A Time-Triggered Architecture For an Attitude Control System
With Space Technology

Jan Bredereke, Julian Greilich, Benjamin Hesseln, Jan Lehrke, Nils Miiller, Jonas Pufahl, Jens
Sager, Markus Salomon, Benjamin Schafer, Tobias Schmitz, Maximilian Schénenberg, Nikolas
Schreck, Peter Tschubij, and Mirco Wittrien

City University of Applied Sciences Bremen
Flughafenallee 10, D-28199 Bremen

http://homepages.hs-bremen.de/” jbredereke

Rico Thiele

Airbus Defence & Space
Airbus-Allee 1, D-28199 Bremen

Feb. 2017

http://homepages.hs-bremen.de/~jbredereke

The following pages were generated from the project wiki hosted by Airbus.

@ AIRBUS

DEFENCE & SPACE

Configuration v2 - A Time-
Triggered Architecture For
an Attitude Control System
With Space Technology

Rico Thidle

w @ AIRBUS

DEFENCE & SPACE

Table of Contents

1 Introduction 5
1.1 The Attitude Control System Demonstrator 5
1.2 The Time-Triggered Architecture 6

121 TimeTriggered Processing for Hard Real-Time Systems 6
1.2.2 TheTime-Triggered Architecture for the Attitude Control System Demonstrator 6
1.3 Origina Project Description (in German) 7

2 Hardware Architecture 8
2.1 Overview 9
2.2 Components 10

22.1 BeagleBoneBlack 10
2.2.2 Microcontroller 11
2.2.3 Attitude sensor 12
224 Motor 12
225 OLED-Display 13

3 Previous software versions 14

4 PID Controller 15
4.1 Structure 15

4.1.1 Proportiona term (P) 15
412 Integra term (1) 16
4.1.3 Derivativeterm (D) 16
4.2 Implementation 16
421 Basicagorithm 16
4.2.2 Possibleimprovements 17
4.2.3 Choosing the controller parameters 18
4.3 Sources 18

5 Arduino IDE 19

6 Time-Triggered Scheduling 20
6.1 Cooperative Scheduling 20
6.2 Multiprocessor Systems 20

6.2.1 Clock Synchronisation 21
6.2.2 DataTransfer 21
6.2.3 Error Handling 21
6.3 DataFlow Analysis 22
6.3.1 RS232 between Master and Slave 22
6.3.2 12C between Slave, Driver of the motors, Driver of the OLED-Display and Sensor 22
6.4 RS232 Communication Protocol 23
641 Message-Types 23
6.4.2 Sequence 24
6.4.3 Error-Handling 24

7 Arduino and Time-Triggered Drivers 25

7.1 Interfacedrivers 25
711 12C 25

L

@ AIRBUS

DEFENCE & SPACE

712 RS232 29

7.2 Periphera drivers 30
721 Motor 30

7.22 Sensor 30

7.3 Operating System 31
7.4 Problems during development 31

8 ONX Operating System 32
8.1 WhatisQNX? 32
8.2 Using QNX on BeagleBone Black 32
8.21 Reqguirementsto run QNX on the BeagleBone Black 32

8.2.2 Install QNX Momentics IDE 32

8.2.3 Build the Board Support Package (BSP) 33

8.24 Disable the Watchdog-Timer 33

8.25 Enable execution of gconn 34

8.26 Mount the sd card in QNX 34

8.2.7 Initialize seria connection 34

8.3 Creating aQNX Project 36
8.4 Porting an old BSP to a higher Version 36
8.5 Conclusion 37
8.6 Sources 37

9 Master Implementation 38
9.1 Genera Software Design 38
9.1.1 PID 38

9.1.2 Scheduler 38

9.2 Platform Specific Implementations 38
9.21 Arduino 38

9.22 ONX 39

9.3 Open Issues 40

10 Conclusions 41
10.1 Using a Time-Triggered Architecture 41
10.1.1 Suitablefor Hard Real-Time 41

10.1.2 Using Custom Off-The-Shelf Driversin a Time-Triggered Architecture 41

10.2 Using QNX on Space Hardware 42
10.3 Using QNX for a Time-Triggered Architecture 42
10.4 Incomplete Implementation of the Angle Control Demonstrator 43

11 Appendix: Structure of the Oral Presentation (in German) 44

a2 @ AIRBUS

DEFENCE & SPACE

® 1 Introduction
® 1.1 The Attitude Control System Demonstrator
® 1.2 The Time-Triggered Architecture
® 1.2.1 Time-Triggered Processing for Hard Real-Time Systems
® 1.2.2The Time-Triggered Architecture for the Attitude Control System Demonstrator
® 1.3 Origina Project Description (in German)

w @ AIRBUS

DEFENCE & SPACE

1 Introduction

Prof. Dr. Jan Bredereke, City University of Applied Sciences Bremen

Hochschule Bremen
City Univarsity ot Applied Sciences

This project demonstrates how to implement a time-triggered architecture for a real-time and distributed embedded
system. The application is a simple attitude control system. The project was carried out as part of the course
"Embedded Systems' at the City University of Applied Sciences Bremen, during the winter term 2016/17. It was
supervised by Prof. Dr. Jan Bredereke. The chapters after the introduction were written by the students named there.
The project was conducted in cooperation with Airbus Bremen.

1.1 The Attitude Control System Demonstrator

The demonstrator consists of an arm with a single degree of freedom, see figure. The arm is kept in a defined attitude
by two propellers. The control algorithm for thisis executed on a BeagleBone Black microcontroller running the QNX
operating system. Originally, an e.Cube computer suitable for space missions was envisioned for this task. However, a
missing board support package for the current version of the QNX operating system made us switch to the BeagleBone
Black. The actuators and the sensor are controlled by a Sunfounder Mega microcontroller (Arduino-compatible). Both
microcontrollers communicate over an RS-232 serial connection using atime-triggered communication protocol.

w @ AIRBUS

DEFENCE & SPACE

1.2 The Time-Triggered Architecture

1.2.1 Time-Triggered Processing for Hard Real-Time Systems

Using atime-triggered processing scheme helps to meet hard real-time constraints. Every task has afixed time dlot in
the schedule, with a fixed period and afixed length. This allows to prove that a system constructed in this way will
meet its timing requirements under all circumstances. Such a proof can be done by checking that the worst-case
execution time of every task in isolation does not exceed the length of its alotted time slot. Such a system does not use
any interrupt mechanism. Each task runs to completion. The scheduling therefore is cooperative. If the worst-case
execution times of all tasks have been proven to not exceed their deadlines, such adesignis highly reliable.

An alternative scheme would be event-triggered processing. Such a scheme uses interrupts and priorities for tasks. At
any time, a higher-priority task may interrupt the execution of alower-priority task. This allows for a quick response to
an urgent issue. Also, the average response time of tasks in such a scheme often is considerably shorter than when
using atime-triggered scheme. However, an interrupting task may be interrupted itself, and interrupts may be
postponed for along time or even lost due to other high-priority processing. Therefore, usually it is practically
impossible to provide a proof that a specific task will meet a specific deadline in the worst case. Consequently, an
event-triggered processing scheme usually is not suitable for a hard real-time system. Hard real-time system here
means that guarantees for its reliability must be provided.

Please note that the documentation of the QNX real-time operating system systematically uses a substantially different
meaning for the words "real-time". It uses them in the sense of "as fast as possible”, and not in the sense of "guaranteed
fast enough".

1.2.2 TheTime-Triggered Architecturefor the Attitude Control
System Demonstr ator

We use adistributed time-triggered architecture for our attitude control system demonstrator. There are two processing
nodes, and they synchronize und communicate using an RS-232 serial interface connection. The BeagleBone Black
microcontroller isthe master. It generates the time ticks which determine the schedule of all tasks on al nodes. The
Sunfounder Mega microcontroller is aslave and follows the time ticks. The communication schedule is defined by
these regular time ticks, too. We defined a simple time-triggered communication protocol for this. The details follow in
the sections below.

