
A Time-Triggered Architecture For an Attitude Control System
With Space Technology

Jan Bredereke, Julian Greilich, Benjamin Hesseln, Jan Lehrke, Nils Müller, Jonas Pufahl, Jens
Sager, Markus Salomon, Benjamin Schäfer, Tobias Schmitz, Maximilian Schönenberg, Nikolas

Schreck, Peter Tschubij, and Mirco Wittrien

City University of Applied Sciences Bremen
Flughafenallee 10, D-28199 Bremen

http://homepages.hs-bremen.de/~jbredereke

Rico Thiele

Airbus Defence & Space
Airbus-Allee 1, D-28199 Bremen

Feb. 2017

http://homepages.hs-bremen.de/~jbredereke

The following pages were generated from the project wiki hosted by Airbus.

Configuration v2 - A Time-

Triggered Architecture For

an Attitude Control System

With Space Technology
Rico Thiele

Version:

Modification Date:

Creation Date: 15-Sep-2016 09:03

27-Jan-2017 13:28

18

2

Table of Contents

1 Introduction ___ 5

1.1 The Attitude Control System Demonstrator __ 5

1.2 The Time-Triggered Architecture ___ 6

1.2.1 Time-Triggered Processing for Hard Real-Time Systems __________________________________ 6

1.2.2 The Time-Triggered Architecture for the Attitude Control System Demonstrator _______________ 6

1.3 Original Project Description (in German) ___ 7

2 Hardware Architecture ___ 8

2.1 Overview __ 9

2.2 Components ___ 10

2.2.1 BeagleBone Black ___ 10

2.2.2 Microcontroller __ 11

2.2.3 Attitude sensor __ 12

2.2.4 Motor ___ 12

2.2.5 OLED-Display __ 13

3 Previous software versions __ 14

4 PID Controller __ 15

4.1 Structure __ 15

4.1.1 Proportional term (P) ___ 15

4.1.2 Integral term (I) ___ 16

4.1.3 Derivative term (D) __ 16

4.2 Implementation ___ 16

4.2.1 Basic algorithm __ 16

4.2.2 Possible improvements __ 17

4.2.3 Choosing the controller parameters __ 18

4.3 Sources ___ 18

5 Arduino IDE ___ 19

6 Time-Triggered Scheduling __ 20

6.1 Cooperative Scheduling __ 20

6.2 Multiprocessor Systems __ 20

6.2.1 Clock Synchronisation __ 21

6.2.2 Data Transfer ___ 21

6.2.3 Error Handling __ 21

6.3 Data Flow Analysis ___ 22

6.3.1 RS232 between Master and Slave ___ 22

6.3.2 I²C between Slave, Driver of the motors, Driver of the OLED-Display and Sensor _____________ 22

6.4 RS232 Communication Protocol ___ 23

6.4.1 Message-Types __ 23

6.4.2 Sequence ___ 24

6.4.3 Error-Handling __ 24

7 Arduino and Time-Triggered Drivers __ 25

7.1 Interface drivers __ 25

7.1.1 I2C ___ 25

3

7.1.2 RS232 ___ 29

7.2 Peripheral drivers ___ 30

7.2.1 Motor ___ 30

7.2.2 Sensor ___ 30

7.3 Operating System ___ 31

7.4 Problems during development ___ 31

8 QNX Operating System ___ 32

8.1 What is QNX? ___ 32

8.2 Using QNX on BeagleBone Black __ 32

8.2.1 Requirements to run QNX on the BeagleBone Black ____________________________________ 32

8.2.2 Install QNX Momentics IDE ___ 32

8.2.3 Build the Board Support Package (BSP) __ 33

8.2.4 Disable the Watchdog-Timer ___ 33

8.2.5 Enable execution of qconn ___ 34

8.2.6 Mount the sd card in QNX ___ 34

8.2.7 Initialize serial connection ___ 34

8.3 Creating a QNX Project __ 36

8.4 Porting an old BSP to a higher Version __ 36

8.5 Conclusion __ 37

8.6 Sources ___ 37

9 Master Implementation ___ 38

9.1 General Software Design ___ 38

9.1.1 PID ___ 38

9.1.2 Scheduler __ 38

9.2 Platform Specific Implementations ___ 38

9.2.1 Arduino __ 38

9.2.2 QNX __ 39

9.3 Open Issues __ 40

10 Conclusions __ 41

10.1 Using a Time-Triggered Architecture __ 41

10.1.1 Suitable for Hard Real-Time __ 41

10.1.2 Using Custom Off-The-Shelf Drivers in a Time-Triggered Architecture ____________________ 41

10.2 Using QNX on Space Hardware ___ 42

10.3 Using QNX for a Time-Triggered Architecture ___ 42

10.4 Incomplete Implementation of the Angle Control Demonstrator __________________________________ 43

11 Appendix: Structure of the Oral Presentation (in German) __ 44

4

1 Introduction

1.1 The Attitude Control System Demonstrator

1.2 The Time-Triggered Architecture

1.2.1 Time-Triggered Processing for Hard Real-Time Systems

1.2.2 The Time-Triggered Architecture for the Attitude Control System Demonstrator

1.3 Original Project Description (in German)

5

1 Introduction

Prof. Dr. Jan Bredereke, City University of Applied Sciences Bremen

This project demonstrates how to implement a time-triggered architecture for a real-time and distributed embedded

system. The application is a simple attitude control system. The project was carried out as part of the course

"Embedded Systems" at the City University of Applied Sciences Bremen, during the winter term 2016/17. It was

supervised by Prof. Dr. Jan Bredereke. The chapters after the introduction were written by the students named there.

The project was conducted in cooperation with Airbus Bremen.

1.1 The Attitude Control System Demonstrator

The demonstrator consists of an arm with a single degree of freedom, see figure. The arm is kept in a defined attitude

by two propellers. The control algorithm for this is executed on a BeagleBone Black microcontroller running the QNX

operating system. Originally, an e.Cube computer suitable for space missions was envisioned for this task. However, a

missing board support package for the current version of the QNX operating system made us switch to the BeagleBone

Black. The actuators and the sensor are controlled by a Sunfounder Mega microcontroller (Arduino-compatible). Both

microcontrollers communicate over an RS-232 serial connection using a time-triggered communication protocol.

6

1.2 The Time-Triggered Architecture

1.2.1 Time-Triggered Processing for Hard Real-Time Systems

Using a time-triggered processing scheme helps to meet hard real-time constraints. Every task has a fixed time slot in

the schedule, with a fixed period and a fixed length. This allows to prove that a system constructed in this way will

meet its timing requirements under all circumstances. Such a proof can be done by checking that the worst-case

execution time of every task in isolation does not exceed the length of its alotted time slot. Such a system does not use

any interrupt mechanism. Each task runs to completion. The scheduling therefore is cooperative. If the worst-case

execution times of all tasks have been proven to not exceed their deadlines, such a design is highly reliable.

