A Distributed, Time-Triggered Architecture
For an Attitude Control System

Jan Bredereke, Sercan Catalkaya, Eike Diekmann, Henrik GieBel, Arthur Guz, Daniel Kunde,
Tim Niebuhr, Kai Nortmann, Hans-Martin Pfennig, Marvin Péperny, André Sarich, Olga
Tschernobai, Hermann Wafo, René Wanzow, and Christian Zoller

City University of Applied Sciences Bremen
Flughafenallee 10, D-28199 Bremen

http://homepages.hs-bremen.de/” jbredereke

Rico Thiele

Airbus Defence & Space
Airbus-Allee 1, D-28199 Bremen

Mar. 2018

http://homepages.hs-bremen.de/~jbredereke

The following pages were generated from the project wiki hosted by Airbus.

@ AIRBUS

DEFENCE & SPACE

CFGv2.1 - A Distributed,
Time-Triggered
Architecture For an
Attitude Control System

Rico Thidle

w @ AIRBUS

DEFENCE & SPACE

Table of Contents

1 Introduction 6
1.1 The Attitude Control System Demonstrator 6
1.2 The Time-Triggered Architecture 7

121 TimeTriggered Processing for Hard Real-Time Systems 7
1.2.2 TheTime-Triggered Architecture for the Attitude Control System Demonstrator 7
1.3 Origina Project Description (in German) 8

2 FreeRTOS 9
2.1 Contents 9
2.2 Toolchain 10
2.3 Getting Started with System Workbench for STM32 10

231 Getting the Software 11
232 Ingtdllation 11
2.3.3 Configuration of the System Workbench 12
24 Instalation of STM32CubeMX 13
24.1 Getting the Installation Files 13
24.2 Ingtalation on Windows 13
24.3 Instalation on Linux 13
24.4 Create/Configurate a Project for Board STM32L 152RE with STM32CubeM X 14
2.5 Generate FreeRTOS Project with STM32CubeM X 16
251 Build project for other IDE / Toolchain 17
2.6 Difference between HAL and LL 17
2.6.1 HAL drivers 17
26.2 LL drivers 18
2.6.3 Tablewise comparison of HAL and LL drivers 18
2.7 Serial communication 19
271 UART 20
272 USART 20
2.8 Understanding Polling-, Interrupt- and DMA-Mode of HAL-driver 21
2.8.1 Polling mode 21
2.8.2 Interrupt mode 21
2.83 DMA mode 21
2.9 Timing 21
29.1 The SysTick-Timer (HAL) 22
29.2 TheRTOSTick 22
29.3 Built-in Scheduler in freeRTOS 22
29.4 Example Projects for the STM32 23
2.10 Appendix 24
2.10.1 Automated Installation File for Systemworkbench 24
2.10.2 Automated Installation File for STM32CubeM X 24
2103 STM32CubeMX Configuration for STM32L152RE 25

3 Angle Controller (PID) 26

3.1 Content 26

L

@ AIRBUS

DEFENCE & SPACE

3.2 Thecontrol loop 26
3.21 Control loopsin general 27
3.22 Proportional term (P) 28
3.23 Integral term (1) 28
3.24 Derivativeterm (D) 29
3.25 Combination of all terms: PID controller 30

3.3 Algorithm 30
3.3.1 Derivativekick problem 31
3.3.2 Windup reduction 33
3.3.3 Sampletime awareness 34

3.4 Adjustable PID parameters during runtime 35
341 Setup 35
3.4.2 Parameter tuning 36
3.4.3 Problems changing parameters during run time 38

3.5 Implementation 38
35.1 Read analog valuesfrom ADC 39
3.5.2 Structural overview of final code 42
3.5.3 Vaues Required and provided by PID controller 42

3.6 Useful Links 43

3.7 Sources 43

4 Driver for Arduino-compatible Microcontroller 45

4.1 Contents 45

4.2 Attitude Sensor MPU-6050 45
421 Configuration 45
4.2.2 Interfacesfor Sensor Operation 47
4.2.3 Example Program for Reading Sensor Values 48

4.3 Grove- 12C Motor Driver V1.3 49
4.3.1 Re-engineering of existing Motor Driver 49
4.3.2 Interfacesfor Motor Operation 49
4.3.3 Mapping of the motor values 50
4.3.4 Error Handling 51

4.4 RS232 Driver 52
441 Test of Serial Connection 53
442 STM32L152 Nucleo-64 53
4.4.3 RS232 Communication Protocol 54

5 Hardware 57

5.1 Contents 57

5.2 Overview 58

5.3 Hardware components 60
53.1 STM NUCLEO-32L152RE 60
5.3.2 Microcontroller 61
5.3.3 Motor driver 61
5.34 Specifications 61
535 Features 61
5.3.6 Motors 62
5.3.7 2x Motor Crazyflie Nano Quadcopter with each 1 x Propeller 62

L

@ AIRBUS

DEFENCE & SPACE

5.3.8 Attitude sensor 62

6 IDE for Arduino - Atmel Studio 7.0 63
6.1 Contents 63
6.2 Regquirements 63
6.3 Instalation Atmel Studio 7.0 64
6.3.1 Instalation: Arduino IDE 69