The following figure shows the system structure. Light blue and light red boxes denote optional components, to be
realized only if time permits.

@ AIRBUS

! DEFENCE & SPACE

| attitude sensor | | motors | OLED display
‘ i

I°C bus
Arduino-compatible | 12C driver |
microcontroller 5 =
| SEnsor drhrer-. | | motor driver | OLED display driver

RS—EEF-"_ driver
(on microcontroller)

RS5-232 link
BeagleBone Black RS-232 driver
computer (on BeagleBone Black)
(originally planned:
e.Cube computer) P N observer

(for OLED display)

varying preset . --| PID co.ntmller |

of the intended attitude

1.3 Original Project Description (in German)

Projektbeschreibung-2016-09-23.pdf

T

@ AIRBUS

DEFENCE & SPACE

2 Hardwar e Architecture

Authors: Jan Lehrke, Jonas Pufahl

* 1 Overview
* 2 Components

* 2.1 BeagleBone Black

® 21.1PINs

® 2.2 Microcontroller
2.3 Attitude sensor
* 2.4 Maotor

® 2.4.1Motors

® 24.2 Motor driver
® 25O0LED-Display

Related hardware specifications. Electronics

T

@ AIRBUS

DEFENCE & SPACE

2.1 Overview
PC with QNX SDK
— Data
— Power
USB (R5-232)
BeagleBone Power supply
RS-232
|
Microcontroller Power supply
I
12C
Fo- T - =
] A
- [1
OLED display Maotor Driver Attitude sensor

Matar left side

Motor right side

@ AIRBUS

DEFENCE & SPACE

&

" ;
0

|
§

Assembly picture of al devices attached to 12C bus

2.2 Components

2.2.1 BeagleBone Black

Name: BeagleBone Black

Data sheet: http://elinux.org/Beagleboard: BeagleBoneBlack

10

@ AIRBUS

DEFENCE & SPACE

LIS LIE L Ll
Sy
&l

PINs
the following graphic shows the BeagleBone Black Serial Port Mapping

GPIO_38 GPID_39 | MMC1_DAT7
GPIO_34 GPID_35 | MMC1_DAT3

TIMER4 GPIO_66 |07 GPID_67 |TIMER?
TIMER2 GPIO_69 |02 GPID_88 | TIMERL
[uaRTa_Rx GPIO_45 |11 GPID_34
[uarTa T GPIO_23 |13 GPID_26
GPIO_47 |15 GPID_36
SEIOTES) GPI0_27 |17 GPID_65

GP10_22 GPID_63 | MMC1_CMD
GPID_37 |MMC1_DATS
GPID_33 | MMC1_DAT1
GPID_G1
GPID_88
GPID_89
GPID_11
GPID_81
GPID_B0
GPID_79
GPID_77
GPID_75
GPID_73
GPID_71

SPI0_DO |UART2 TX

2.2.2 Microcontroller

Name: Microcontroller Sunfounder Mega 2560

11

w @ AIRBUS

DEFENCE & SPACE

Data sheet; http://www.robotshop.com/media/files’PDF/ArduinoM ega2560D atasheet. pdf

|

2.2.3 Attitude sensor

Name: Invensense MPU-6050
Data sheet: https://www.invensense.com/products/motion-tracking/6-aximpu-6050/

The sensor provides the datain several registers which can be read by calling them seperately or pulling data
frequently from the sensor so the sensor increments the register number by himself. Have alook at the document
section of the website to get a description of the register mapping.

2.2.4 Motor

Motors

There are two equal motors (left and right). Both are controlled by one motor driver

Name: DC Motor Crazyflie Nano Quadcopter

12

o @ AIRBUS

DEFENCE & SPACE

Data sheet: http://www.watterott.com/de/Crazyflie-Nano-Quadcopter-6x15-mm-spare-motor-BC-CM-01-A

Motor driver

Name: Grove |12C Motor Driver

Data sheet: http://wiki.seeed.cc/Grove-12C_Motor_Driver_V1.3/

2.2.5 OLED-Display

Name: Adafruit Monochrome 1.3" 128x64 OLED graphic display

Data sheet: https://www.adafruit.com/product/938

Data SAB C5 Uin
| W o IRy R i g e
Tk OC Rst ' 3v3 G

_b 'l.P'EI

13

w @ AIRBUS

DEFENCE & SPACE

3 Previous softwar e ver ssons

Authors: Jens Sager, Benjamin Schéfer

There are three previous software versions. Two of these versions can be found in the git repository on branch
"config_v1 Control_loop_and user_frontend". The arduino code can be found in the directory "ACD Arduino Code
v1.0/sketches/eCubeTranslatorDisplay” and "ACD Arduino Code v2.0/Arduino Code/eCubeTrandatorDisplay”. The
third version "Echtzeitnachweis' can be accessed in AULIS (if you have no accessto AULIS ask Jan Bredereke or
Rico Thiele for the code).

The "Echtzeitnachwels" is arestructured version of the v1 code. It applies the design pattern for reactive real time
systems. The v2 codeis a continuation of v1.

The existing software is not suitable to implement a distributed real time system. Mainly because process real time
properties have been neglected. Also the serial communication is unsuitable. It has to be examined if reading the sensor
values can be done in away more suitable for real time systems while keeping the sensor fusion.

In summary: technical concepts of the previous versions can be employed. A new structure should be created.

14

w @ AIRBUS

DEFENCE & SPACE

4 PID Controller

Authors: Jens Sager, Benjamin Schéfer

¢ 1 Structure
® 1.1 Proportional term (P)
® 12Integral term (1)
® 1.3 Derivative term (D)
® 2 Implementation
® 2.1 Basic algorithm
® 2.2 Possibleimprovements
® 2.2.1 Windup reduction
® 222 Sampletime
® 2.2.3Derivative kick
® 2.2.4 Changing parameters on the fly
® 2.3 Choosing the controller parameters
® 3 Sources

4.1 Structure

A PID controllers main purposeis, as with any other controller, to monitor and if necessary alter the operating
conditions of agiven dynamical system. [Wikipedia] A PID controller consists of a proportional, integral and a
derivative term. It seeks to match the measured process variable to adesired setpoint. Each of the PID terms has a
tuning parameter (proportional gain, integral gain, derivative gain), usualy caled K , K |, K

The controller takes the current error value e(t), that is the difference between the setpoint SP and the current process
variable PV(t), and usesit to compute each term which is again multiplied with its respective tuning parameter. The
controllers output is the sum of the three resulting terms.

e(t) = SP — PV (¢)
u(t) = Kpe(t) + Kp [ye(r)dr + Kp it

4.1.1 Proportional term (P)

P:ert

The proportional term P produces an output that is proportional to the current error value, thus increasing the
controllers output with increasing error. It makes up the main part of the control algorithm. A P-only controller isa
sufficient controller in many cases. [Pont2001]

15

w @ AIRBUS

DEFENCE & SPACE

4.1.2 Integral term (I)
t

I =K; | e(x)dx
0

Theintegral term | grows with both the magnitude of the error and its duration. This term can accel erate the movement
of the process towards the setpoint if an error is not corrected over longer time periods. Because it accumulates the
errors of the past it can result in overshooting the setpoint value. To mitigate this effect for certain circumstances
windup protection can be used.

4.1.3 Derivativeterm (D)

de(t
D =K
Prdt

The derivative of the error is used to determine the slope of the error over time. This can be used to predict system
behaviour and improves settling time as well as stability of the system.

