for the
current step. It can also be used to just create new configuration contexts for the sample processors, as
its done for the PreStitching and PostStitching steps.

B.6 Training Database

Synthesised samples are saved into a (SQLite) database for later use. The path to use for the database
can be configured in the configuration file under the synthesis block with the config key db_ path.
Functions for saving and loading samples are provided in the trainingData/trainingDatabase package.
Samples are saved together with their labels and are automatically loaded for training if the script was
called without the —synthesis flag. The number of samples to be used for training can be limited under
the training configuration block using the key max_number_of _samples. This will cause the database
to be randomly sampled.

43

List of Figures

1.1

21
2.2
2.3
2.4
25
2.6
2.7

3.1

51
5.2
53
5.4
55

7.1
7.2
7.3
7.4

The vehicle of the simultaneously taught course, with visual object recognition on an FPGA. 7

Neural Network with three layers (L = 3), input vector X and output value § Source: [NG] 13

Gradient descent in several steps using a two-dimensional function Source: [McD17] 15
WUW system design Adapted from: [Kepll] 18
MFCC analysis block diagram Source: [Aul19] 19
delta-sigma modulator Source: digilent.com [PZ1] 20
PDM signal modulation Source: digilent.com [PZ1] 20
fast fourier transform picturized Source: nti-audio.com [FFT] 21
System architecture as block diagram Lo 23
SPKO0833LM4H-B Timing Diagram Source: [mic] 26
Interface of pynq_mic IP-Cores 27
Conversion from PDM to PCM 27
FIR Compiler Core Ports Source: [Xil21] 28
M-to-1 Polyphase Decimator Source: [Xil21] 29
The used neural network topology 34
The loss of the model on the train set during training, 35
The loss of the model on the test set during training 35

Accuracy of the model on the test set during training, 36

List of Acronyms

Adam Adaptive Moment Estimation

Al Artificial Intelligence

API1 Application Programe Interface
ASIC application specific integrated circuit
ASR Automatic Speech Recognition
AXI Advanced eXtensible Interface Bus
CNN Convolutional Neural Network
CPU Central Processing Unit

DAW Digital Audio Workstation

DCT Discrete Cosine Transform

DFT discrete Fourier transform

DMA Direct Memory Access

FFT fast fourier transform

FIR finite impulse response

FPGA field programmable gate array
GAN Generative Adversarial Network
GPU Graphics Processing Unit

HMI Human Machine Interaction

IC integrated circuit

IP-Core intellectual property core

LPC Linear Predictive Coding Coefficient
LSTM Long Short Term Memory

LUT look-up table

MEMS Micro Electro-Mechanical System
MFC mel-frequency cepstrum

MFCC Mel Frequency Cepstral Coefficient

MNIST Modified National Institute of Standards and Technology
NN Neural Network

PCM Pulse Code Modulation

PDM Pulse Density Modulation

PL Programmable Logic

PS Processing System

QNN Quantized Neural Network

RAM random access memory

rc car radio-controlled car

ReLU Rectified Linear Unit

RGB Red Green Blue

RNN Recurrent Neural Network

SNR signal to noise ratio

SoC system-on-chip

SVM Support Vector Machine

TOML Tom's Obvious Minimal Language
WUW Wake-Up-Word

46

Bibliography

[17]

[21]

[3B117]

[Alt+21]

[Aul19]

[Cool Tuk65]

[Dao+17]

[digital-audiol2]

[DMA-PYNQ]

[FFT]

[FIR]
[FIRD]
[GD15]

[GEO19]

PYNQ-Z1 Board Reference Manual. 2017. URL: https://digilent.com/
reference/_media/reference/programmable-logic/pynq-z1/pynq-

rm.pdf (visited on 03/01/2022).

PYNQ: Python productivity for Xilinx platforms. 2021. URL: https://pynq.
readthedocs.io/en/latest/index.html (visited on 03/05/2022).

3BluelBrown. What is backpropagation really doing? | Deep learning, chapter
3. Nov. 2017. URL: https://www.youtube.com/watch?v=I1g3gGewQ5U
(visited on 03/08/2022).

Philipp Altnickel et al. Gesten- und Objekterkennung durch schwache FPGAs
in autonomen Fahrzeugen mittels neuronaler Netze. German. Tech. rep. Univ.
of Applied Sciences Bremen, Germany, Sept. 1, 2021. 153 pp.