An alternative scheme would be event-triggered processing. Such a scheme uses interrupts and priorities for tasks. At

any time, a higher-priority task may interrupt the execution of a lower-priority task. This allows for a quick response to

an urgent issue. Also, the average response time of tasks in such a scheme often is considerably shorter than when

using a time-triggered scheme. However, an interrupting task may be interrupted itself, and interrupts may be

postponed for a long time or even lost due to other high-priority processing. Therefore, usually it is practically

impossible to provide a proof that a specific task will meet a specific deadline in the worst case. Consequently, an

event-triggered processing scheme usually is not suitable for a hard real-time system. Hard real-time system here

means that guarantees for its reliability must be provided.

Please note that the documentation of the QNX real-time operating system systematically uses a substantially different

meaning for the words "real-time". It uses them in the sense of "as fast as possible", and not in the sense of "guaranteed

fast enough".

1.2.2 The Time-Triggered Architecture for the Attitude Control

System Demonstrator

We use a distributed time-triggered architecture for our attitude control system demonstrator. There are two processing

nodes, and they synchronize und communicate using an RS-232 serial interface connection. The BeagleBone Black

microcontroller is the master. It generates the time ticks which determine the schedule of all tasks on all nodes. The

Sunfounder Mega microcontroller is a slave and follows the time ticks. The communication schedule is defined by

these regular time ticks, too. We defined a simple time-triggered communication protocol for this. The details follow in

the sections below.

The following figure shows the system structure. Light blue and light red boxes denote optional components, to be

realized only if time permits.

7

1.3 Original Project Description (in German)

Projektbeschreibung-2016-09-23.pdf

8

2 Hardware Architecture

Authors: Jan Lehrke, Jonas Pufahl

1 Overview

2 Components

2.1 BeagleBone Black

2.1.1 PINs

2.2 Microcontroller

2.3 Attitude sensor

2.4 Motor

2.4.1 Motors

2.4.2 Motor driver

2.5 OLED-Display

Related hardware specifications: Electronics

9

2.1 Overview

10

Assembly picture of all devices attached to I²C bus

2.2 Components

2.2.1 BeagleBone Black

Name: BeagleBone Black

Data sheet: http://elinux.org/Beagleboard:BeagleBoneBlack

11

PINs

the following graphic shows the BeagleBone Black Serial Port Mapping

2.2.2 Microcontroller

Name: Microcontroller Sunfounder Mega 2560

12

Data sheet: http://www.robotshop.com/media/files/PDF/ArduinoMega2560Datasheet.pdf

2.2.3 Attitude sensor

Name: Invensense MPU-6050

Data sheet: https://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/

The sensor provides the data in several registers which can be read by calling them seperately or pulling data

frequently from the sensor so the sensor increments the register number by himself. Have a look at the document

section of the website to get a description of the register mapping.

2.2.4 Motor

Motors

There are two equal motors (left and right). Both are controlled by one motor driver

Name: DC Motor Crazyflie Nano Quadcopter

13

Data sheet: http://www.watterott.com/de/Crazyflie-Nano-Quadcopter-6x15-mm-spare-motor-BC-CM-01-A

Motor driver

Name: Grove I C Motor Driver2

Data sheet: http://wiki.seeed.cc/Grove-I2C_Motor_Driver_V1.3/

2.2.5 OLED-Display

Name: Adafruit Monochrome 1.3" 128x64 OLED graphic display

Data sheet: https://www.adafruit.com/product/938

14

3 Previous software versions

Authors: Jens Sager, Benjamin Schäfer

There are three previous software versions. Two of these versions can be found in the git repository on branch

"config_v1_Control_loop_and_user_frontend". The arduino code can be found in the directory "ACD Arduino Code

v1.0/sketches/eCubeTranslatorDisplay" and "ACD Arduino Code v2.0/Arduino Code/eCubeTranslatorDisplay". The

third version "Echtzeitnachweis" can be accessed in AULIS (if you have no access to AULIS ask or Jan Bredereke

 for the code).Rico Thiele

The "Echtzeitnachweis" is a restructured version of the v1 code. It applies the design pattern for reactive real time

systems. The v2 code is a continuation of v1.

The existing software is not suitable to implement a distributed real time system. Mainly because process real time

properties have been neglected. Also the serial communication is unsuitable. It has to be examined if reading the sensor

values can be done in a way more suitable for real time systems while keeping the sensor fusion.

In summary: technical concepts of the previous versions can be employed. A new structure should be created.

15

4 PID Controller

Authors: Jens Sager, Benjamin Schäfer

1 Structure

1.1 Proportional term (P)

1.2 Integral term (I)

1.3 Derivative term (D)

2 Implementation

2.1 Basic algorithm

2.2 Possible improvements

2.2.1 Windup reduction

2.2.2 Sample time

2.2.3 Derivative kick

2.2.4 Changing parameters on the fly

2.3 Choosing the controller parameters

3 Sources

4.1 Structure

A PID controllers main purpose is, as with any other controller, to monitor and if necessary alter the operating

conditions of a given dynamical system. [Wikipedia] A PID controller consists of a proportional, integral and a

derivative term. It seeks to match the measured process variable to a desired setpoint. Each of the PID terms has a

tuning parameter (proportional gain, integral gain, derivative gain), usually called , , .K P K I K D

The controller takes the current error value , that is the difference between the setpoint and the current process e(t) SP

variable , and uses it to compute each term which is again multiplied with its respective tuning parameter. The PV(t)

controllers output is the sum of the three resulting terms.

4.1.1 Proportional term (P)

The proportional term produces an output that is proportional to the current error value, thus increasing the P

controllers output with increasing error. It makes up the main part of the control algorithm. A P-only controller is a

sufficient controller in many cases. [Pont2001]

16

4.1.2 Integral term (I)

The integral term grows with both the magnitude of the error and its duration. This term can accelerate the movement I

of the process towards the setpoint if an error is not corrected over longer time periods. Because it accumulates the

errors of the past it can result in overshooting the setpoint value. To mitigate this effect for certain circumstances

windup protection can be used.

4.1.3 Derivative term (D)

The derivative of the error is used to determine the slope of the error over time. This can be used to predict system

behaviour and improves settling time as well as stability of the system.