6.3.2 Configuration: Atmel Studio 69

6.4 Sources 73

7 Time-Triggered, co-operative scheduling 74
7.1 Contents 74
7.2 Introduction 74
7.2.1 Co-operative scheduling 74

7.2.2 Scheduling in multiprocessor systems 74

8 Conclusions at the End of Winter Term 2017/18 78
8.1 Using FreeRTOS for a Time-Triggered Architecture 78
8.2 Using an STM32 for a Time-Triggered Architecture 78
8.3 Using Custom Off-The Shelf Driversin a Time-Triggered Architecture 79
8.4 Incomplete Implementation of the Angle Control Demonstrator 79
8.5 Outlook 80
8.6 References 80

9 Appendix: Structure of the oral presentation 81

a2 @ AIRBUS

DEFENCE & SPACE

® |ntroduction
® The Attitude Control System Demonstrator
® The Time-Triggered Architecture
* Time-Triggered Processing for Hard Real-Time Systems
® The Time-Triggered Architecture for the Attitude Control System Demonstrator
® Origina Project Description (in German)

a2 @ AIRBUS

DEFENCE & SPACE

1 Introduction

Prof. Dr. Jan Bredereke, City University of Applied Sciences Bremen

Hochschule Bremen
City Univarsity ot Applied Sciences

This project demonstrates how to implement atime-triggered architecture for a real-time and distributed embedded
system. The application is a simple attitude control system. The project was carried out as part of the course
"Embedded Systems' at the City University of Applied Sciences Bremen, during the winter term 2017/18. It was
supervised by Prof. Dr. Jan Bredereke. The chapters after the introduction were written by the students named there.
The project was conducted in cooperation with Airbus Bremen.

1.1 The Attitude Control System Demonstrator

The demonstrator consists of an arm with a single degree of freedom, see figure. The arm is kept in a defined attitude
by two propellers. The control algorithm for thisis executed on a STM32 microcontroller running the FreeRTOS
operating system. The actuators and the sensor are controlled by an Arduino-compatible microcontroller (Sunfounder
Mega). Both microcontrollers communicate over an RS-232 serial connection using a time-triggered communication
protocol.

w @ AIRBUS

DEFENCE & SPACE

1.2 TheTime-Triggered Architecture

1.2.1 Time-Triggered Processing for Hard Real-Time Systems

Using atime-triggered processing scheme helps to meet hard real-time constraints. Every task has afixed time slot in
the schedule, with afixed period and a fixed length. This allows to prove that a system constructed in this way will
meet its timing requirements under all circumstances. Such a proof can be done by checking that the worst-case
execution time of every task in isolation does not exceed the length of its alotted time slot. Such a system does not use
any interrupt mechanism. Each task runsto completion. The scheduling therefore is cooperative. If the worst-case
execution times of all tasks have been proven to not exceed their deadlines, such adesign is highly reliable.

An alternative scheme would be event-triggered processing. Such a scheme uses interrupts and priorities for tasks. At
any time, a higher-priority task may interrupt the execution of alower-priority task. This alows for a quick responseto
an urgent issue. Also, the average response time of tasks in such a scheme often is considerably shorter than when
using atime-triggered scheme. However, an interrupting task may be interrupted itself, and interrupts may be
postponed for along time or even lost due to other high-priority processing. Therefore, usualy it is practically
impossible to provide a proof that a specific task will meet a specific deadline in the worst case. Consequently, an
event-triggered processing scheme usually is not suitable for a hard real-time system. Hard real-time system here
means that guarantees for its reliability must be provided.

1.2.2 The Time-Triggered Architecture for the Attitude Control
System Demonstrator

We use a distributed time-triggered architecture for our attitude control system demonstrator. There are two processing
nodes, and they synchronize und communicate using an RS-232 serial interface connection. The STM 32
microcontroller isthe master. It generates the time ticks which determine the schedule of all tasks on al nodes. The
Arduino-compatible microcontroller is a slave and follows the time ticks. The communication schedule is defined by
these regular time ticks, too. We defined a simple time-triggered communication protocol for this. The details follow in
the sections below.

The following figure shows the system structure. Light blue and light red boxes denote optional components, to be
realized only if time permits. One optional component is avarying preset of the intended attitude. It isintended to
make the behaviour of the controlled arm ook more interesting. Furthermore, optionally the parameters of the PID
controller shall be controllable by three potentiometers. This can help to find suitable values for these parameters much
faster than by recompiling the software for every iteration. In order to be able to find out the current values of these
parameters, optionally there is also a button that toggles the STM 32 node into a maintenance mode. In the maintenance
mode, the PID controller does not run. Instead, the parameter values are sent by a maintenance program to a PC on a
second RS-232 link. (This mode and the second link are not shown in the figure.)

L

@ AIRBUS

DEFENCE & SPACE

| attitude sensor |

motors+elektronics |

* 7
I“C bus

11C Arduino compatible

| sensor driver |

12C driver

motor driver

message dispatcher (Ard.)

RS-232 driver (Ard.)

.

scheduler (Ard.)