Sugondo Hadiyoso; Bayuaji Kurniadhani; Rita Magdalena; Suci Aulia. “FPGA-
based implementation of speech recognition for robocar control using MFCC".
In: Universitas Ahmad Dahlan Vol 17, No 4: August 2019 (2019). URL: http:
//journal .uad.ac.id/index.php/TELKOMNIKA/article/view/12615/
6758.

John W. Tukey James W. Cooley. “Math. Comput. 19, S. 297-301". In: An
algorithm for the machine calculation of complex Fourier series. 1965.

Van-Lan Dao et al. “Hardware Implementation of MFCC Feature Extraction
for Speech Recognition on FPGA". In: Nov. 2017, pp. 248-254. 1SBN: 978-3-
319-49072-4. DOI: 10.1007/978-3-319-49073-1_27.

Ph.D. Thomas Kite. Understanding PDM Digital Audio. Tech. rep. Audio Preci-
sion, 2012. 9 pp. URL: http://users.ece.utexas.edu/~bevans/courses/
realtime/lectures/10_Data_Conversion/AP_Understanding PDM_
Digital_Audio.pdf (visited on 03/02/2022).

Access of DMA in Python. URL: https://pynq.readthedocs.io/en/v2.7.
0/pynq_libraries/dma.html (visited on 03/08/2022).

Fast Fourier Transformation FFT. German. URL: https://www.nti-audio.
com/de/service/wissen/fast-fourier-transformation-fft (visited

on 03/04/2022).

dsp.FirDecimator. URL: https://www.mathworks.com/help/dsp/ref/dsp.
firdecimator-system-object.html (visited on 03/06/2022).

URL: https://www.mathworks . com/help/signal /ug/fir-filter-
design.html (visited on 03/07,/2022).

Kishori R. Ghule and Ratnadeep R. Deshmukh. “Feature Extraction Techniques
for Speech Recognition: A Review". In: 2015.

ALAN GEORGE. INSIDE THE FFT BLACK BOX : serial and parallel
fast fourier transform algorithms. S.I: CRC PRESS, 2019. Chap. 3. I1SBN:
9780367399290.

https://digilent.com/reference/_media/reference/programmable-logic/pynq-z1/pynq-rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/pynq-z1/pynq-rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/pynq-z1/pynq-rm.pdf
https://pynq.readthedocs.io/en/latest/index.html
https://pynq.readthedocs.io/en/latest/index.html
https://www.youtube.com/watch?v=Ilg3gGewQ5U
http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/12615/6758
http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/12615/6758
http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/12615/6758
https://doi.org/10.1007/978-3-319-49073-1_27
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/10_Data_Conversion/AP_Understanding_PDM_Digital_Audio.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/10_Data_Conversion/AP_Understanding_PDM_Digital_Audio.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/10_Data_Conversion/AP_Understanding_PDM_Digital_Audio.pdf
https://pynq.readthedocs.io/en/v2.7.0/pynq_libraries/dma.html
https://pynq.readthedocs.io/en/v2.7.0/pynq_libraries/dma.html
https://www.nti-audio.com/de/service/wissen/fast-fourier-transformation-fft
https://www.nti-audio.com/de/service/wissen/fast-fourier-transformation-fft
https://www.mathworks.com/help/dsp/ref/dsp.firdecimator-system-object.html
https://www.mathworks.com/help/dsp/ref/dsp.firdecimator-system-object.html
https://www.mathworks.com/help/signal/ug/fir-filter-design.html
https://www.mathworks.com/help/signal/ug/fir-filter-design.html

[Heil7]

[Hut+20]

[Inc21]
[JC14]

[Jou08]

[kam22]

[Kepl1]

[LCB]

[McD17]

[McL09]

[mfcc-core]

[mic]
[mik21]

[Mot02]

[Miil+21]

48

Sebastian Heinz. Deep Learning Grundlagen - Teil 1: Einfiihrung | STATWORX.
2017. URL: https://www.statworx.com/de/blog/deep-learning-teil-
1-einfuehrung/ (visited on 03/05/2022).