4.2 Implementation

4.2.1 Basic algorithm

The basic algorithm as given by . http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/

A similar version can be found in [Pont2001]

/*working variables*/

unsigned long lastTime;

double Input, Output, Setpoint;

double errSum, lastErr;

double kp, ki, kd;

void Compute()

{

 /*How long since we last calculated*/

 unsigned long now = millis();

 double timeChange = (double)(now - lastTime);

 /*Compute all the working error variables*/

17

 double error = Setpoint - Input;

 errSum += (error * timeChange);

 double dErr = (error - lastErr) / timeChange;

 /*Compute PID Output*/

 Output = kp * error + ki * errSum + kd * dErr;

 /*Remember some variables for next time*/

 lastErr = error; lastTime = now;

}

void SetTunings(double Kp, double Ki, double Kd)

{

 kp = Kp; ki = Ki; kd = Kd;

}

4.2.2 Possible improvements

In the following possible improvements to the PID algorithm are listed. Most of these are taken from the arduino PID

library Others are suggested by http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction.

Pont. To see which of these improvements were implemented in the system please consult the code.

Windup reduction

In the basic approach the error is summed up for the integral term every time the algorithm is called. If the actuator is

operating at its maximum or minimum limit changing the value of the sum serves no purpose because the actuator

value can not be changed. If the summation continues it results in slowed system response. Hence Pont suggests

stopping the summation when the output is at its limits.

Sample time

In order to get consistent behaviour from the PID it should be called in regular intervals. This also results in a

simplification of the derivative and integral calculations.

Derivative kick

This steps goal is to eliminate spikes in output if the setpoint is changed which in turn results in an "instant" change in

the error value and a spike for the derivative.

This change uses the fact that:

18

1.

2.

3.

4.

5.

6.

This holds true when the setpoint is constant. Switching to observing the difference in input values instead of error

changes smooths out the derivative kick.

Changing parameters on the fly

In the basic form sudden changes in the tuning parameters would lead to undesirable spikes or bumps in the output

value because of the cumulated error sums. One way to deal with this is to rescale the current error sum based on the

new parameter. Additionally multiplying each sum term with the error individually instead of the cumulative sum KI

smooths out the bump.

Source and sample code: http://brettbeauregard.com/blog/2011/04/improving-the-beginner%e2%80%99s-pid-tuning-

changes/

4.2.3 Choosing the controller parameters

Pont suggests the following 6 steps to finding proper tuning parameters:

Set the integral and differential terms to 0

Increase the proportional term slowly, until you get continuous oscillations

Reduce to half the value determined.K P

If necessary, experiment with small values of to damp-out ‘ringing’ in the responseK D

If necessary, experiment with small values of to reduce the steady-state error in the systemK I

Always use windup protection if using a non-zero valueK I

4.3 Sources

[Pont2001] : http://www.safetty.net/download/pont_pttes_2001.pdf

[Wikipedia] : https://en.wikipedia.org/wiki/PID_controller

19

5 Arduino IDE

The Arduino homepage offers a step-by-step guide on how to install the Arduino-IDE. It also offers an overview of a

number of Arduino microcontrollers on the right side.

https://www.arduino.cc/en/Guide/HomePage

We are using for the Angle Control Demonstrator an Arduino MEGA2560. The link below offers a guide on how to

start the IDE and how to create an image by writting a sketch.

https://www.arduino.cc/en/Guide/ArduinoMega2560

As a demo program we combined the two code samples down below to display the angle of the balanced beam with

the OLED display.

https://pforge.eso-io.com/git/acd/arduino_demo/Arduino_demo_OLED_MPU6500.ino

Down below are some code samples for the hardware we are using:

Code sample for monochrome 1.3" 128x64 OLED graphic display:

https://github.com/adafruit/Adafruit_SSD1306

Code sample for MPU-6050 Accelerometer + Gyro:

http://playground.arduino.cc/Main/MPU-6050

Autoren:

NIls Müller, Tobias Schmitz, Mirco Wittrien

20

1.

2.

3.

6 Time-Triggered Scheduling

Found a Whitepaper to the topic scheduling on QNX: The Joy of Scheduling

6.1 Cooperative Scheduling

Using cooperative scheduling each process will work uninterrupted until it finishes its task and meets its natural end. It

requires every process to fulfill its real-time conditions, so that the CPU can handle other processes in time. For this

purpose it is advantageous for every process to not use up too much time.

The opposite of cooperative scheduling is preemptive scheduling. Using preemptive scheduling, processes can be

interrupted by the operating system, so that multiple processes can be executed concurrently. A priority control is

needed for preemptive scheduling.

An advantage of cooperative scheduling is the low expense for implementation and not needing to implement the case

of interrupted processes.

On the Arduino and the BeagleBone we use cooperative scheduling, even though QNX (the operating system of the

BeagleBone) is intended to be used with preemptive scheduling. The reason for this decision is the easier validation of

real-time conditions, even if it leads to us ignoring the inherent interrupt-features of QNX.

Extensive explanation of cooperative scheduling:

 (p. 246f)http://www.safetty.net/download/pont_pttes_2001.pdf

Example code of cooperative scheduling with function pointers:

 (p. 256ff)http://www.safetty.net/download/pont_pttes_2001.pdf

Example code of splitting tasks into simpler subtasks:

 (p. 316ff)http://www.safetty.net/download/pont_pttes_2001.pdf

Authors:

Greilich, Salomon, Schreck, Tschubij

6.2 Multiprocessor Systems

A multiprocessor system is a system composed of multiple processors. Our system houses one master processor (the

) and one slave (the). Regarding those systems there are three main BeagleBone Black Sunfounder Mega 2560, Arduino

requirements:

clock synchronisation

data transfer (between processors)

error handling

21

6.2.1 Clock Synchronisation

Even if multiple processors have the same clock, the clock tolerances might lead to variations in execution times. To

ensure synchronous executions clock synchronisation is required. A possible solution for this is the master sending

periodical tick messages.

6.2.2 Data Transfer

The slaves respond to every tick message with an acknowledge message. Both message types can have appended

payload data. No additional messages are permitted.

These facts allow the bandwidth to be predetermined, ensuring all messages are being delivered on time.

6.2.3 Error Handling

A slave can detect errors by measuring the timespan between two tick messages. When an error is detected the slave

will fall into a safe state and will wait for another start sequence.

A master does error handling if an acknowledge message is missing: It stops sending tick-messages and therefore puts

the slaves into a safe state and then shuts down; restarts the network by restarting itself; or engages a backup slave.

Drafted solutions for Clock Synchronisation:

 (p. 555ff)http://www.safetty.net/download/pont_pttes_2001.pdf

Drafted solutions for Data Transfer:

 (p. 583ff)http://www.safetty.net/download/pont_pttes_2001.pdf

Drafted solutions for Error Handling:

 (p. 596ff)http://www.safetty.net/download/pont_pttes_2001.pdf

The above mentioned solutions save tasks in a query. The execution of the tasks is done in the main()-method.