RS-232 link

R5-232 link

[] level shifter 5 V /3,3 V

;C STM32 (ARM)
with FreeRTOS

A/D converter driver
for reading P, |, D params

RS-232 driver (STM)

message disps-ltcher (STM)

-

PID controller

4

varying preset
of the intended attitude

scheduler (STM)
i

mode switcher

to maint. mode
I

| button driver |

3 potentiometers
for setting P, |, D params

mode button
(toggle to maint.)

1.3 Original Project Description (in German)

proj ektbeschreibung-2017-09-29.pdf

T

@ AIRBUS

DEFENCE & SPACE

2 FreeRTOS

Authors; Kai Nortmann, Henrik Gief3el, Arthur Guz, René Wanzow

This page describes FreeRTOS which is the real-time operating system we use in our project on the STM32L 1 board.

2.1 Contents

Toolchain
Getting Started with System Workbench for STM 32
® Getting the Software
® [nstalation
® \Windows Installation Setup
® Linux Instalation Setup
® Configuration of the System Workbench
Installation of STM32CubeM X
® Getting the Installation Files
® [nstallation on Windows
® [nstallation on Linux
® Create/Configurate a Project for Board STM32L 152RE with STM 32CubeM X
Generate FreeRTOS Project with STM 32CubeM X
® Build project for other IDE / Toolchain
Difference between HAL and LL
® HAL drivers
® LL drivers
® Tablewise comparison of HAL and LL drivers
Serial communication
* UART
* USART
Understanding Polling-, Interrupt- and DMA-Mode of HAL-driver
® Polling mode
® [nterrupt mode
* DMA mode
Timing
® The SysTick-Timer (HAL)
®* The RTOSTick
® Built-in Scheduler in freeRTOS
® Example Projects for the STM32
® |ED-BIlink viabutton
* LED-BIlink via Sys-timer

w @ AIRBUS

DEFENCE & SPACE

® Appendix
* Automated Installation File for Systemworkbench
® Automated Installation File for STM32CubeM X stm32cubemx-auto-install.xml
® STM32CubeMX Configuration for STM32L152RE

2.2 Toolchain

Authors: Henrik Gielel

zer STM32Cube X System Weorkbench STM32L1E2RE
T T T T
| | | |
™ | | |
lzad and cenfigure MCU I I |
| I |
I |
. ; - |
code successfully generated gives praject files | |
: |
T T |
I I i
I I I
write some Code |
c-}mpile[j :
+ i
i gives FreeRTOS image
| : FreeRTOS Image
image swccessfully created |
e s
deb: ugi}| :
i lzad image to board
| .
I
I
I
I
|
I
I
B I Ea I
I

| | i
The sequencediagram shows the workflow of the creation of a FreeRTOS image. In the first step the user has to create
project files for the needed microctrontroller. The Framewok STM32CubeM X will create the project files after the user
finished the needed configuration.The system workbench can import this project files and the user can start writing his
code. Everytime the user successfull compile the project a FreeRTOS ".hin"-image will be created in the workspace.
The image can be loaded onto the microcontroller when he click "debug” in the system workbench IDE.

2.3 Getting Started with System Workbench for STM 32

Authors: Kai Nortmann, Henrik Gief3el
This sections descripes how to get start with the System Workbench for STM32.

The System Workbench toolchain,called SWASTM 32, is a free, multi-OS software devel epemont enviroment based on
Eclipse, which supports the full range of STM 32 microcontrollers and associated boards.It has been built by AC6, a
service company providing training and consultancy on embedded systems. For the latest information on the
specification, refer to the third party’ s website: www.ac6.fr.

10

w @ AIRBUS

DEFENCE & SPACE

2.3.1 Getting the Software
Authors; Kai Nortmann, Henrik Gief2el

To get the software you need to register first at: http://www.openstm32.org/tiki-register.php.Fillout this exhausting list
of personal information and confirm to get a verification e-mail to finish the registration.
Without this step you wont be able to get software from the Openstm32 community and to do further steps.

After the registration go following ressoucre on http://www.openstm32.org to get the needed installer: Documentation
» System Workbench for STM32 » Installing System Workbench for STM 32 » Installing System Workbench for
STM32 with installer » Downloading the System Workbench for STM 32 installer.

For Windows7 and newer (64 Bit) download: "install sw4stm32 win_64bits-v2.3.exe" for the 32 Bit edition the
install_sw4stm32_win_32hits-v2.3.exe

For Linux based systems (64 Bit) download: "install sw4stm32_linux_64bits-latest.run". The 32 Bit Version will be
deptricated in the future and will not be documented in this dokumentation.
Download possible with:

wget http://ww. ac6-t ool s. con downl oads/ SWMISTM32/ i nst al | _sw4st nB2_1 i nux_64bi ts-v2.3.run

2.3.2 Installation

Windows I nstallation Setup

Authors: Kai Nortmann, Henrik Gief2el

Start the installation process by running the install_sw4stm32_win_64bits-v2.3.exe. Specify the installation location
and accept the licence agreements. Other setting can be |eft default.
In the Instal altion-process following ressources will be installed:

1. System Workbench files
2. Needed drivers (STMicroelectronics (WinUSB) STLinkWinUSB, (STMicroelectronics (usbser))
3. Uningtaller in the installation location

In the finish dialog of the setup an installation-script can automaticaly be generated to repeat the installation on other
computer. If additional installations are necessary this point
should be considered.