Colin von Huth et al. Bericht zum Projekt “Neuronale Netze auf strahlungstol-
eranten FPGAs fiir die Raumfahrt”. German. Tech. rep. Univ. of Applied
Sciences Bremen, Germany, Feb. 14, 2020. 88 pp. URL: http://homepages.
hs-bremen . de/ ~jbredereke /de/forschung/veroeffentlichungen/
neuronale-netze-fpgas-projekt-1920.html (visited on 12/13/2021).

Coursera Inc. Coursera. 2021. URL: https://www.coursera.org/ (visited
on 03/05/2022).

Siddhant Joshi and A.N. Cheeran. “"MATLAB Based Feature Extraction Using
MFCC for ASR". In: June 2014, pp. 1820-1823.

Szu-Chen (Stan) Jou. “Automatic Speech Recognition on Vibrocervigraphic
and Electromyographic Signals”. PhD thesis. Carnegie Mellon University, 2008.
URL: https://www.csl.uni-bremen.de/cms/images/documents/
publications/PhD-Jou.pdf.

AXI-Stream FIFO. Homepage. German. URL: https : // www . kampis -
elektroecke.de/fpga/zynq/axi-stream-fifo/ (visited on 03/03/2022).

Veton Kepuska. “"Wake-Up-Word Speech Recognition”. In: Speech Technolo-
gies. Ed. by Ivo Ipsic. Rijeka: IntechOpen, 2011. Chap. 12. por: 10.5772/
16242. URL: https://doi.org/10.5772/16242.

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. THE MNIST
DATABASE of handwritten digits. URL: http://yann.lecun.com/exdb/
mnist/ (visited on 03/08/2022).

Conor McDonald. Machine learning fundamentals (I): Cost functions and
gradient descent. Nov. 2017. URL: https : / / towardsdatascience .
com /machine - learning - fundamentals - via - linear - regression -
41a5d11£5220 (visited on 03/08/2022).

lan MclLoughlin. Applied speech and audio processing : with Matlab exam-
ples. Cambridge New York: Cambridge University Press, 2009. 1SBN: 978-
0521519540.

MFCC FPGA-Core. URL: https://github. com/lambdaconcept /mfcc
(visited on 03/07/2022).

Knowles Acoustics. SPK0833LM4H-B. Version Revision B. Knowles Electronics.

FPGA. Homepage. URL: https://www.mikrocontroller.net/articles/
FPGA#: ~ : text=FPGA%20ist%20die’20Abk%C3%BCrzung%20f%C3%BCr,
von%20Schaltungen’20realisiert%20werden’%20k%C3%B6nnen. (visited
on 10/13/2021).

Petr Motlicek. Feature Extraction in Speech Coding and Recognition. Tech. rep.
Portland, US, 2002, pp. 1-50. URL: https://www.fit.vut.cz/research/
publication/7069.

Felix Miiller et al. Applying Binarized Neural Networks on FPGAs to an
Autonomous Driving Problem. Tech. rep. Univ. of Applied Sciences Bremen,
Germany, Mar. 31, 2021. 50 pp. URL: http://homepages.hs-bremen.de/
~jbredereke/de/forschung/veroeffentlichungen/bnns-on-fpgas-
driving-projekt-2021.html (visited on 12/13/2021).

https://www.statworx.com/de/blog/deep-learning-teil-1-einfuehrung/
https://www.statworx.com/de/blog/deep-learning-teil-1-einfuehrung/
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/neuronale-netze-fpgas-projekt-1920.html
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/neuronale-netze-fpgas-projekt-1920.html
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/neuronale-netze-fpgas-projekt-1920.html
https://www.coursera.org/
https://www.csl.uni-bremen.de/cms/images/documents/publications/PhD-Jou.pdf
https://www.csl.uni-bremen.de/cms/images/documents/publications/PhD-Jou.pdf
https://www.kampis-elektroecke.de/fpga/zynq/axi-stream-fifo/
https://www.kampis-elektroecke.de/fpga/zynq/axi-stream-fifo/
https://doi.org/10.5772/16242
https://doi.org/10.5772/16242
https://doi.org/10.5772/16242
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-41a5d11f5220
https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-41a5d11f5220
https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-41a5d11f5220
https://github.com/lambdaconcept/mfcc
https://www.mikrocontroller.net/articles/FPGA#:~:text=FPGA%20ist%20die%20Abk%C3%BCrzung%20f%C3%BCr,von%20Schaltungen%20realisiert%20werden%20k%C3%B6nnen.
https://www.mikrocontroller.net/articles/FPGA#:~:text=FPGA%20ist%20die%20Abk%C3%BCrzung%20f%C3%BCr,von%20Schaltungen%20realisiert%20werden%20k%C3%B6nnen.
https://www.mikrocontroller.net/articles/FPGA#:~:text=FPGA%20ist%20die%20Abk%C3%BCrzung%20f%C3%BCr,von%20Schaltungen%20realisiert%20werden%20k%C3%B6nnen.
https://www.fit.vut.cz/research/publication/7069
https://www.fit.vut.cz/research/publication/7069
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/bnns-on-fpgas-driving-projekt-2021.html
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/bnns-on-fpgas-driving-projekt-2021.html
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/bnns-on-fpgas-driving-projekt-2021.html