An example of such a main()-method is here:

http://www.safetty.net/download/pont_pttes_2001.pdf (p. 259 and 267)

Authors:

Greilich, Salomon, Schreck, Tschubij

22

6.3 Data Flow Analysis

6.3.1 RS232 between Master and Slave

The master needs the following data from the slave:

Rotation-Sensor-Value (2 Byte)

The slave need the following data from the master:

Data to display on the OLED

Actual Rotation Value (2 Byte)

Target Rotation Value (2 Byte)

PID-Value to control the motordrivers (1 Byte)

In the current protocol version, each tick-message from the master has be answered by an ack-message from the slave

and each message consists of exactly 1 Byte (see).Cooperative Scheduling, RS232 Communication Protocol.

Because the PID-Value is more important, it is transfered more often (every second tick) than the other values for the

slave.

Therefore it takes eight tick-messages to transfer all Data.

The details are described in RS232 Communication Protocol.

6.3.2 I²C between Slave, Driver of the motors, Driver of the OLED-

Display and Sensor

To set a new motor value, the following data has to be send over I²C:

I²C-device-address (1 Byte) (in "write-mode", see I²C-Standard for more details)

data-register on the I²C-Device to write to (1 Byte)

value to set for each motor (2 Bytes)

To read a new sensor-value from the rotation-sensor, the following data has to

be send over I²C:

I²C-device-address (1 Byte) (in "write-mode", see I²C-Standard for more details)

data-register on the I²C-Device to read from (1 Byte)

I²C-device-address (1 Byte) (in "read-mode", see I²C-Standard for more details)

sensor-data (4 Bytes)

23

Because the driver for the OLED-Display is not implemented yet, it is unknown how much data is needed to display

the values.

Author: Greilich

6.4 RS232 Communication Protocol

Communication between the BeagleBone and the Arduino is based on RS232 using TTL levels. Because of the multi

processor system a time triggered protocol is needed. The protocol has to implement features listed on Multiprocessor

.Systems

If the master would send all data in every tick-message, the slave-processor would be blocked for the whole receiving

(at 9600 Bd, 8N1, 6 Byte Data: 10 ms).

To improve this, every Tick- and every Ack-Message consists of only a single byte, so that the hardware of the

microcontroller can offload the receiving-process and transmission-process. (The Hardware generates and interrupt,

when a byte is received. The slave only has to copy the received byte and from the receive-buffer and write the Ack-

Message into the send-buffer.)

6.4.1 Message-Types

The following Message-Types exist. The order, in which these Messages are sent is described in below (Sequence).

Message-Type Master (Tick) Slave (Ack)

0 START START_ACK

1 REQ_ROT_HIGH ROT_HIGH

2 REQ_ROT_LOW ROT_LOW

3 PID ROT_HIGH

4 AV_ROT_HIGH ROT_LOW

5 AV_ROT_LOW ROT_LOW

6 TV_ROT_HIGH ROT_LOW

7 TV_ROT_LOW ROT_LOW

Message-Bytes

Message-Byte Description

START 0xAB (magic value to be recognized by the slave)

REQ_ROT_HIGH 0x48 (magic value to request the first ROT_HIGH)

24

Message-Byte Description

REQ_ROT_LOW 0x4C (magic value to request the first ROT_LOW)

PID PID regulation output value

AV_ROT_HIGH High-Byte of ACTUAL VALUE rotation for OLED1

AV_ROT_LOW Low-Byte of ACTUAL VALUE rotation for OLED1

TV_ROT_HIGH High-Byte of TARGET VALUE rotation for OLED1

TV_ROT_LOW Low-Byte of TARGET VALUE rotation for OLED1

START_ACK 0xCD (magic value to be recognized by the master)

ROT_HIGH High-Byte of Rotation sensor value

ROT_LOW Low-Byte of Rotation sensor value

1) Values are mapped as following: 0 -> -180.00° ... 2 -> +180.00°16

6.4.2 Sequence

The Master repeatedly sends the start-byte START, until the Slave acknowledges it with START_ACK.

The first time the Master receives the START_ACK from the Slave, it will send REQ_ROT_HIGH (expecting the

ROT_HIGH byte) and REQ_ROT_LOW (expecting the ROT_LOW byte). This is needed, because without the first

sensor values, the Slave would not be able to properly calculate the PID-values. After this sequence the Master will

send another START byte, after which he should get the START_ACK from the Slave. This means the first message-

sequence should be:

0 -> 1 -> 2 -> 0.

After this first exchange of the sensor-values and the two start-handshakes, the following message-sequence will be

endlessly repeated:

3 -> 4 -> 3 -> 5 -> 3 -> 6 -> 3 -> 7 -> ...

6.4.3 Error-Handling

If the master gets no acknowledge-message (within a time-slot, which has to be defined!), the master repeatedly sends

the start-byte START, until the Slave acknowledges it with START_ACK.

If the slave get no tick-message (within a time-slot, which has to be defined!), the slave enters a safe state and waits for

the start-byte START.

Authors:

Greilich, Salomon, Schreck, Tschubij

25

7 Arduino and Time-Triggered Drivers

1 Interface drivers

1.1 I2C

1.1.1 First Version

1.1.2 Second Version

1.2 RS232

1.2.1 Test of Serial Connection

1.2.1.1 Sending data

1.2.2 Interface

2 Peripheral drivers

2.1 Motor

2.1.1 Mapping of the motor values

2.2 Sensor

3 Operating System

4 Problems during development

7.1 Interface drivers

Authors: Jonas Pufahl, Jan Lehrke

7.1.1 I2C

For our real-time requirements it is not possible to use the Wire Arduino library because it is not built for real-time use.

It cannot provide a schedulable execution time and it is using interrupts.

We created a I2C library on our own and we worked on two versions. The first try/version failed due to limitations of

the hardware. During the development and validation of the possible implementations of i2c the signals produced by

the library were measured with the .LogicPort logic analyzer

First Version

In the first version the target was to create a I2C communication file to do a manual I2C connection with the general

IO ports of the controller. For this approach the I2C library written by Prof. Dr. Jan Bredereke for the C515C

microcontroller was ported to be used on the Mega 2560. During this approach an hardware limitation error was

detected. The ATmega2560 is not able to to switch from weak 1 (Pull-Up signal) to a zero signal. This feature is

mandatory to run I2C. The following graphic shows the structure of an IO port of the Mega 2560:

26

the used code is placed in the git repository in the folder interfaces/i2cBib/arduino_i2c_v1/.

It was necessary to do a timing analysis due to used and by the Mega 2560 not supported -calls of the given nop()

library. For this reason the built-in Arduino function was used to achieve the nearly the delayMicroseconds()

same delays in as expected by the original library. The following code was used to produce some i2cWait.cpp

signals in order to start some measurements via LogicPort.