Linux Installation Setup

Authors: Kai Nortmann, Henrik Gief2el

11

w @ AIRBUS

DEFENCE & SPACE

Downl oad Dependeci es for QpenSTM32
sudo apt-get install libc6:i386
sudo apt-get install 1ib32ncurses5

Downl oad dependecies for the GU Installer of OQpenSTM32
sudo apt-get install gksu

Change to downl oad directory
cd <$DOWNLOAD DI RECTORY>

Granting rights to run installer
sudo chnod a+x install_swistnB2_|inux_64bits-latest.run

Run GUI Installer in interactive node on the current user
bash install_swistnB2_|inux_64bits-latest.run

Run GUl Installer in interactive nbde as root for nutli-user systens
sudo bash install_swdstnB2_|inux_64bits-latest.run -f

Run Installer with answer-file
bash install_swistnB2_|inux_64bits-latest.run <$PATH TO ANSWER FI LE. XM_>

The GUI-Installer will run in following steps:

The first page describes the product features. Click on the “Next” button.
Please read and accept the license agreement to continue the installation. Click on the “Next” button.
Choose the installation path (default: /home/user/Ac6/SystemWorkbench). Click on the “Next” button.
A warning message is displayed :
a. If the directory does not exist, it proposes to create the installation directory.
b. If the directory exists, the installer will suppress the installation folder.
5. The next page shows the list of packs that will be installed.
6. Thefollowing page shows on the installation settings. Click on the “Next” button to proceed installation then
wait until theinstall processis done.
7. The next page will automatically unpack the tool and configure the tool.
8. When the unpack is finished, click on the “Next” button to display to Finish page.

A 0w NP

2.3.3 Configuration of the System Workbench
Authors: Kai Nortmann, Henrik Gief3el

There is no configuration needed in the default settings. Just open the project, generated by STM32CubeM X
(described in the section below)

12

w @ AIRBUS

DEFENCE & SPACE

2.4 Installation of STM 32CubeM X

2.4.1 Getting the I nstallation Files
Authors: Kai Nortmann, Henrik Gief3el

STM32CubeM X is freeware package for Windows, Mac OS X and Linux that is a graphical software configuration
tool that allows generating C initialization code using graphical wizards. The installation files can be found on
http://www.st.com/en/devel opment-tool s/stm32cubemx.html in the "Get Software" section. Read and Accept licence
agreement and download the zip-archive which contains all installation programms for Windows, Mac OS X and
Linux.

2.4.2 Installation on Windows
Authors: Kai Nortmann, Henrik Giefel
General Steps:

Switch to download directory and unzip file to desired directory

Run " SetupSTM 32CubeM X -4.23.0.exe"

Accept licence agreement

Choose installation location

Choose of you want shortcuts on desktop and startmenu and finish installation

Run "<$INSTALLDIR>\STMicroel ectronics\STM 32Cube\STM 32CubeM X\STM 32CubeM X .exe" to start
STM32CubeM X

o gk~ wDdPRE

No further instructions are needed. To uninstall STM32CubeM X run
"<$INSTALLDIR>\STMicroel ectronics\STM 32Cube\STM 32CubeM X\Uninstal ler\startuninstall .exe"

2.4.3 Installation on Linux
Author: Henrik Giel3e

Refer to Section " Getting the Software" to get the needed installation files. Y ou should habe an ZIP-Archive like "en.
stm32cubemx.zip". Following script can be used to install STM32CubeM X.

13

DEFENCE & SPACE

w @ AIRBUS

Extract Dependecies
sudo apt-get install gcj-jre
sudo apt-get install default-jre

Extract ZIP Archive for a single user depl oynent
unzi p en. stnB2cubenx. zi p -d /hone/ user/ bi n/ st nB2cubenx

Extract ZIP Archive for a multi user depl oynent

sudo unzi p en.stnB2cubenx. zip -d /usr/local/sbin/stnm2cubenx
sudo chown -R root:root /usr/local/sbin/stnB2cubemnx

sudo chnod -R 755 /usr/ | ocal / sbin/ st nB2cubenx

Install STMB2CubeMX
. | Set upSTMB2CubeMX- 4. 23. 0. | i nux (graphical -Installer)
. | Set upSTMB2CubeMX- 4. 23. 0.l i nux -console (CLI-Installer)

1. Accept licence agreement

2. Choose installation location

3. Choose of you want shortcuts on desktop and startmenu and finish installation
4. Run"<$INSTALLDIR>\STM32CubeM X" to start STM32CubeM X in Linux

2.4.4 Create/Configurate a Project for Board STM32L 152RE with
STM32CubeM X

author: René Wanzow
General steps:

1. Start STM32CubeM X with
"<$INSTALLDIR>\STMicroel ectronics\STM 32Cube\STM 32CubeM X\STM 32CubeM X .exe"

2. Click on"File" "New Project”

3. Switch to "Board selector"-Tab in the "New Project"-Window

4. Double-click on "NUCLEO-L152RE" (see left screenshot below)

File Project Win,

ard Selector

MCU Selector
Board Fiter

Vendor ¢ Type of Board : MCU Series ¢
STMicroelectronics <] [< [smen <

[nitialize all peripherals with therr default Mode s

Peripheral Selection

Peripherals Nb Max Reference MCU
9| ol |~ 2 215
9| a2 ooc oisco STzt tooReTc
2| [STM32L -DISCOVERY [STM32L 152RBTx
9| T3 520 0150 STzt tsRCT
| @ |Audio Line Out 0 [STM32L 152D-EVAL |STM32L1522DTx.
@ Button 0
9)
9| 8]
New Pro; O
ston Forn O
I [
gl
Load Prg @ g
9|
@ DA
Help @ Joysidk
|®|Lcd Display (Graphics)
[®|Lcd Display (Segment)
0
0
0
2 [
otentiometer [m]
9) O
[@Rs-232 0 v

Board selection

14

T

@ AIRBUS

DEFENCE & SPACE

5. After few seconds the "pinout"-window will appear

6. Expand the"SY S'-node and change the "timebase source" to "TIM2" (see right screenshot below)

T
ECRLPREFE)

a3
[

.

Board configuration

=l == T PRI O |

(=] - ES

7. Expand the "USART1"-node and set the mode to "synchronous”
8. Switch to the "configuration”-tab and enable "FREERTOS' und the "middleware"-node (see screenshot below)

Main configuration

1] - BN

15

w @ AIRBUS

DEFENCE & SPACE

9. If needed the configuration of the USART-interface could be changed (baudrate, word length, parity, etc.; see
screenshot below)

e oTm (e N - -
1 A" Bd
(- IR - L | “E-'
e T P O s kmes T e Bl e ST ke
- S I F—
T 1 L]
[[T
- [[
N [, &
=5 R |‘ “n
= ... |
. [[|
I
T v ST
- e -
e .
Fane
-
LR
- | 4 I

USART configuration
10. The basic configuration is now complete

2.5 Generate FreeRTOS Project with STM 32CubeM X

author: René Wanzow

1. After the creation and configuration of a project with STM32CubeM X, the project can be generated for the IDE
2. Generate the project for "System Workbench for STM 32" by clicking on the srcoll-symbol on the button-
toolbar of the main-window in "STM32CubeM X" application (see screenshot below)
@ 5TM32CubeM Untitled*: STM32L152RETx NUCLED-L152RE

File Froject Window Help

BoRU® &5 4= p
L+

Generate Project report files (pdf and tat)
| Pinout Clock Configuration Lﬂ'fmm%mgtﬂ?m—l- i

i

— Middlewares
—- W FATFS

3. Confirm the next window with "yes"
4. Inthe next window you can configurate the genrate-process
5. Set adestination folder for the generated project

16

w @ AIRBUS

DEFENCE & SPACE

6. Also select thetoolchain/IDE to "SW4STM 32" to be able to open it later with the workbench

e

7. Click on"Ok" and the project should be generated. After the generate process is complete, the project can be
found in the previous selected folder.
8. Finish, the project is ready to open with the "Workbench for STM32"

Severa example projects can be found in the Git-Repository under "acd\ST Nucleo-L 152RE-demos\"-folder.

2.5.1 Build project for other IDE / Toolchain

For building for other tools, just repeat the instruction above. At step 6 just choose another Toolchain / IDE to built
your project for the given tools.

2.6 Difference between HAL and LL

2.6.1 HAL drivers

Authors; Kai Nortmann, Arthur Guz

"The HAL drivers were designed to offer arich set of APIs and to interact easily with the application upper layers.
Each driver consists of a set of functions covering the most common peripheral features. The development of each
driver isdriven by acommon APl which standardizes the driver structure, the functions and the parameter names. The
HAL driversinclude a set of driver modules, each module being linked to a standal one peripheral. However, in some
cases, the module is linked to a peripheral functional mode. As an example, several modules exist for the USART
peripheral: UART driver module, USART driver module, SMARTCARD driver module and IRDA driver module. The
HAL main features are the following:

® Cross-family portable set of APIs covering the common peripheral features aswell as extension APIsin case of
specific peripheral features.
® Three APl programming models: polling, interrupt and DMA.
® APIsare RTOS compliant:
* Fully reentrant APIs
® Systematic usage of timeouts in polling mode.

17

w @ AIRBUS

DEFENCE & SPACE

® Support of peripheral multi-instance allowing concurrent API calls for multiple instances of a given periphera
(USART1, USART2..)
* All HAL APIsimplement user-callback functions mechanism:
® Peripheral Init/Delnit HAL APIs can call user-callback functions to perform peripheral system level
Initialization/De-Initialization (clock, GPIOs, interrupt, DMA)
® Peripheralsinterrupt events
® Error events.
® Object locking mechanism: safe hardware access to prevent multiple spurious accesses to shared resources.
* Timeout used for all blocking processes: the timeout can be a simple counter or atimebase." (UM 1816 User
manual, section 2)

2.6.2LL drivers

Authors; Kai Nortmann, Arthur Guz

"The Low Layer (LL) drivers are designed to offer afast lightweight expert oriented layer which is closer to the
hardware than the HAL. Contrary to the HAL, LL APIs are not provided for peripherals where optimized accessis not
akey feature, or those requiring heavy software configuration and/or complex upper-level stack (such as FSMC, USB
or

SDMMC).