Neural Network on an FPGA for Speech Command Recognition on an Autonomous Vehicle

[Miil21]

[NG]

[NKM]

[nyquist-shannon49]
[Pap21]

[pdm]

[Pog03]

[PWS18]

[PZ1]

[RF16]

[Ros07]

[Sch14]

[J08]

[stream-spec10)]
[Turl0]

[wake-word-verification]

[xFFt21]
[Xil21]

Felix Miller. “Dynamisches Tiling auf schwachen FPGAs zur Objekterken-
nung mithilfe kleiner neuronaler Netze"”. German. Bachelorthesis. Univ. of
Applied Sciences Bremen, Germany, June 23, 2021. URL: http://homepages.
hs-bremen . de/ ~jbredereke /de/forschung/veroeffentlichungen/
mueller-bsc-thesis-2021.html (visited on 12/13/2021).

Andrew NG. Standard notations for Deep Learning. permission to course
material required. URL: https://www.coursera.org/learn/neural -
networks-deep-learning/resources/YsZjP (visited on 03/05/2022).

Andrew Ng, Kian Katanforoosh, and Younes Bensouda Mourri. Deep Learning
| Coursera. URL: https://www.coursera.org/specializations/deep-
learning (visited on 03/05/2022).

C.E. Shannon. “Communication in the Presence of Noise". In: Proceedings of
the IRE 37.1 (1949), pp. 10-21. por: 10.1109/JRPROC. 1949.232969.

Alessandro Pappalardo. Xilinx/brevitas. 2021. URL: https://github.com/
Xilinx/brevitas (visited on 03/01/2022).

PDM Microphones and Sigma-Delta A/D Conversion. URL: https : / /
tomverbeure . github.io/2020/10/04/PDM-Microphones-and-Sigma-
Delta-Conversion.html (visited on 03/02/2022).

Kai Poguntke. IP-Cores Proseminar 2003. German. Tech. rep. Universitaet
Ulm, 2003. 9 pp. URL: https://www.informatik.uni-ulm.de/ni/Lehre/
SS03/ProSemFPGA/IP-Cores.pdf (visited on 03/03/2022).

Pasd Putthapipat, Chutitep Woralert, and Phumiphat Sirinimnuankul. “Speech
recognition gateway for home automation on open platform”. In: Jan. 2018,
pp. 1-4. DoI: 10.23919/ELINFOCOM.2018.8330715

PYNQ-Z1 Reference Manual. Homepage. URL: https://wuw.nti-audio.
com/portals/0/pic/news/FFT-Time-Frequency-View-540.png (visited
on 03/02/2022).

Joseph Redmon and Ali Farhadi. "YOLQO9000: Better, Faster, Stronger”. In:
CoRR abs/1612.08242 (2016). arXiv: 1612.08242. URL: http://arxiv.
org/abs/1612.08242 (visited on 03/05/2022).

Thomas D. Rossing. Springer handbook of acoustics. Springer, 2007. 1SBN:
9780387304465.

Jirgen Schmidhuber. “Deep Learning in Neural Networks: An Overview"”. In:
CoRR abs/1404.7828 (2014). arXiv: 1404.7828. URL: http://arxiv.org/
abs/1404.7828 (visited on 03/05/2022).