4.2 Implementation

4.2.1 Basic algorithm

The basic algorithm as given by http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/ .
A similar version can be found in [Pont2001]

/*wor ki ng vari abl es*/

unsi gned | ong | astTi ne;

doubl e I nput, CQutput, Setpoint;
doubl e errSum |astErr;

doubl e kp, ki, kd;

voi d Comput e()

{
/*How | ong since we |ast cal cul ated*/
unsigned long now = mllis();
doubl e ti neChange (doubl e) (now - | astTine);

/*Conmpute all the working error variabl es*/

16

L

@ AIRBUS

DEFENCE & SPACE

doubl e error = Setpoint - |nput;
errSum += (error * timeChange);
double dErr = (error - lastErr) / ti

/*Conput e PI D Qut put*/
Qutput = kp * error + ki * errSum +

/ *Remenber sone vari ables for next t

lastErr = error; lastTinme = now,

voi d Set Tuni ngs(doubl e Kp, double Ki,

{
kp = Kp; ki = Ki; kd = Kd;

4.2.2 Possible improvements

meChange;

kd * dErr;

i mex/

doubl e Kd)

In the following possible improvements to the PID algorithm are listed. Most of these are taken from the arduino PID
library http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction. Others are suggested by
Pont. To see which of these improvements were implemented in the system please consult the code.

Windup reduction

In the basic approach the error is summed up for the integral term every time the algorithm is called. If the actuator is
operating at its maximum or minimum limit changing the value of the sum serves no purpose because the actuator
value can not be changed. If the summation continues it resultsin slowed system response. Hence Pont suggests

stopping the summation when the output is at its limits.

Sampletime

In order to get consistent behaviour from the PID it should be called in regular intervals. Thisalso resultsin a

simplification of the derivative and integral calculations.

Derivative kick

This steps goal isto eliminate spikes in output if the setpoint is changed which in turn resultsin an "instant” changein

the error value and a spike for the derivative.
This change uses the fact that:

de(t) dinput(t)

dt dt

17

w @ AIRBUS

DEFENCE & SPACE

This holds true when the setpoint is constant. Switching to observing the difference in input values instead of error
changes smooths out the derivative kick.

Changing parameterson thefly

In the basic form sudden changes in the tuning parameters would lead to undesirable spikes or bumps in the output
value because of the cumulated error sums. One way to deal with thisisto rescale the current error sum based on the
new K, parameter. Additionally multiplying each sum term with the error individually instead of the cumulative sum
smooths out the bump.

Source and sample code: http://brettbeauregard.com/blog/2011/04/improving-the-beginner%e2%80%99s-pid-tuning-
changes/

4.2.3 Choosing the controller parameters
Pont suggests the following 6 steps to finding proper tuning parameters:

Set the integral and differential termsto 0
Increase the proportional term slowly, until you get continuous oscillations
Reduce K, to half the value determined.

If necessary, experiment with small values of K to damp-out ‘ringing’ in the response
If necessary, experiment with small values of K, to reduce the steady-state error in the system

© a0k~ WP

Always use windup protection if using a non-zero K, value

4.3 Sour ces

[Pont2001] : http://www.safetty.net/download/pont_pttes 2001.pdf

[Wikipedia)] : https://en.wikipedia.org/wiki/PID_controller

18

w @ AIRBUS

DEFENCE & SPACE

5Arduino IDE

The Arduino homepage offers a step-by-step guide on how to install the Arduino-IDE. It also offers an overview of a
number of Arduino microcontrollers on the right side.

https://www.arduino.cc/en/Guide/HomePage

We are using for the Angle Control Demonstrator an Arduino MEGA2560. The link below offers a guide on how to
start the IDE and how to create an image by writting a sketch.

https://www.arduino.cc/en/Guide/ArduinoM ega2560

As ademo program we combined the two code samples down below to display the angle of the balanced beam with
the OLED display.

https:.//pforge.eso-io.com/git/acd/arduino_demo/Arduino_demo OLED_MPUG6500.ino
Down below are some code samples for the hardware we are using:

Code sample for monochrome 1.3" 128x64 OLED graphic display:
https://github.com/adafruit/Adafruit_SSD1306

Code sample for MPU-6050 Accelerometer + Gyro:
http://playground.arduino.cc/Main/M PU-6050

Autoren:

NIls Mller, Tobias Schmitz, Mirco Wittrien

19

w @ AIRBUS

DEFENCE & SPACE

6 Time-Triggered Scheduling

Found a Whitepaper to the topic scheduling on QNX: The Joy of Scheduling

6.1 Cooper ative Scheduling

Using cooperative scheduling each process will work uninterrupted until it finishes its task and meets its natural end. It
requires every process to fulfill its real-time conditions, so that the CPU can handle other processesin time. For this
purpose it is advantageous for every process to not use up too much time.

The opposite of cooperative scheduling is preemptive scheduling. Using preemptive scheduling, processes can be
interrupted by the operating system, so that multiple processes can be executed concurrently. A priority control is
needed for preemptive scheduling.

An advantage of cooperative scheduling isthe low expense for implementation and not needing to implement the case
of interrupted processes.

On the Arduino and the BeagleBone we use cooperative scheduling, even though QNX (the operating system of the
BeagleBone) isintended to be used with preemptive scheduling. The reason for this decision is the easier validation of
real-time conditions, even if it leads to us ignoring the inherent interrupt-features of QNX.

Extensive explanation of cooperative scheduling:
http://www.saf etty.net/download/pont_pttes 2001.pdf (p. 246f)

Example code of cooperative scheduling with function pointers:
http://www.saf etty.net/download/pont_pttes 2001.pdf (p. 256ff)

Example code of splitting tasks into simpler subtasks:
http://www.saf etty.net/download/pont_pttes 2001.pdf (p. 316ff)

Authors:

Greilich, Salomon, Schreck, Tschubij

6.2 Multiprocessor Systems

A multiprocessor system is a system composed of multiple processors. Our system houses one master processor (the
BeagleBone Black) and one slave (the Sunfounder Mega 2560, Arduino). Regarding those systems there are three main
requirements:

1. clock synchronisation
2. datatransfer (between processors)
3. error handling

20

w @ AIRBUS

DEFENCE & SPACE

6.2.1 Clock Synchronisation

Even if multiple processors have the same clock, the clock tolerances might lead to variations in execution times. To
ensure synchronous executions clock synchronisation is required. A possible solution for thisis the master sending
periodical tick messages.

6.2.2 Data Transfer

The slaves respond to every tick message with an acknowledge message. Both message types can have appended
payload data. No additional messages are permitted.

These facts allow the bandwidth to be predetermined, ensuring all messages are being delivered on time.

6.2.3 Error Handling

A slave can detect errors by measuring the timespan between two tick messages. When an error is detected the slave
will fall into a safe state and will wait for another start sequence.

A master does error handling if an acknowledge message is missing: It stops sending tick-messages and therefore puts
the slaves into a safe state and then shuts down; restarts the network by restarting itself; or engages a backup slave.

Drafted solutions for Clock Synchronisation:
http://www.saf etty.net/downl oad/pont_pttes 2001.pdf (p. 555ff)

Drafted solutions for Data Transfer:
http://www.saf etty.net/download/pont_pttes 2001.pdf (p. 583ff)

Drafted solutions for Error Handling:
http://www.saf etty.net/download/pont_pttes 2001.pdf (p. 596ff)

The above mentioned solutions save tasks in a query. The execution of the tasks is done in the main()-method.
An example of such amain()-method is here:
http://www.saf etty.net/download/pont_pttes 2001.pdf (p. 259 and 267)

Authors:
Greilich, Salomon, Schreck, Tschubij

21

w @ AIRBUS

DEFENCE & SPACE

6.3 Data Flow Analysis

6.3.1 RS232 between M aster and Slave

The master needsthefollowing data from the ave:

® Rotation-Sensor-Value (2 Byte)

The dave need the following data from the master :

® Datato display on the OLED
* Actual Rotation Value (2 Byte)
* Target Rotation Value (2 Byte)
® PID-Vaueto control the motordrivers (1 Byte)

In the current protocol version, each tick-message from the master has be answered by an ack-message from the dave
and each message consists of exactly 1 Byte (see Cooperative Scheduling, RS232 Communication Protocol).