TheLL driversfeature:

* A set of functionsto initialize peripheral main features according to the parameters specified in data structures

® A set of functions used to fill initialization data structures with the reset values of each field

® Functionsto perform peripheral de-initialization (peripheral registers restored to their default values)

* A set of inline functions for direct and atomic register access

¢ Full independence from HAL since LL drivers can be used either in standalone mode (without HAL drivers) or
in mixed mode (with HAL drivers)

® Full coverage of the supported peripheral features.

The Low Layer drivers provide hardware services based on the available features of the STM 32 peripherals. These
services reflect exactly the hardware capabilities and provide one-shot operations that must be called following the
programming model described in the microcontroller line reference manual. As aresult, the LL services do not
implement any processing and do not require any additional memory resources to save their states, counter or data
pointers: al the operations are performed by changing the associated peripheral registers content." (UM 1816 User
manual, section 3)

2.6.3 Tablewise comparison of HAL and LL drivers
author: René Wanzow

Refering to the quotations above, this table comparesthe HAL and LL driversin asingle, compact table.

18

@ AIRBUS

DEFENCE & SPACE

HAL-driver

Uses APIs asinterfaces for the
hardware,

Level

easy access to upper application layer,

driver module being linked to a
standal one peripheral

Memory Uses more memory in comparison to

LL-driver

Initialization functionsin API,
offers Initialization structures

Configuration

Functionality = common peripheral features
coverage (extendable through extended APIs)
Special Three API programming models:

functionality polling, interrupt and DMA

Support of peripheral multi-instance

All HAL APIsimplement user-callback
functions mechanism

Object locking mechanism

Timeout used for all blocking processes

Both drivers can be used in mixed mode

2.7 Serial communication

LL-driver
Close to hardware (but uses APIs too),

expert-oriented, direct and register level based
operations,

LL APIsare not provided for peripherals,

provide hardware services: these services reflect
exactly the hardware capabilities

fast light-weight,
better optimization

Initialization functionsin API,
The LL drivers offer three sets of initialization
functions

full coverage

LL services do not implement any processing and ...

No additional memory is required to save the states,
counter or data pointers (

operations performed by changing the associate
register)

The Low Layer is designed to be used in standalone
mode or combined with the HAL

source: http://www.st.com/content/ccc/resource/technical/document/reference_manual/cc/f9/93/b2/f0/82/42/57
/CD00240193.pdf/filesyCD00240193. pdf/jcr:content/transl ations/en.CD00240193. pdf

19

w @ AIRBUS

DEFENCE & SPACE

2.7.1 UART

An universal asynchronous receiver-transmitter (UART) is a computer hardware device for asynchronous serial
communication. It takes bytes of data and transmitts the individual bitsin a sequential fashion. At the destination, a
second UART re-assembles the bits into compl ete bytes.

Asynchronous means thereis no clock signal to synchronize the output of bits from the transmitting UART to the
sampling of bits by the receiving UART. Instead of a clock signal, the transmitting UART adds start and stop bits to
the data packet being transferred. These bits define the beginning and end of the data packet so the receiving UART
knows when to start reading the bits.

The two UARTS of the STM32L 152RE-MCU provide the following operation modes:

® asynchronous mode

* multibuffer communication (DMA)
® Multiprocessor communication

® Half-duplex(single-wire mode)

* IrDA

® LIN

2.7.2USART

An universal synchronous and asynchronous receiver-transmitter (USART) isatype of serial interface device for
synchronous or asynchronous serial communication. For the asynchronous capabillities of an USART reffer to the
UART article.

Synchronous serial transmission requires that the sender and receiver share a clock with one another, or in other words,
the sender provide a clock or other timing signal so that the receiver knows when to “read” the next bit of the data.

The three USARTs of the STM32L 152RE-MCU provides the following operation modes:

® Asynchronous mode

® Hardware flow control

® Multibuffer communication (DMA)
® Synchronous

® Smartcard

® Multiprocessor communication

¢ Half-duplex(single-wire mode)

* IrDA

° LIN

20

w @ AIRBUS

DEFENCE & SPACE

2.8 Under standing Poalling-, Interrupt- and DM A-M ode of
HAL-driver

Aurthor: Arthur Guz
Source: “Description of STM32L1 HAL and low-layer drivers’, Chapter 2.12.3

"The HAL functions with internal data processing like transmit, receive, write and read are generally provided with
three data processing modes as follows:"

® Polling mode
® [nterrupt mode
* DMA mode

2.8.1 Polling mode

"In Polling mode, the HAL functions return the process status when the data processing in blocking mode is complete.
The operation is considered complete when the function returnsthe HAL_OK status, otherwise an error status is
returned. The user can get more information through the HAL_PPP_GetState() function. The data processing is
handled internally in aloop. A timeout (expressed in ms) is used to prevent process hanging. "