Xuancheng Shao and Steven G. Johnson. “Type-II/IIl DCT/DST algorithms
with reduced number of arithmetic operations”. In: Signal Processing 88.6
(2008), pp. 1553-1564. 1SSN: 0165-1684. DOIL: https://doi.org/10.1016/j.
sigpro.2008.01.004. URL: https://www.sciencedirect.com/science/
article/pii/S016516840800008X.

ARM. AMBA 4 AXI4-Stream Protocol. ARM. 2010.

Clay S. Turner. “A Fast Binary Logarithm Algorithm [DSP Tips amp; Tricks]".
In: IEEE Signal Processing Magazine 27.5 (2010), pp. 124-140. por: 10.
1109/MSP.2010.937503.

Requirements for Cloud-Based wake word verification. URL: https : //
developer . amazon . com/en-US/docs/alexa/alexa-voice-service/
implement-ww-verification.html (visited on 03/06/2022).

Xilinx. Fast Fourier Transform v9.1. Version PG109. Xilinx. 2021.
Xilinx. FIR Compiler v7.2. Version PG109. Xilinx. 2021.

49

http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/mueller-bsc-thesis-2021.html
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/mueller-bsc-thesis-2021.html
http://homepages.hs-bremen.de/~jbredereke/de/forschung/veroeffentlichungen/mueller-bsc-thesis-2021.html
https://www.coursera.org/learn/neural-networks-deep-learning/resources/YsZjP
https://www.coursera.org/learn/neural-networks-deep-learning/resources/YsZjP
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://doi.org/10.1109/JRPROC.1949.232969
https://github.com/Xilinx/brevitas
https://github.com/Xilinx/brevitas
https://tomverbeure.github.io/2020/10/04/PDM-Microphones-and-Sigma-Delta-Conversion.html
https://tomverbeure.github.io/2020/10/04/PDM-Microphones-and-Sigma-Delta-Conversion.html
https://tomverbeure.github.io/2020/10/04/PDM-Microphones-and-Sigma-Delta-Conversion.html
https://www.informatik.uni-ulm.de/ni/Lehre/SS03/ProSemFPGA/IP-Cores.pdf
https://www.informatik.uni-ulm.de/ni/Lehre/SS03/ProSemFPGA/IP-Cores.pdf
https://doi.org/10.23919/ELINFOCOM.2018.8330715
https://www.nti-audio.com/portals/0/pic/news/FFT-Time-Frequency-View-540.png
https://www.nti-audio.com/portals/0/pic/news/FFT-Time-Frequency-View-540.png
https://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
https://doi.org/https://doi.org/10.1016/j.sigpro.2008.01.004
https://doi.org/https://doi.org/10.1016/j.sigpro.2008.01.004
https://www.sciencedirect.com/science/article/pii/S016516840800008X
https://www.sciencedirect.com/science/article/pii/S016516840800008X
https://doi.org/10.1109/MSP.2010.937503
https://doi.org/10.1109/MSP.2010.937503
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/implement-ww-verification.html
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/implement-ww-verification.html
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/implement-ww-verification.html

	Introduction
	Motivation of the Project
	Original Task Description
	Actual Scope of Work

	Fundamentals
	Basic Principles of Neural Networks and Deep Learning
	Introduction
	Structure of Neural Networks
	Training Process
	Evaluation
	Format of Input Data
	Preprocessing of Training Data
	Summary and Outlook

	Speech Interfaces
	Keyword Detection

	Audio Formats
	PDM
	PCM

	Fast Fourier Transformation
	FPGA
	IP-Cores
	AXI-Stream

	Design of System Architecture
	Interfaces Between System Components

	Used Materials
	Hardware
	Operating System and Development Environment
	Software

	Data Processing on FPGA
	Recording PDM Samples
	Converting PDM to PCM
	Low Pass Filtering
	Decimation
	Conversion on the FPGA

	MFCC Feature Extraction
	Provide converted Data for further processing

	Data Interface Between FPGA and Neural Network
	Machine Learning
	Generation of Test Data
	Source of Raw Audio Data
	Data Augmentation

	Neural Network
	Neural Network Architecture
	Training
	Validation
	Inference

	Evaluation
	Conclusion and Outlook
	Used Material
	Software Packages
	Standard notations for Deep Learning

	Repository Structure
	General Repository Structure
	Documentation Repository
	FFT Repository
	Neural Network Repository
	Extending the Pipeline
	Training Database

	List of Figures
	List of Acronyms
	Bibliography