Because the PID-Value is more important, it is transfered more often (every second tick) than the other values for the
slave.

Therefore it takes eight tick-messages to transfer al Data.

The details are described in RS232 Communication Protocol.

6.3.2 12C between Slave, Driver of the motors, Driver of the OLED-
Display and Sensor

To set anew motor value, the following data hasto be send over 12C:

® |2C-device-address (1 Byte) (in "write-mode", see I12C-Standard for more details)
* data-register on the I2C-Device to write to (1 Byte)
® valueto set for each motor (2 Bytes)

Toread a new sensor-value from the r otation-sensor, the following data hasto
be send over 12C:

® |2C-device-address (1 Byte) (in "write-mode", see I12C-Standard for more details)
* data-register on the I2C-Device to read from (1 Byte)

® |2C-device-address (1 Byte) (in "read-mode", see 12C-Standard for more details)
® sensor-data (4 Bytes)

22

w @ AIRBUS

DEFENCE & SPACE

Because the driver for the OLED-Display is not implemented yet, it is unknown how much data is needed to display
the values.

Author: Greilich

6.4 RS232 Communication Protocol

Communication between the BeagleBone and the Arduino is based on RS232 using TTL levels. Because of the multi
processor system atime triggered protocol is needed. The protocol has to implement features listed on Multiprocessor
Systems.

If the master would send all datain every tick-message, the slave-processor would be blocked for the whole receiving
(at 9600 Bd, 8N1, 6 Byte Data: 10 ms).

To improve this, every Tick- and every Ack-Message consists of only a single byte, so that the hardware of the
microcontroller can offload the receiving-process and transmission-process. (The Hardware generates and interrupt,
when abyte isreceived. The slave only has to copy the received byte and from the receive-buffer and write the Ack-
Message into the send-buffer.)

6.4.1 Message-Types

The following Message-Types exist. The order, in which these Messages are sent is described in below (Sequence).

Message-Type Master (Tick) Slave (Ack)

0 START START_ACK

1 REQ ROT HIGH ROT_HIGH

2 REQ ROT_LOW ROT_LOW

3 PID ROT_HIGH

4 AV _ROT HIGH ROT_LOW

5 AV_ROT_LOW ROT_LOW

6 TV_ROT HIGH ROT_LOW

7 TV_ROT_LOW ROT_LOW
M essage-Bytes

M essage-Byte Description

START O0xAB (magic value to be recognized by the slave)

REQ ROT _HIGH 0x48 (magic valueto request the first ROT_HIGH)

23

—

w @ AIRBUS

DEFENCE & SPACE

M essage-Byte Description

REQ ROT_LOW 0x4C (magic value to request the first ROT_LOW)
PID PID regulation output value

AV_ROT_HIGH High-Byte of ACTUAL VALUE rotation for OLED?
AV_ROT_LOW Low-Byte of ACTUAL VALUE rotation for OL ED1
TV_ROT_HIGH High-Byte of TARGET VALUE rotation for OLED?

TV_ROT_LOW Low-Byte of TARGET VALUE rotation for OL EDL

START_ACK 0xCD (magic value to be recognized by the master)
ROT_HIGH High-Byte of Rotation sensor value
ROT_LOW Low-Byte of Rotation sensor value

1) Values are mapped as following: 0 -> -180.00° ... 216 -> +180.00°

6.4.2 Sequence

The Master repeatedly sends the start-byte START, until the Slave acknowledgesit with START_ACK.

Thefirst time the Master receivesthe START_ACK from the Slave, it will send REQ_ROT_HIGH (expecting the
ROT_HIGH byte) and REQ_ROT_L OW (expecting the ROT_LOW byte). Thisis needed, because without the first
sensor values, the Slave would not be able to properly calculate the PID-values. After this sequence the Master will
send another START byte, after which he should get the START_ACK from the Slave. This means the first message-
sequence should be:

0->1->2->0.

After thisfirst exchange of the sensor-values and the two start-handshakes, the foll owing message-sequence will be
endlessly repeated:

3->4->3->5->3->6->3->7-> ..

6.4.3 Error-Handling

If the master gets no acknowledge-message (within atime-slot, which has to be defined!), the master repeatedly sends
the start-byte START, until the Slave acknowledges it with START_ACK.

If the slave get no tick-message (within atime-slot, which has to be defined!), the dave enters a safe state and waits for
the start-byte START.

Authors:
Greilich, Salomon, Schreck, Tschubij

24

w @ AIRBUS

DEFENCE & SPACE

7 Arduinoand Time-Triggered Drivers

* 1 Interfacedrivers
® 1112C
® 111FirstVersion
® 1.1.2 Second Version
® 12RS232
® 1.2.1 Test of Serial Connection
® 1.2.1.1 Sending data
® 122 Interface
® 2 Peripheral drivers
® 2.1 Motor
® 2.1.1 Mapping of the motor values
® 2.2 Sensor
® 3 Operating System
® 4 Problems during devel opment

7.1 Interfacedrivers

Authors; Jonas Pufahl, Jan Lehrke

7.1.112C

For our real-time requirements it is not possible to use the Wire Arduino library because it is not built for real-time use.
It cannot provide a schedul able execution time and it is using interrupts.

We created al2C library on our own and we worked on two versions. Thefirst try/version failed due to limitations of
the hardware. During the development and validation of the possible implementations of i2c the signals produced by
the library were measured with the LogicPort logic analyzer.

First Version

In thefirst version the target was to create al2C communication file to do a manual 12C connection with the general
1O ports of the controller. For this approach the [2C library written by Prof. Dr. Jan Bredereke for the C515C
microcontroller was ported to be used on the Mega 2560. During this approach an hardware limitation error was
detected. The ATmega2560 is not able to to switch from weak 1 (Pull-Up signal) to azero signal. Thisfeatureis
mandatory to run 12C. The following graphic shows the structure of an 1O port of the Mega 2560:

25

w @ AIRBUS

DEFENCE & SPACE

l,_°<l kB PUD
_H
o D __1
DOwn
5., 9
| _l—WDx
RESET
:; L~ >
|
1> 8
1 R ! o
[} <l o <
3 =
" <
RESET
WEx WPx
SLEEP r\L_ RRAx
L
SYNCHRONIZER
. & T ™
D [+] NS) [»]
| PiNxn | L
| L @ > 5
= [T
I —— clk yo
i WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WRx: WRITE PORTX
cli,oy: I/O CLOCK RRx: READ PORTx REGISTER
RPx: READ PORTx PIN
WPx: WRITE PINx REGISTER

the used code is placed in the git repository in the folder interfaces/i2cBib/arduino_i2c vl/.

It was necessary to do atiming analysis due to used and by the Mega 2560 not supported nop() -calls of the given
library. For this reason the built-in Arduino function del ayM cr oseconds() was used to achieve the nearly the
samedelaysini 2cWai t . cpp as expected by the original library. The following code was used to produce some
signalsin order to start some measurements via L ogicPort.