27

Code for timing analysis

/* Code from main loop() */

PORTE = 32;

delayMicroseconds(8);

PORTE = 0;

delayMicroseconds(10);

PORTE = 32;

delayMicroseconds(5);

PORTE = 0;

delayMicroseconds(10);

PORTE = 32;

delayMicroseconds(6);

PORTE = 0;

delayMicroseconds(10);

PORTE = 32;

i2cWaitClockHigh();

PORTE = 0;

delayMicroseconds(10);

/* Code from i2cWait.cpp */

void i2cWaitClockHigh() {

 /* Should wait approx. 4 microseconds */

 delayMicroseconds(5);

 return;

}

The screenshot shows that a call to with a given number of microseconds will cause a delayMicroseconds()

delay for a time span that is around 1.2 microseconds smaller than the wished amount of microseconds. That should be

considered if any use of is needed. For the second version of the i2c library in this project delayMicroseconds()

it wasn't necessary to use this function.

28

Second Version

In a second version the ATmega2560 embedded I2C functionality "AVR TWI" is used to send and receive data. This

fixes the issue of version 1 because the controller delivers additional hardware for this usage.

The raw TWI call was first tested in the Arduino standard method and tested with the LogicPort. After the setup()

successful test the interface API was planned and the following functions were planned and implemented in interfaces

/i2cBib/arduino_i2c_v2/:

/* Initialize i2c Master */

void i2cMasterInit();

/* Send data to specific i2c address */

void i2cMasterSend(uint8_t address,uint8_t data[], uint16_t dataLength);

/* Tell the Master to write data from buffer */

void i2cMasterWriteData();

/* Tell the Master to read data from altitude sensor */

void i2cMasterReadSensor();

/* Check for available sensor data */

uint8_t i2cMasterIsDataAvailable();

/* Get sensor data */

uint16_t * i2cMasterGetSensorData();

The library is concentrating on the Master-functionalities and hasn't any Slave implementations. The main features are

split up in as small packages as possible to garantee short and nearly constant execution times.

The i2cMaster driver is activated by the scheduler during the scheduling round by calling the write or read function.

If the i2c driver has any data left in the internal buffer that was previously provided by the motor driver and the write

function is called by the scheduler, the i2c driver will either start the transmission by settings the write address and

lock the bus as a preparation for the next transmissions or will continue sending on the locked bus by sending one byte

per function call of the scheduler. The send function needs to get called as often as there are bytes in the array provided

by the motor driver and one additional time für starting the transmission in a row!

29

Reading data is also triggered by the scheduler and will not lock the bus until all data is read. The i2c driver currently

needs to get called three times (one time for the register configuration of the sensor and as often as described by

 in the header file) to read a complete set of data. One transmission starts ALT_SENSOR_READ_DOUBLE_BYTES

with the read address and the next double byte from the sensor to prevent any errors due to changes done to one half

byte between receive requests. The execution time is higher but it is built to deliver correct data. Additionally, there

was no reason to build a modular receive function with support for an address because in this infrastructure, the sensor

is the only device that provides data to the master The sensor driver can retrieve the data by checking for available data

and getting the pointer to the internal data receive buffer of the i2c driver if the data set is complete.

There is an error handling with several error codes but it has no implementation for the analysis of the error code.

The library was successfully tested with the LogicPort logic analyzer and afterwards in combination with the

scheduler.

7.1.2 RS232

Test of Serial Connection

RS-232 was tested via USB and the Serial1 interface on ports RX1 and TX1. Both were tested with baudrate 9600

using the following c-code:

void setup() {

 Serial1.begin(9600);

 Serial.begin(9600);

}

void loop() {

 Serial1.println("Hello");

 Serial.println("Hello");

 delay(200);

}

Sending data
"Hello" was detected correctly on both interfaces. Serial (Microcontroller USB Port) was tested via minicom, Serial1

via LogicPort.

There was no issue in reading the data from Serial

It was not possible to get any input data with the TTL-232R-5V adapter with minicom on the INCT_PC09 and with

Putty on a private Dell Notebook (Windows 10 Pro 64bit).

There was a test with the RS232 Level Shifter and the internal RS232 connector of INCT_PC09 using a crosslinked

cable. The incoming data was corrupted, some characters were dropped and in the end of the test the connection was

lost and it was not possible to get a connection again.

30

Interface

In the real-time system it is not possible (it could be possible but it would be very hard to proof the real-time features)

to use the Arduino Serial library, so it is the way to go to write a new RS232 interface.

This interface uses the ATmega2560 build in UART functionality.

7.2 Peripheral drivers

Authors: Tobias Schmitz, Mirco Wittrien

7.2.1 Motor

The existing motor driver also does not meet the real-time requirements, because it is not certain, if the used library

functions might take to long, which would be against a real-time system. This means that we are using our own I2C

library.

We rewrote the existing motor driver using our I2C library. The overall structure of the motor driver stayed the same.

Mapping of the motor values

The values for the motorspeed will be mapped in a way, that if the value is set to 255 the right motor runs at full speed

and the left runs at idle speed and if the value is set to 0 the right motor runs at idle speed and the left motor runs at full

speed.

const PIN_MIN = 0;

const PIN_MAX = 255;

const MOTOR_IDLE = 30;

const MOTOR_MAX = 254;

uint8_t motorspeed, motorSpeedCalc, motorSpeedLeft, motorSpeedRight;

motorSpeedCalc = ((motorspeed - PIN_MIN) * (MOTOR_MAX - MOTOR_IDLE) / (PIN_MAX - PIN_MIN))

+ MOTOR_IDLE;

motorSpeedLeft = (MOTOR_MAX + MOTOR_IDLE) - motorSpeedCalc;

motorSpeedRight = motorSpeedCalc;

7.2.2 Sensor

The existing sensor driver already works with the sensor fusion of the MPU6050, though the functions of the Digital

Motion Processor (DMP) used for the sensor fusion are using the default MPU library and the default I2C library.

This makes it impossible to estimate, whether the sensor driver manages to complete its task in the required time to

fulfill the real-time requirements. That is why we decided to use the version without the sensor fusion, which reads a

single set of values for the current position of the accelerometer from the I2C.

31

We rewrote the existing part of the sensor driver without the sensor fusion using our I2C library and removed the part

with the sensor fusion. The overall structure of the used part of the sensor driver stayed the same.

7.3 Operating System

Authors: Jonas Pufahl, Jan Lehrke

During the development of the interfaces for I2C and RS232 no Arduino library was usable. The Arduino is focused on

simplicity and it tries to provide a simple API for the developer. This is good for fast development but it is not good for

real-time applications because every code executed in a real-time application must fulfill a maximum execution time

and you cannot provide this information for the Arduino libraries.

In this project most parts of the code is using native ATMEGA code. It is not that much more code and it is simple to

calculate the maximal execution time. On top of this the Arduino IDE is very limited in functionalities.

So this project showed that it would be a better way to choose a normal ATMEGA microcontroller having no

ARDUINO bootloader installed and another IDE like the powerful Atmel Studio.