2.8.2 Interrupt mode

"In Interrupt mode, the HAL function returns the process status after starting the data processing and enabling the
appropriate interruption. The end of the operation isindicated by a callback declared as aweak function. It can be
customized by the user to be informed in real-time about the process completion. The user can also get the process
status through the HAL_PPP_GetState() function. "

2.8.3 DMA mode

"In DMA mode, the HAL function returns the process status after starting the data processing through the DMA and
after enabling the appropriate DMA interruption. The end of the operation is indicated by a callback declared as a weak
function and can be customized by the user to be informed in real-time about the process completion. The user can also
get the process status through the HAL_PPP_GetState() function. "

2.9 Timing

Author: Kai Nortmann

21

w @ AIRBUS

DEFENCE & SPACE

2.9.1 The SysTick-Timer (HAL)

® "Systick-timer is used by default as source of time base, but user can eventually implement his proper time base
source (ageneral purpose timer for example orother time source), keeping in mind that Time base duration
should be kept 1ms since PPP_TIMEOUT _VALUEs are defined and handled in milliseconds basis.
® Time base configuration function (HAL _InitTick ()) is called automatically at the
beginning of the program after reset by HAL _Init() or at any time when clock is
configured, by HAL_RCC_ClockConfig().
® Source of time baseis configured to generate interrupts at regular time intervals.
Care must be taken if HAL_Delay() is called from a peripheral 1SR process, the
Tick interrupt line must have higher priority (numerically lower) than the
peripheral interrupt. Otherwise the caller ISR process will be blocked.
¢ functions affecting time base configurations are declared as _ Weak to make
override possible in case of other implementationsin user file." (UM 1816 User manual, section 5.1.2)

Since the time base duration is also used to handle the timeouts of certain tasks (for example sending bytes on the
UART bus), the value should not be changed. When changin the value, it should be kept in mind, that all timeout
values are affected by that change. If a certain task is given atimeout value of 1000, it would be one second if the time
base duration is set to 1 ms. Changing the time base duration to 10ms, all timeout values are the ten times bigger than
before!

2.9.2TheRTOSTick

"When slegping, an RTOS task will specify atime after which it requires 'waking'. When blocking, an RTOS task can
specify a maximum time it wishes to wait.

The FreeRTOS real time kernel measures time using a tick count variable. A timer interrupt (the RTOS tick interrupt
) increments the tick count with strict temporal accuracy - allowing the real time kernel to measure time to aresolution
of the chosen timer interrupt frequency.

Each time the tick count isincremented the real time kernel must check to seeif it is now time to unblock or wake a
task. It is possible that a task woken or unblocked during the tick ISR will have a priority higher than that of the
interrupted task. If thisisthe case thetick | SR should return to the newly woken/unblocked task - effectively
interrupting one task but returning to another." (RTOS Homepage - "How FreeRTOS works'")

The standard value of each tick is1 ms. Thetick valueis directly coupled to the " SysTick-Timer" of the STM32 HAL
driver (so changing the tick value will set the time base duration of the STM 32 to that exact value). Thetick value can
be used in this project to determine the duration of each timeframe. It should be kept in mind that all timeout values are
affected by that change! (see above).

2.9.3 Built-in Scheduler in freeRTOS

Author: René Wanzow

22

w @ AIRBUS

DEFENCE & SPACE

freeRTOS comes with a built-in scheduler which comes with basic features for scheduling. It is possible to configure
the scheduler to operate preemptive or cooperative.

In the "FreeRTOSConfig.h" iit is possible to configure that mode of operation:

FreeRTOSCOnfi g. h

[...]

#defi ne confi gUSE_PREEMPTI ON 0

If this defineis set to "0", the scheduler operatesin cooperative mode. If that is the case you need to insert a
"osThreadYield();" at the end of each task to signal the scheduler, that there is not more cadcul ation time needed and
other tasks in the queue can be called (see the code block below).

mai n. c

voi d startlnitTask(void const * argument)

{

struct Data data;
for(;;)
{

transm t Debug("init task running \r\n", 10);
data = GetEnptyData();

osThreadSet Priority(initTaskHandl e, osPriorityLow);
osThreadYi el d();

To determine for the scheduler which task should be called next, there is a queue of tasks with a priority (seein code
block upwards the line with "osThreadSetPriority"). If you want to transfer data to other tasks you can do that by the
method "osM essagePut" (see code block below).

mai n. c
//put received data onto Rx-buffer

osMessagePut (seri al Buf RxHandl e, (ui nt32_t) &t np, 10);
osThreadYiel d();

2.9.4 Example Projectsfor the STM 32

Author: René Wanzow

23

w @ AIRBUS

DEFENCE & SPACE

L ED-BIlink via button

Example project where the LED (LD2) togglesif the blue button (B1) was pressed. There are two varaiantsin the Git-
Repository, one with interrupt support and one with polling on the pin of the button instead of interrupt.