26

w @ AIRBUS

DEFENCE & SPACE

Code for timng analysis

/* Code frommain |oop() */
PORTE = 32;

del ayM croseconds(8);
PORTE = 0;

del ayM cr oseconds(10);
PORTE = 32;

del ayM croseconds(5);
PORTE = 0;

del ayM croseconds(10);
PORTE = 32;

del ayM cr oseconds(6);
PORTE = 0;

del ayM croseconds(10);
PORTE = 32;

i 2cWai t O ockHi gh();
PORTE = O;

del ayM cr oseconds(10);

/* Code fromi2cWait.cpp */

voi d i2cWaitd ockHi gh() {
/* Should wait approx. 4 mcroseconds */
del ayM cr oseconds(5);

return;
Sign: 3
Data X1 0]
Dat

< >

Jeady Aeauisiton: 1, Samples: 703K Iterval 4>B: 382us Itervel C>D: 481us Interval ESF: 381us Inerval BC: B.82us

The screenshot showsthat acall to del ayM cr oseconds() with agiven number of microseconds will cause a
delay for atime span that is around 1.2 microseconds smaller than the wished amount of microseconds. That should be
considered if any use of del ayM cr oseconds() isneeded. For the second version of thei2c library in this project
it wasn't necessary to use this function.

27

w @ AIRBUS

DEFENCE & SPACE

Second Version

In asecond version the ATmega2560 embedded 12C functionality "AVR TWI" isused to send and receive data. This
fixestheissue of version 1 because the controller delivers additional hardware for this usage.

Theraw TWI call wasfirst tested in the Arduino standard set up() method and tested with the LogicPort. After the
successful test the interface APl was planned and the following functions were planned and implemented in interfaces
/i2cBib/arduino_i2c_v2/:

/* Initialize i2c Master */

void i2cMasterlnit();

/* Send data to specific i2c address */

voi d i2cMasterSend(uint8_t address,uint8_t data[], uintl6_t datalLength);
/* Tell the Master to wite data frombuffer */

void i2cMasterWiteData();

/* Tell the Master to read data fromaltitude sensor */
voi d i 2cMast er ReadSensor () ;

/* Check for avail able sensor data */

uint8_t i2cMasterlsDataAvail abl e();

/* Cet sensor data */

uint1l6_t * i2cMasterCet SensorData();

Thelibrary is concentrating on the Master-functionalities and hasn't any Slave implementations. The main features are
split up in as small packages as possible to garantee short and nearly constant execution times.

Motor driver iZcMasterSend|) =————

iZcMasterisDataAvailable()

Sensor driver i2zcMasterGetSensorDatal)

iZcMaster

i2cMasterinit()
Scheduler = i2cMasterWriteData(} =
iZcMasterReadSensor()

Thei2cMaster driver is activated by the scheduler during the scheduling round by calling the write or read function.

If thei2c driver has any dataleft in the internal buffer that was previoudly provided by the motor driver and the write
function is called by the scheduler, the i2c¢ driver will either start the transmission by settings the write address and
lock the bus as a preparation for the next transmissions or will continue sending on the locked bus by sending one byte
per function call of the scheduler. The send function needs to get called as often as there are bytes in the array provided
by the motor driver and one additiona time fur starting the transmission in a row!

28

w @ AIRBUS

DEFENCE & SPACE

Reading datais also triggered by the scheduler and will not lock the bus until all dataisread. Thei2c driver currently
needs to get called three times (one time for the register configuration of the sensor and as often as described by
ALT_SENSCR_READ DOUBLE_BYTES in the header fil€) to read a complete set of data. One transmission starts
with the read address and the next double byte from the sensor to prevent any errors due to changes done to one half
byte between receive requests. The execution time is higher but it is built to deliver correct data. Additionaly, there
was no reason to build a modular receive function with support for an address because in this infrastructure, the sensor
isthe only device that provides data to the master The sensor driver can retrieve the data by checking for available data
and getting the pointer to the internal data receive buffer of thei2c driver if the data set is complete.

Thereisan error handling with several error codes but it has no implementation for the analysis of the error code.

The library was successfully tested with the LogicPort logic analyzer and afterwards in combination with the
scheduler.

7.1.2 RS232

Test of Serial Connection

RS-232 was tested via USB and the Serial1 interface on ports RX1 and TX1. Both were tested with baudrate 9600
using the following c-code:

void setup() {
Serial 1. begi n(9600) ;
Seri al . begi n(9600) ;
}

void loop() {
Serial1.println("Hello");
Serial.println("Hello");
del ay(200)

Sending data

"Hello" was detected correctly on both interfaces. Serial (Microcontroller USB Port) was tested via minicom, Serial1
via LogicPort.

There was no issue in reading the data from Serial

It was not possible to get any input data with the TTL-232R-5V adapter with minicom on the INCT_PC09 and with
Putty on a private Dell Notebook (Windows 10 Pro 64bit).

There was atest with the RS232 Level Shifter and the internal RS232 connector of INCT_PC09 using a crosslinked
cable. The incoming data was corrupted, some characters were dropped and in the end of the test the connection was
lost and it was not possible to get a connection again.

29

w @ AIRBUS

DEFENCE & SPACE

| nterface

In the real-time system it is not possible (it could be possible but it would be very hard to proof the real-time features)
to use the Arduino Serial library, so it isthe way to go to write a new RS232 interface.

Thisinterface uses the ATmega2560 build in UART functionality.

7.2 Peripheral drivers

Authors; Tobias Schmitz, Mirco Wittrien

7.2.1 Motor

The existing motor driver also does not meet the real-time requirements, because it is not certain, if the used library
functions might take to long, which would be against a real-time system. This means that we are using our own 12C
library.

We rewrote the existing motor driver using our 12C library. The overall structure of the motor driver stayed the same.

Mapping of the motor values

The values for the motorspeed will be mapped in away, that if the valueis set to 255 the right motor runs at full speed
and the left runs at idle speed and if the value is set to 0 the right motor runs at idle speed and the left motor runs at full
Speed.

const PIN.MN = 0;
const PIN_MAX = 255;
const MOTOR_IDLE = 30;
const MOTOR_MAX = 254,

uint8_t notorspeed, notorSpeedCal c, notorSpeedLeft, notor SpeedRi ght;

not or SpeedCal ¢
+ MOTOR_I DLE;
nmot or SpeedLef t (MOTOR_MAX + MOTOR_IDLE) - nmotor SpeedCal c;
nmot or SpeedRi ght = not or SpeedCal c;

((motorspeed - PINMN * (MOTOR_ MAX - MOTOR_IDLE) / (PIN.MAX - PINMN))

7.2.2 Sensor

The existing sensor driver already works with the sensor fusion of the MPU6050, though the functions of the Digital
Motion Processor (DMP) used for the sensor fusion are using the default MPU library and the default 12C library.

This makes it impossible to estimate, whether the sensor driver manages to complete its task in the required time to
fulfill the real-time requirements. That is why we decided to use the version without the sensor fusion, which reads a
single set of values for the current position of the accelerometer from the 12C.

30

w @ AIRBUS

DEFENCE & SPACE

We rewrote the existing part of the sensor driver without the sensor fusion using our 12C library and removed the part
with the sensor fusion. The overall structure of the used part of the sensor driver stayed the same.

7.3 Operating System

Authors: Jonas Pufahl, Jan Lehrke

During the development of the interfaces for 12C and RS232 no Arduino library was usable. The Arduino is focused on
simplicity and it tries to provide asimple API for the developer. Thisis good for fast development but it is not good for
real-time applications because every code executed in areal-time application must fulfill a maximum execution time
and you cannot provide this information for the Arduino libraries.

In this project most parts of the code is using native ATMEGA code. It is not that much more code and it is simpleto
calculate the maximal execution time. On top of this the Arduino IDE is very limited in functionalities.

So this project showed that it would be a better way to choose a normal ATMEGA microcontroller having no
ARDUINO bootloader installed and another IDE like the powerful Atmel Studio.