7.4 Problems during development

Authors: Jonas Pufahl, Jan Lehrke

While testing the i2cMaster driver there had been some unexpected behavior of the hardware. When using some simple

test code to configure the motor driver, we noticed that the driver will stop working until restarting the driver by

switching of the power (simply pressing the reset button of the driver hasn't solved the issue). To debug the i2c data

stream the LogicPort logic analyzer was used and there was no issue in the data send by the Arduino. The motor driver

send an acknowledge after receiving the first package but it doesn't control the motors. After some testing the issue was

solved by doing some other i2c communication like the configuration of the sensor before configuring the motor

driver.

At the end, the scheduler was able to communicate with all drivers and data was send via i2c correctly. Unfortunately

there had been an issue about the sensor which stoped sending correct information. This was fixed by toggling the

power but there had been no time to test the system again with a working sensor.

32

8 QNX Operating System

1 What is QNX?

2 Using QNX on BeagleBone Black

2.1 Requirements to run QNX on the BeagleBone Black

2.2 Install QNX Momentics IDE

2.3 Build the Board Support Package (BSP)

2.4 Disable the Watchdog-Timer

2.5 Enable execution of qconn

2.6 Mount the sd card in QNX

2.7 Initialize serial connection

3 Creating a QNX Project

4 Porting an old BSP to a higher Version

5 Conclusion

6 Sources

8.1 What is QNX?

QNX is a real-time embeddable POSIX operating system based on a microkernel architecture. It supports many

processor families including x86 and ARM .(4)

8.2 Using QNX on BeagleBone Black

The following steps were made for installing on BeagleBone Black, executing a "Hello World" program and QNX

preparing the system for the project:

8.2.1 Requirements to run QNX on the BeagleBone Black

BeagleBone Black with 5V power supply or mini-usb cable

SD-Card (minimum 128MB)

FTDI USB-to-TTL cable for a debugging connection

QNX Momentics IDE Version 5.0.1

BSP (Board Support Package) and additional files (MLO, u-boot.img) based on Version 6.6

8.2.2 Install QNX Momentics IDE

Follow the instructions of the installer.QNX Momentics IDE

33

8.2.3 Build the Board Support Package (BSP)

Follow the user guide from and take care of the following changes:(1)

Chapter 3 - Building and installing the BSP - Connect the hardware

Step 2 is no needed, but install the drivers for the FTDI cable

You can use the terminal to establish a debugging connectionQNX Momentics IDE

Chapter 3 - Building and installing the BSP - Build the BSP

By default the BSP is built from the precompiled libraries. To build from your (modified) sources,

modify the uppermost "makefile" in the root directory of the project. In the lines

install: $(if $(wildcard prebuilt/*),prebuilt)

$(MAKE) -Csrc hinstall

$(MAKE) -Csrc

you have to change "hinstall" to "install" (just remove the h) to perform a clean install from your

sources. (2)

Also note that the access rights of the BSP sources need to be executable. With "chmod -R +x *" this

can be accomplished. (3)

Make sure that it builds from your sources by editing the "build"-file under "/src/startup/boards/ti-

am335x/beaglebone/" and adding "display_msg YOUR_TEXT" as last line. This should be displayed

while boot.

When building from sources there occurred some failed imports to us. We could not fix them properly,

but we changed the failing imports to use relative paths inside the project. Most of the libraries can be

found under "/src/hardware/startup/lib" or in its subdirectories.

MLO and u-boot.img are found under .(1)

Use the automated U-Boot commands described in the documentation

Chapter 3 - Starting the screen graphics sample applications

Not needed

8.2.4 Disable the Watchdog-Timer

The BeagleBone will reset after running for 30 seconds because the watchdog timer kicks in. To disable this for

testing, modify the "main.c"-file under "/src/startup/boards/ti-am335x/beaglebone/" and add a new case to the "int

main()"-function like this:

 case 'd':

 /* Disable WDT */

 wdt_disable();

 break;

Note: This case is documented (in the source code of the BSP), but not implemented by default.

Finally the "-d" option is added to the startup program of the BeagleBone Black in the "build"-file.

34

 ###

 ## Startup arguments

 ## Use "-d" to enable watchdog timer support

 ## please run "dm814x-wdtkick" with this option

 ###

 startup-ti-am335x-beaglebone -d

8.2.5 Enable execution of qconn

qconn is a program used to establish a network connection to the BeagleBone for debugging programs. When

executing it will fail because of missing libraries. Add "libtracelog.so.1" at the end of the "build"-file under "/srcqconn

/startup/boards/ti-am335x/beaglebone/" and rebuild the project. Copy the generated binary to the sd card and reboot the

BeagleBone. An IP address has to be assigned to the BeagleBone. This can be achived by executing "ifconfig dm0

IP_ADDRESS" on the target system. After that, start . Now you can configure the BeagleBone as a target in qconn

Right-click in Insert QNX Momentic IDE: Project Explorer - New - Other - QNX/QNX Target System Project - Next -

BeagleBone's IP address and the port you used for (default: 8000) - The target can be used under "Run qconn Finish.

As..." or "Debug As..." to run or debug your project on the BeagleBone.

8.2.6 Mount the sd card in QNX

For development reasons a second partition is added to the sd card. On the first partition is the operating system

installed and on the second partition is the user space to store programs and other files. To mount both partition on

startup the "build"-file has been modified:

 # HSB: mount both partitions on our SD card to get writable memory

 waitfor /dev/hd0t11

 mount -t dos /dev/hd0t11 /qnx

 waitfor /dev/hd0t11.1

 mount -t ext2 /dev/hd0t11.1 /sd

The first partition is mounted on /qnx while the second partition is mounted on /sd.

8.2.7 Initialize serial connection

The is able to control 5 serial ports (UART) on the GPIO pins, 1 serial port on the serial debug jack BeagleBone Black

(J1) and the USB connector, which can also be used for a serial connection.

35

To enable the GPIO pins the correct function has to be uncommented in the /src/startup/boards/ti-am335x/beaglebone

/init_pinmux.c file.

Note: The functions to enable the UARTs have the comment: Untested - example configuration for

cape uartX

To bind these ports to a device-handler the program devc-seromap can be used:

 # HSB: Initialize the configured UART1 connection

 devc-seromap -e -F -b115200 -c48000000/16 0x48022000^2,46

The address for the UART register can be found in the documentation of the AM355x processor (see).(5)

Problem: It is possible to send data with the UART ports, but every attempt to receive data on the UART ports failed.

Therefore the UART0 port (J1) is reconfigured for serial communications.

To enable shell access via USBtty you first have to change the baudrate to the desired speed:

 sh -c '/bin/stty baud=115200 < /dev/serusb1'

Now you can start a listener who executes sh :

 on -t serusb1 sh

Add these line to the build file to configure the port on startup.