7.4 Problems during development

Authors; Jonas Pufahl, Jan Lehrke

While testing the i2cMaster driver there had been some unexpected behavior of the hardware. When using some simple
test code to configure the motor driver, we noticed that the driver will stop working until restarting the driver by
switching of the power (simply pressing the reset button of the driver hasn't solved the issue). To debug the i2c data
stream the LogicPort logic analyzer was used and there was no issue in the data send by the Arduino. The motor driver
send an acknowledge after receiving the first package but it doesn't control the motors. After some testing the issue was
solved by doing some other i2c communication like the configuration of the sensor before configuring the motor

driver.

At the end, the scheduler was able to communicate with al drivers and data was send viai2c correctly. Unfortunately
there had been an issue about the sensor which stoped sending correct information. This was fixed by toggling the
power but there had been no time to test the system again with aworking sensor.

31

L

@ AIRBUS

DEFENCE & SPACE

8 QNX Operating System

® 1 WhatisQNX?
® 2 Using QNX on BeagleBone Black

2.1 Requirements to run QNX on the BeagleBone Black
2.2 Install QNX Momentics IDE

2.3 Build the Board Support Package (BSP)

2.4 Disable the Watchdog-Timer

2.5 Enable execution of gconn

2.6 Mount the sd card in QNX

2.7 Initialize serial connection

® 3 Creating a QNX Project

® 4 Porting an old BSP to ahigher Version
® 5Conclusion

® 6 Sources

8.1 What isQNX?

QNX is areal-time embeddable POSIX operating system based on a microkernel architecture. It supports many
processor families including x86 and ARM (4).

8.2 Using QNX on BeagleBone Black

The following steps were made for installing QNX on BeagleBone Black, executing a"Hello World" program and
preparing the system for the project:

8.2.1 Requirementsto run QNX on the BeagleBone Black

* BeagleBone Black with 5V power supply or mini-usb cable

¢ SD-Card (minimum 128MB)

®* FTDI USB-to-TTL cable for a debugging connection

®* QNX MomenticsIDE Version 5.0.1

* BSP (Board Support Package) and additional files (ML O, u-boot.img) based on Version 6.6

8.2.2 Install QNX Momentics I DE

Follow the instructions of the QNX Momentics IDE installer.

32

w @ AIRBUS

DEFENCE & SPACE

8.2.3 Build the Board Support Package (BSP)

Follow the user guide from (1) and take care of the following changes:

® Chapter 3 - Building and installing the BSP - Connect the hardware
® Step 2 isno needed, but install the drivers for the FTDI cable
® You can use the QNX Momentics I DE terminal to establish a debugging connection
® Chapter 3 - Building and installing the BSP - Build the BSP
® By default the BSP is built from the precompiled libraries. To build from your (modified) sources,
modify the uppermost "makefile" in the root directory of the project. In the lines

install: $(if $(wldcard prebuilt/*),prebuilt)
$(MAKE) -Csrc hinstall
$(MAKE) -Csrc

you have to change "hinstall" to "install" (just remove the h) to perform a clean install from your
sources. (2)

Also note that the access rights of the BSP sources need to be executable. With "chmod -R +x *" this
can be accomplished. (3)

Make sure that it builds from your sources by editing the "build"-file under "/src/startup/boards/ti-
am335x/beaglebone/" and adding "display_msg YOUR_TEXT" aslast line. This should be displayed
while boot.

* When building from sources there occurred some failed imports to us. We could not fix them properly,
but we changed the failing imports to use relative paths inside the project. Most of the libraries can be
found under "/src/hardware/startup/lib" or in its subdirectories.

®* MLO and u-boot.img are found under (1).

¢ Usethe automated U-Boot commands described in the documentation

® Chapter 3 - Starting the screen graphics sample applications
® Not needed

8.2.4 Disable the Watchdog-Timer

The BeagleBone will reset after running for 30 seconds because the watchdog timer kicksin. To disable this for
testing, modify the "main.c"-file under "/src/startup/boards/ti-am335x/beaglebone/” and add a new case to the "int
main()"-function like this:

case 'd':
/* Disable WDOT */
wdt _di sabl e();
br eak;

Note: Thiscaseis documented (in the source code of the BSP), but not implemented by default.

Finally the"-d" option is added to the startup program of the BeagleBone Black in the "build"-file.

33

w @ AIRBUS

DEFENCE & SPACE

HHRHHHH R R HTH R R R R R R R R R R R R R R R R R R R
Startup argunments

Use "-d" to enabl e watchdog tinmer support

#it pl ease run "dnmBl4x-wdtki ck" with this option

BHHHRHH PR R H R H R H R H R R R R R
startup-ti-anB35x-beagl ebone -d

8.2.5 Enable execution of gconn

gconn is a program used to establish a network connection to the BeagleBone for debugging programs. When
executing gconn it will fail because of missing libraries. Add "libtracelog.so.1" at the end of the "build"-file under "/src
/startup/boards/ti-am335x/beaglebone/” and rebuild the project. Copy the generated binary to the sd card and reboot the
BeagleBone. An I P address has to be assigned to the BeagleBone. This can be achived by executing "ifconfig dmO
IP_ADDRESS" on the target system. After that, start gconn. Now you can configure the BeagleBone as atarget in
QNX Momentic IDE: Right-click in Project Explorer - New - Other - QNX/QNX Target System Project - Next - Insert
BeagleBone's | P address and the port you used for gconn (default: 8000) - Finish. The target can be used under "Run
As..." or "Debug As..." to run or debug your project on the BeagleBone.

8.2.6 Mount thesd card in QNX

For development reasons a second partition is added to the sd card. On thefirst partition is the operating system
installed and on the second partition is the user space to store programs and other files. To mount both partition on
startup the "build"-file has been modified:

HSB: mount both partitions on our SD card to get witable nmenory
wai tfor /dev/hdOt11l

mount -t dos /dev/hdOt11l /gnx

waitfor /dev/hdOti1l.1

mount -t ext2 /dev/hdOt11.1 /sd

Thefirst partition is mounted on /gnx while the second partition is mounted on /sd.

8.2.7 Initialize serial connection

The BeagleBone Black is able to control 5 serial ports (UART) on the GPIO pins, 1 serial port on the seria debug jack
(J1) and the USB connector, which can aso be used for a serial connection.

@ AIRBUS

DEFENCE & SPACE

T

4 UARTs and 1 TX only

P9
1 2 EERE ENEERE 0 > S
3 a4 BEEEEEE GPIO_ 38 3 4 GPIO_39
5 ¢ BEEEEEE GPIO_ 34 5 6 GPIO_35
7 s EBEEEEEN GPIO_ 66 7 8 GPIO_67
EBEREeN SYS RESETN | GPIO_69 9 10 GPIO_68
UART4_RXD [11| 12 GPIO_60 GPIO_45 11 12 GPIO_44
UART4_TXD |13 | 14 GPIO_50 GPIO_23 13 14 GPIO_26
GPIO_48 15 16 GPIO_51 GPIO_47 15 16 GPIO_46
GPIO_5 17 18 GPIO_4 GPIO_27 17 18 GPIO_65
[UART1_RTSN | 19 | 20 | UART1_CTSN GPIO_22 19 20 GPIO_63
| UART2_TXD | 21 |22 | UART2_RXD GPIO_62 21 22 GPIO_37
GPIO_49 23 |24 | UARTI_TXD GPIO_36 23 24 GPIO_33
GPIO_117 25|26 | UART1I_RXD GPIO_32 25 26 GPIO_61
GPIO_115 27 28 GPIO_113 GPIO_86 27 28 GPIO_88
GPIO_111 29 30 GPIO_112 GPIO_87 29 30 GPIO_89
crio 110 31 32 [UARTS5_CTSN+ |31 |32 | UARTS5_RTSN
T == 4 BN | UART4_RTSN | 33 | 34 | UART3_RTSN
B > - BB | UART4_CTSN | 35 | 36 | UART3_CTSN
N :7 :c BBEE UARRS5_TXD+ | 37 | 38 | UART5_RXD+
39 40 GPIO_76 39 40 GPIO_77
GPIO_20 41 [42 | UART3_TXD | GPIO_74 41 42 GPIO_75
R 2 24 GPIO_72 43 44 GPIO_73
IR - - R GPIO_70 45 46 GPIO_71

To enable the GPIO pins the correct function has to be uncommented in the /src/startup/boards/ti-am335x/beaglebone
finit_pinmux.c file.

Note: The functionsto enable the UARTSs have the comment: Unt est ed - exanpl e configuration for
cape uartX

To bind these ports to a device-handler the program devc-seromap can be used:

HSB: Initialize the configured UART1 connection
devc-seromap -e -F -b115200 -c48000000/ 16 0x4802200072, 46

The address for the UART register can be found in the documentation of the AM355x processor (see (5)).

Problem: It is possible to send data with the UART ports, but every attempt to receive data on the UART ports failed.
Therefore the UARTO port (J1) is reconfigured for serial communications.

To enable shell access via USBtty you first have to change the baudrate to the desired speed:
sh -c '"/bin/stty baud=115200 < /dev/serusbl'

Now you can start a listener who executes sh :
on -t serusbl sh

Add these line to the build file to configure the port on startup.

35

w @ AIRBUS

DEFENCE & SPACE

8.3 Creating a QNX Project

To create a QNX project in the QNX Momentics IDE just click on New - QNX C Project - type in the name of the
project and select the checkbox for ARM in the Build variance menu. Finally click on Finish.

Typein the following code for a"Hello world" program:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

int main(int argc, char *argv[]) {
printf("Welcome to the Q\X Monentics | DE\n");
return EXI T_SUCCESS;

}

To execute the program on the BeagleBone add a qconn target to a Run Configuration (described in Enable execution
of gconn).

Problem: Debugging the program on the BeagleBone is not working.

8.4 Porting an old BSP to a higher Version

Download the newest BSP that you can get for your Board

Unpack the BSP

Remove the the folder "src/hardware/startup/lib"

Remove the contents of the folder "prebuilt/usr/include/sys"

Download a BSP for the same architecture with the targeted version number.(QNX offers generic BSPs, you
should use this one)

Unpack the new BSP

Copy the new "src/hardware/startup/lib” to the old BSP.

Copy all files and folder of the new "prebuilt" directory to the old BSP and overwrite existing files.
Edit the source.xml of the "old" BSP(change version number etc.)

10. Now pack the "old" package and import it into the QNX IDE.

11. Try to compile the BSP you should get errors like:

a s~ b

© © N o

make[6]: *** No rule to make target “libpma', needed by
The libpm is no longer needed, you have to change the source like this:
LI BS+=i o-char pm ps drvr
LI BS+=i o-char drvr

12. Try to compile again, if you get an imagefile: congratulations! If not go on...
13. Now itsyour turn to look for deprecated or replaced drivers, libraries and interfaces
This process in undocumented and not repeatable for different boards, you can get hints on this link:

36

w @ AIRBUS

DEFENCE & SPACE

http://community.gnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/Drivers
Thisisatry-and-error process, the other option isto ask the manufacturer for aBSP...

Good luck =

8.5 Conclusion

QNX is one of the most used embedded operating systems, has a verbose documentation on the main parts of the OS
and seems to be a good decision as an embedded operating system. BUT the BSP for the BeagleBone is just "'sloppy"
created. It isnot starting "out-of-the-box", there are many untested functions, some documented features are not
implemented or just not working. After many hours of work we got the operating system prepared to use gconn, but
even after many hours more we did not get the serial ports on the GPIO pinsto work. The QNX Momentics IDE is
working fine.

8.6 Sources

(2) http://community.gnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/TiAm335Beaglebone

(2) http://www.gnx.com/devel opers/docs/660/topi c/com.gnx.doc.neutrino.building/topic/bsp BUILDSRC.html?

(3) https.//groups.google.com/d/msg/beagleboard/mNABDbL 0GFE/1Q3XWH3rBQAJ
(4) http://www.gnx.com/devel opers/docs/6.3.2/neutrino/sys _arch/intro.html
(5) http://phytec.com/wiki/images/7/72/AM335x_techincal_reference_manual .pdf

Authors: Maximilian Schonenberg, Benjamin Hesseln and Nils M iller

37

w @ AIRBUS

DEFENCE & SPACE

9 Master Implementation

Authors:. Jens Sager, Markus Salomon

9.1 General Software Design

The master implementation is done within four files. These files are PID.c, RS232.c, Scheduler.c and Main.c (or on
Arduino ACD_Master_Arduino.ino).

9.1.1PID

The PID controller was created with the structure described in PID Controller. Before use the sample time, PID
parameters and setpoint have to be set via PID_setSampleTime() and PID_setTunings() and PID_setSetpoint(). Setting
asampletimeis necessary because the controller assumes regular intervalsin which PID_comput() is called. This
function takes the current sensor value and returns the newly calculated PID value. It is possible to change the sample
time while the controller is running. The sample time is set in milliseconds while K| and K are set in units of 1/sand
S.

Note: The PID controller has only undergone basic tests and is very likely not bug free. Actualy controlling the ACD
and searching for proper tuning parameters has not been done.

9.1.2 Scheduler

The scheduler itself is split into the files Scheduler.c and Main.c. In Scheduler.c is the state machine of the designed
protocol (see RS232 Communication Protocol), athread for generating tick messages and the logic for updating the
task list. In Main.c is an endless loop which checksif atask isready to run. If so, it executes these task.

We decided not to use the solution with function pointers and structs descripted in http://www.safetty.net/downl oad
/pont_pttes 2001.pdf (p. 596ff) to increase readability. To descripe atask in the current solution there are three
variables needed. One for the delay, one for the period and one for checking if the task is ready to run. These variables
have to be updated in the updateTaskList() method of scheduler and in the Main.c file checked.

9.2 Platform Specific | mplementations

9.2.1 Arduino

Because of some trouble with the QNX operating system, the master was also implemented on an Arduino. Thisway
we were able to test parts of the logic of the master (PID, state machine of the scheduler and scheduler), although some
problems on QNX were not fixed. To achieve this, we had to change the code for RS232-Communication and the code
for getting the timer interrupt. The code for the RS232-Communication was taken from the slave's group (just removed
the flag for seria interrupt) and the code for the timer was taken from http://playground.arduino.cc/Code/ Timer1.

38

w @ AIRBUS

DEFENCE & SPACE

9.2.2 QNX

The Implementation in QNX is split into two threads. The Main-thread calls al initialization methods and then
constantly executes tasks when their corresponding flags are set. The timer-thread waits for an interrupt on the timer.
When an interrupt happens it reads any Messages received from the Slave and updates the state machine. Afterwards it
sends the corresponding tick message to the slave and updates the task list for the main thread.

Since the PID-Implementation was made with a constant sample time in mind its sample time has to be initialized. This
time is the same as the period of the timer (with a constant factor).

Setting up thetimer

The timer notifies the timer-thread via a pul se over a preddefined communication channel. This channel is created via
the use of the method " Channel Create(int)". The timer event then gets initialized with the macro
"SIGEV_PULSE_INIT" and the timer gets created with the "timer_create()" method. The timer can now be given a
time of initial execution aswell as aninterva time. Thus

timer.it vauetv_sec=1,
timer.it_valuetv_nsec = 0;
timer.it_interval .tv_sec = 5;
timer.it_interval.tv_nsec = 0;

would first send a pulse after 1 second and then another pulse every 5 seconds after that. Finally the timer needs to be
started with the "timer_settime" method.