36

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

8.3 Creating a QNX Project

To create a project in the just click on - - type in the name of the QNX QNX Momentics IDE New QNX C Project

project and select the checkbox for ARM in the Build variance menu. Finally click on .Finish

Type in the following code for a "Hello world" program:

 #include <stdlib.h>

 #include <stdio.h>

 int main(int argc, char *argv[]) {

 printf("Welcome to the QNX Momentics IDE\n");

 return EXIT_SUCCESS;

 }

To execute the program on the BeagleBone add a qconn target to a Run Configuration (described in Enable execution

).of qconn

Problem: Debugging the program on the BeagleBone is not working.

8.4 Porting an old BSP to a higher Version

Download the newest BSP that you can get for your Board

Unpack the BSP

Remove the the folder "src/hardware/startup/ "lib

Remove the contents of the folder "prebuilt/usr/include/sys/"

Download a BSP for the same architecture with the targeted version number.(QNX offers generic BSPs, you

should use this one)

Unpack the new BSP

Copy the new "src/hardware/startup/ " to the old BSP.lib

Copy all files and folder of the new "prebuilt" directory to the old BSP and overwrite existing files.

Edit the source.xml of the "old" BSP(change version number etc.)

Now pack the "old" package and import it into the QNX IDE.

Try to compile the BSP you should get errors like:

 make[6]: *** No rule to make target `libpm.a', needed by

The libpm is no longer needed, you have to change the source like this:

LIBS+=io-char pm ps drvr

LIBS+=io-char drvr

Try to compile again, if you get an imagefile: congratulations! If not go on...

Now its your turn to look for deprecated or replaced drivers, libraries and interfaces

This process in undocumented and not repeatable for different boards, you can get hints on this link:

37

http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/Drivers

This is a try-and-error process, the other option is to ask the manufacturer for a BSP...

Good luck

8.5 Conclusion

QNX is one of the most used embedded operating systems, has a verbose documentation on the main parts of the OS

and seems to be a good decision as an embedded operating system. BUT the BSP for the BeagleBone is just "sloppy"

created. It is not starting "out-of-the-box", there are many untested functions, some documented features are not

implemented or just not working. After many hours of work we got the operating system prepared to use , but qconn

even after many hours more we did not get the serial ports on the GPIO pins to work. The is QNX Momentics IDE

working fine.

8.6 Sources

(1) http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/TiAm335Beaglebone

(2) http://www.qnx.com/developers/docs/660/topic/com.qnx.doc.neutrino.building/topic/bsp_BUILDSRC.html?

cp=1_1_1_1_1_1

(3) https://groups.google.com/d/msg/beagleboard/mNA8DbL0GfE/1Q3XWH3rBQAJ

(4) http://www.qnx.com/developers/docs/6.3.2/neutrino/sys_arch/intro.html

(5) http://phytec.com/wiki/images/7/72/AM335x_techincal_reference_manual.pdf

Authors: Maximilian Schönenberg, Benjamin Hesseln and Nils Müller

38

9 Master Implementation

Authors: Jens Sager, Markus Salomon

9.1 General Software Design

The master implementation is done within four files. These files are PID.c, RS232.c, Scheduler.c and Main.c (or on

Arduino ACD_Master_Arduino.ino).

9.1.1 PID

The PID controller was created with the structure described in . Before use the sample time, PID PID Controller

parameters and setpoint have to be set via PID_setSampleTime() and PID_setTunings() and PID_setSetpoint(). Setting

a sample time is necessary because the controller assumes regular intervals in which PID_comput() is called. This

function takes the current sensor value and returns the newly calculated PID value. It is possible to change the sample

time while the controller is running. The sample time is set in milliseconds while K and K are set in units of 1/s and I D

s.

Note: The PID controller has only undergone basic tests and is very likely not bug free. Actually controlling the ACD

and searching for proper tuning parameters has not been done.

9.1.2 Scheduler

The scheduler itself is split into the files Scheduler.c and Main.c. In Scheduler.c is the state machine of the designed

protocol (see), a thread for generating tick messages and the logic for updating the RS232 Communication Protocol

task list. In Main.c is an endless loop which checks if a task is ready to run. If so, it executes these task.

We decided not to use the solution with function pointers and structs descripted in http://www.safetty.net/download

 (p. 596ff) to increase readability. To descripe a task in the current solution there are three /pont_pttes_2001.pdf

variables needed. One for the delay, one for the period and one for checking if the task is ready to run. These variables

have to be updated in the updateTaskList() method of scheduler and in the Main.c file checked.

9.2 Platform Specific Implementations

9.2.1 Arduino

Because of some trouble with the QNX operating system, the master was also implemented on an Arduino. This way

we were able to test parts of the logic of the master (PID, state machine of the scheduler and scheduler), although some

problems on QNX were not fixed. To achieve this, we had to change the code for RS232-Communication and the code

for getting the timer interrupt. The code for the RS232-Communication was taken from the slave's group (just removed

the flag for serial interrupt) and the code for the timer was taken from .http://playground.arduino.cc/Code/Timer1

39

9.2.2 QNX

The Implementation in QNX is split into two threads. The Main-thread calls all initialization methods and then

constantly executes tasks when their corresponding flags are set. The timer-thread waits for an interrupt on the timer.

When an interrupt happens it reads any Messages received from the Slave and updates the state machine. Afterwards it

sends the corresponding tick message to the slave and updates the task list for the main thread.

Since the PID-Implementation was made with a constant sample time in mind its sample time has to be initialized. This

time is the same as the period of the timer (with a constant factor).

Setting up the timer

The timer notifies the timer-thread via a pulse over a preddefined communication channel. This channel is created via

the use of the method "ChannelCreate(int)". The timer event then gets initialized with the macro

"SIGEV_PULSE_INIT" and the timer gets created with the "timer_create()" method. The timer can now be given a

time of initial execution as well as an interval time. Thus

timer.it_value.tv_sec = 1;

timer.it_value.tv_nsec = 0;

timer.it_interval.tv_sec = 5;

timer.it_interval.tv_nsec = 0;

would first send a pulse after 1 second and then another pulse every 5 seconds after that. Finally the timer needs to be

started with the "timer_settime" method.

Setting up the timer thread

To make a thread we first create a variable of the type "pthread_attr_t". This variable gets initialized by

"pthread_attr_init". If attributes are not manually set then the created thread will inherit the priority of the parent

thread. The thread is then created with "pthread_create" where it is given its attributes as well as a function pointer for

the function it should execute. In this case we are using a simple loop to wait for timer interrupts and handle them

when they happen:

while(1){

rcvid = MsgReceive (chid, &msg, sizeof (msg), NULL);

if (rcvid == 0) {

gotAPulse();

}

}

Problems with QNX SDP

During the implementation of the Master for QNX we were unable to to run or debug the code on the machine we

wrote it on. Because of this we had to resort to running each iteration on the Beaglebone using basic console text

outputs for debugging purposes.