Setting up thetimer thread

To make athread wefirst create a variable of the type "pthread_attr_t". This variable getsinitialized by
"pthread_attr_init". If attributes are not manually set then the created thread will inherit the priority of the parent
thread. The thread is then created with "pthread_create”" whereit is given its attributes as well as a function pointer for
the function it should execute. In this case we are using asimple loop to wait for timer interrupts and handle them
when they happen:

while(1){
rcvid = MsgReceive (chid, & msg, sizeof (msg), NULL);

if (revid ==0) {
gotAPulse();

}

}

Problemswith QNX SDP

During the implementation of the Master for QNX we were unable to to run or debug the code on the machine we
wrote it on. Because of thiswe had to resort to running each iteration on the Beaglebone using basic console text
outputs for debugging purposes.

39

w @ AIRBUS

DEFENCE & SPACE

9.3 Open | ssues

Because we ran out of time, there are still some known bugs.

Thefirst openissueis, that the values of the sensors will be encoded on the slave's side before sending to the master
but not decoded by the master.

The second issue is, that no optimization of the PID values was done. An introduction about how this can be done, can
befound in PID Controller.

40

w @ AIRBUS

DEFENCE & SPACE

10 Conclusions

Author: Prof. Dr. Jan Bredereke

This project achieved its main goals fully. However, due to lack of time, we could not complete the actual
implementation. The main goals of the project were:

* Demonstrate the application of atime-triggered architecture to a ssmple embedded distributed, hard real-time
system. (Thiswas the learning goal set for the students.)

® Collect practical experience on using the QNX real-time operating system on space hardware and for atime-
triggered architecture. (This was an additional goal of the project's organizers.)

We summarize our experiences with regard to these aspects in the following subsections.

10.1 Usinga Time-Triggered Architecture

As expected, using atime-triggered architecture is suitable for designing a hard real-time system, that is, a system
which is"guaranteed fast enough". In contrast, the alternative scheme of an event-triggered system would have
provided an execution "as fast as possible” only, which very well might be too slow. However, it turned out that using
Custom Off-The-Shelf driversin atime-triggered architecture often is not possible.

10.1.1 Suitablefor Hard Real-Time

The students learned how to use atime-triggered architecture for designing a hard real-time system. Section Time-
Triggered Scheduling provides an overview and references, in particular to the textbook by Pont. As abonus, the
students refer to awhitepaper by Schaffer and Reid from QNX which discusses many different common scheduling
approaches and their pros and cons in different settings.

10.1.2 Using Custom Off-The-Shelf Driversin a Time-Triggered
Architecture

A practical experience from the project isthat using Custom Off-The-Shelf (COTS) driversin atime-triggered
architecture often is not possible. All the COTS driver libraries we wanted to use are based on interrupts. Therefore
they are based on the event-triggered paradigm. Thiskind of interrupts does not integrate into the scheduling scheme
of atime-triggered system. Furthermore, the time-triggered, cooperative approach demands that each task must yield
the processor after aafixed and, in particular, after a short period of time. If necessary, the task must be organized
such that it continues its work in the next time slot. None of the COTS drivers used was designed in thisway. This
required us to redesign them from scratch.

41

w @ AIRBUS

DEFENCE & SPACE

This concerned the driver for the 12C bus (provided by the Wire library for Arduino), the driver for the RS-232 link on
the Arduino (also provided by the Wire library), and the driver for the attitude sensor (provided by the sensor's
manufacturer). See Section Arduino and Time-Triggered Drivers for details, in particular its Subsections 7.1.1, 7.1.2,
and 7.2.2.

We did not have the time to fully investigate the driver for the RS-232 link on the BeagleBone Black (provided by the
QNX board support package).

As a consegquence, using the Arduino development environment for atime-triggered architecture is of no particular
help. The Arduino development environment and its simplicity is great to aid beginners. But in our context, using a
normal IDE for the same ATmega microcontroller would have been better.

10.2 Using QNX on Space Hardware

Our project provides a practical crib sheet for using QNX in Section QNX Operating System. One example for these
steps is how to disable the watchdog timer, which otherwise resets by default any system after 30 seconds. Beyond
that, we made the experience that the availablity of aboard support package (BSP) for QNX iscritical.

Originally, we intended to use Airbus's e.Cube computer suitable for space as the master node. However, it turned out
that there the most current BSP by the board manufacturer isfor QNX version 6.4.1, while currently QNX already is at
version 6.6.0. There does not appear to be hope for a more current BSP by the manufacturer.

Nevertheless, the students didn't give up, and in Subsection 8.4 they provide a recipe for porting a BSP to a current
version of QNX. However, this solution can be seen as alast resort only. It is no way to deliberately design areliable
system.

Similarly, the BSP for the BeagleBone Black did not have the quality we expected, either. The code for the UART (RS-
232) driver bears the comment "Untested", and the code for receiving data on the UART ports didn't run out-of-the-
box. (We didn't have time to investigate further.)

The lesson learned is that before choosing QNX (or any other commercial real-time operating system) for a project, we
should have a deep look at the quality of the applicable board support package. Likewise, we should ensure that the
board manufacturer will provide updates of the BSP for future releases of QNX.

10.3 Using QNX for a Time-Triggered Architecture

Using the QN X real-time operating system for atime-triggered architecture appears to be feasible without difficulties.
Thisis so even though we noted in the introduction (Subsection 1.2.1), that the documentation of QNX systematically
uses a substantially different meaning for the words "real-time" than us. It uses them in the sense of "asfast as
possible", and not in the sense of "guaranteed fast enough". The introductory documentation insinuates an event-
triggered, not atime-triggered, system architecture to its readers.

Nevertheless, it turned out that designing a time-triggered architecture with QNX appearsto be very well feasible. You
only have to know well the concepts you want to apply. Otherwise, the QNX documentation can be misleading easily.

42

w @ AIRBUS

DEFENCE & SPACE

10.4 Incomplete Implementation of the Angle Control
Demonstrator

We did not complete the implementation of the Angle Control Demonstrator in the (short) time available. Several work
packages required more time than anticipated. In particular, we under-estimated the time necessary for the drivers,
which we had to rewrite from scratch to make them fit into the time-triggered architecture, instead of reusing existing
code. Some loose ends therefore remain, see the previous sections. Similarly, we had no opportunity yet to find
suitable parameters for the PID controller. This might need some additional time. Section PID Controller, Subsection
4.2.3, describes how it could be done.

Nevertheless, this project achieved its main goals fully, as stated in the beginning of this section.

43

w @ AIRBUS

DEFENCE & SPACE

11 Appendix: Structure of the Oral Presentation (in
German)

* Eswurde sich darauf geeinigt, dass die Préasentation auf deutsch gehalten wird und keine explizite Prasentation
hierfir erstellt wird. Lediglich das Wiki soll as Présentationsgrundlage dienen.
1. Einfuhrung/Aufgabenstellung (Jan Bredereke)
® 2. Genutzte Hardware und angestrebte Architektur (Jan Lehrke, Jonas Pufahl)
3. PID (Jens Sager, Benjamin Schéfer)

* 3.1 Wasist das?
* 4 Zeitgesteuertes Scheduling (Markus Salomon, Nikolas Schreck)

® 4.1 Allgemein

® 4.2 Verteilte Systeme

® 4.3. Unser System und Protokoll
5. Arduino und zeitgesteuerte Treiber (Jan Lehrke, Jonas Pufahl)
6. QNX (Nils Mller, Maximilian Schoneberg, Benjamin Hesseln)

® 6.1 Wasist das? Was stellt es zur Verfligung?

® 6.2. Warum nutzt man es?

® 6.3. Praktische Erfahrungen (Installation, BSP, Dokumentation)

® 6.4. QNX und zeitgesteuerte Verarbeitung + Treiber
¢ 7. Zusammenfassung und Ausblick (Julian Greilich)