40

9.3 Open Issues

Because we ran out of time, there are still some known bugs.

The first open issue is, that the values of the sensors will be encoded on the slave's side before sending to the master

but not decoded by the master.

The second issue is, that no optimization of the PID values was done. An introduction about how this can be done, can

be found in .PID Controller

41

10 Conclusions

Author: Prof. Dr. Jan Bredereke

This project achieved its main goals fully. However, due to lack of time, we could not complete the actual

implementation. The main goals of the project were:

Demonstrate the application of a time-triggered architecture to a simple embedded distributed, hard real-time

system. (This was the learning goal set for the students.)

Collect practical experience on using the QNX real-time operating system on space hardware and for a time-

triggered architecture. (This was an additional goal of the project's organizers.)

We summarize our experiences with regard to these aspects in the following subsections.

10.1 Using a Time-Triggered Architecture

As expected, using a time-triggered architecture is suitable for designing a hard real-time system, that is, a system

which is "guaranteed fast enough". In contrast, the alternative scheme of an event-triggered system would have

provided an execution "as fast as possible" only, which very well might be too slow. However, it turned out that using

Custom Off-The-Shelf drivers in a time-triggered architecture often is not possible.

10.1.1 Suitable for Hard Real-Time

The students learned how to use a time-triggered architecture for designing a hard real-time system. Section Time-

 provides an overview and references, in particular to the textbook by Pont. As a bonus, the Triggered Scheduling

students refer to a whitepaper by Schaffer and Reid from QNX which discusses many different common scheduling

approaches and their pros and cons in different settings.

10.1.2 Using Custom Off-The-Shelf Drivers in a Time-Triggered

Architecture

A practical experience from the project is that using Custom Off-The-Shelf (COTS) drivers in a time-triggered

architecture often is not possible. All the COTS driver libraries we wanted to use are based on interrupts. Therefore

they are based on the event-triggered paradigm. This kind of interrupts does not integrate into the scheduling scheme

of a time-triggered system. Furthermore, the time-triggered, cooperative approach demands that each task must yield

the processor after a a fixed and, in particular, after a short period of time. If necessary, the task must be organized

such that it continues its work in the next time slot. None of the COTS drivers used was designed in this way. This

required us to redesign them from scratch.

42

This concerned the driver for the I2C bus (provided by the Wire library for Arduino), the driver for the RS-232 link on

the Arduino (also provided by the Wire library), and the driver for the attitude sensor (provided by the sensor's

manufacturer). See Section for details, in particular its Subsections 7.1.1, 7.1.2, Arduino and Time-Triggered Drivers

and 7.2.2.

We did not have the time to fully investigate the driver for the RS-232 link on the BeagleBone Black (provided by the

QNX board support package).

As a consequence, using the Arduino development environment for a time-triggered architecture is of no particular

help. The Arduino development environment and its simplicity is great to aid beginners. But in our context, using a

normal IDE for the same ATmega microcontroller would have been better.

10.2 Using QNX on Space Hardware

Our project provides a practical crib sheet for using QNX in Section . One example for these QNX Operating System

steps is how to disable the watchdog timer, which otherwise resets by default any system after 30 seconds. Beyond

that, we made the experience that the availablity of a board support package (BSP) for QNX is critical.

Originally, we intended to use Airbus's e.Cube computer suitable for space as the master node. However, it turned out

that there the most current BSP by the board manufacturer is for QNX version 6.4.1, while currently QNX already is at

version 6.6.0. There does not appear to be hope for a more current BSP by the manufacturer.

Nevertheless, the students didn't give up, and in Subsection 8.4 they provide a recipe for porting a BSP to a current

version of QNX. However, this solution can be seen as a last resort only. It is no way to deliberately design a reliable

system.

Similarly, the BSP for the BeagleBone Black did not have the quality we expected, either. The code for the UART (RS-

232) driver bears the comment "Untested", and the code for receiving data on the UART ports didn't run out-of-the-

box. (We didn't have time to investigate further.)

The lesson learned is that before choosing QNX (or any other commercial real-time operating system) for a project, we

should have a deep look at the quality of the applicable board support package. Likewise, we should ensure that the

board manufacturer will provide updates of the BSP for future releases of QNX.

10.3 Using QNX for a Time-Triggered Architecture

Using the QNX real-time operating system for a time-triggered architecture appears to be feasible without difficulties.

This is so even though we noted in the introduction (Subsection 1.2.1), that the documentation of QNX systematically

uses a substantially different meaning for the words "real-time" than us. It uses them in the sense of "as fast as

possible", and not in the sense of "guaranteed fast enough". The introductory documentation insinuates an event-

triggered, not a time-triggered, system architecture to its readers.

Nevertheless, it turned out that designing a time-triggered architecture with QNX appears to be very well feasible. You

only have to know well the concepts you want to apply. Otherwise, the QNX documentation can be misleading easily.

43

10.4 Incomplete Implementation of the Angle Control

Demonstrator

We did not complete the implementation of the Angle Control Demonstrator in the (short) time available. Several work

packages required more time than anticipated. In particular, we under-estimated the time necessary for the drivers,

which we had to rewrite from scratch to make them fit into the time-triggered architecture, instead of reusing existing

code. Some loose ends therefore remain, see the previous sections. Similarly, we had no opportunity yet to find

suitable parameters for the PID controller. This might need some additional time. Section , Subsection PID Controller

4.2.3, describes how it could be done.

Nevertheless, this project achieved its main goals fully, as stated in the beginning of this section.

44

11 Appendix: Structure of the Oral Presentation (in

German)

Es wurde sich darauf geeinigt, dass die Präsentation auf deutsch gehalten wird und keine explizite Präsentation

hierfür erstellt wird. Lediglich das Wiki soll als Präsentationsgrundlage dienen.

1. Einführung/Aufgabenstellung (Jan Bredereke)

2. Genutzte Hardware und angestrebte Architektur (Jan Lehrke, Jonas Pufahl)

3. PID (Jens Sager, Benjamin Schäfer)

3.1. Was ist das?

4. Zeitgesteuertes Scheduling (Markus Salomon, Nikolas Schreck)

4.1. Allgemein

4.2. Verteilte Systeme

4.3. Unser System und Protokoll

5. Arduino und zeitgesteuerte Treiber (Jan Lehrke, Jonas Pufahl)

6. QNX (Nils Müller, Maximilian Schöneberg, Benjamin Hesseln)

6.1. Was ist das? Was stellt es zur Verfügung?

6.2. Warum nutzt man es?

6.3. Praktische Erfahrungen (Installation, BSP, Dokumentation)

6.4. QNX und zeitgesteuerte Verarbeitung + Treiber

7. Zusammenfassung und Ausblick (Julian Greilich)