Project with interrupt

gi t @cd\ ST Nucl eo- L152RE- denps\ " LED BLI NK_BUTTON_EXAMPLE_wi t hl nt errupt . zi p"

Project with polling

gi t @cd\ ST Nucl eo- L152RE- denps\ " LED BLI NK_BUTTON_EXAMPLE_wi t hout | nt errupt . zi p"

LED-Blink via Sys-timer

In this example, LD2 toggles on each timer tick (TIM2).

Project with systick

gi t @cd\ ST Nucl eo- L152RE- denps\ " LED BLI NK_SYSTI CK_EXAMPLE. zi p"

2.10 Appendix

2.10.1 Automated I nstallation File for Systemworkbench

systemworkbench...uto-install xmi

2.10.2 Automated I nstallation Filefor STM 32CubeM X

24

w @ AIRBUS

DEFENCE & SPACE

2.10.3 STM 32CubeM X Configuration for STM32L 152RE

|XL\J
=7

DefaultProjectConfig.ioc

25

T

@ AIRBUS

DEFENCE & SPACE

3A

ngle Controller (PID)

Authors: Olga Tschernobai, Marvin Pdperny, Hans Martin Pfennig

3.1 Content

Thefol

Content
The control loop

® Control loopsin general

® Proportional term (P)

® |ntegral term (1)

® Derivativeterm (D)

® Combination of al terms: PID controller
Algorithm

® Derivative kick problem

® Windup reduction

® Sample time awareness
Adjustable PID parameters during runtime

® Setup

® Parameter tuning

® Problems changing parameters during run time
Implementation

® Read analog values from ADC

® Structural overview of final code

® Vaues Required and provided by PID controller
Useful Links
Sources

lowing content is about angle control with a PID controller and its basic functionality. For demonstration

purposesisthe ACD (Angle Control Demonstrator) provided by Airbus used.

3.2 The control loop

=%

Remark

Basically the following paragraph " Structure” is copied from the previous Documentation but modified to be
more readable.

Remark just before delivery: Most paragraphs are completely rewritten and expanded with more
information.

26

w @ AIRBUS

DEFENCE & SPACE

3.2.1 Control loopsin general
Basics

A control loop is a mechanism that allows a system to be controlled dynamically. By means of atarget/actual
comparison, it makesit possible to adjust the current value of a system and to take errors into account. Picture 1 shows
the systematic structure and context of the components which are explained in more detail below.

Controller

Thisisthe part of the control loop that takes corrective action to correct the system deviation, taking into account the
dynamic properties of the controlled system.

System

The System is the actual system which has to be controlled.

Measured System .
Reference 4 Error input ystem output
P CONLroller jr— System -

Measured output

Sensor

Picture 1: Standard control loop

Sensor and Measured output / Process variable (PV)

The sensor measures the current value and passes it on in a suitable form (measured output).
Reference/ Setpoint (SP)

Is the target value to be reached by the control loop. It is given by an extern source.
Measured error

elt) = SP — PV (t)

The measured error is the deviation of the reference value and the measured value. It is the value by which the system
still has to be changed at the current point in time to reach the target value.

System input / Controller output (CO)
A calculated value by the controller for the system to set the actors correctly.
System output

Thereal value by the system to control the periphere.

27

w @ AIRBUS

DEFENCE & SPACE

The following four images show jump responses. This means that they only show the behaviour of the
controller, but do not affect the system.

A
e(t)

I delta(e)

-—
i

Picture 2: set error for step response

3.2.2 Proportional term (P)
P = er(t)

The proportional term P produces an output that is proportional to the current error value, thus increasing the
controllers output with increasing error. It makes up the main part of the control agorithm. The controller multiplies
the error e(t) by the proportional gain Kp to get the controller output. The step response of the proportional termis
shown in picture 2.

Advantage: The proportional term tries to reach the setpoint as fast as possible.

Disadvantage: If the proportional gain istoo large, the process variable will begin to oscillate. If K . isincreased

further, the oscillations will become larger and the system will become unstable and may even oscillate out of control.

A
u()

-
mmnm D h.

t

Sour ce: https://de.wikipedia.or g/wiki/Regler
Picture 3: proportional term, step response graph

3.2.3 Integral term (1)

t
I =Kj; | e(r)dx
0

Theintegral term | grows with both the magnitude of the error and its duration, as shown in picture 3.

28

w @ AIRBUS

DEFENCE & SPACE

Advantage: Thisterm can accelerate the movement of the process towards the setpoint if an error is not corrected over
longer time periods.

Disadvantage: Because it accumulates the errors of the past it can result in overshooting the setpoint value. To mitigate
this effect for certain circumstances windup protection can be used.

Y

Sour ce: https://de.wikipedia.or g/wiki/Regler
Picture 4: integral term, step response graph

3.2.4 Derivativeterm (D)
de(?)
D=Kp——=
Prat

The derivative of the error is used to determine the slope of the error over time. This can be used to predict system
behavior and improves settling time as well as stability of the system.

Advantage: Increasing the derivative time (Kd) parameter will cause the control system to react more strongly to
changes in the error term and will increase the speed of the overall control system response.

Disadvantage: The derivative doesn't consider if e(t) is postive, negative or how much time has passed, just how fast e
(t) is changing.

A
u(t)

-—
t

Sour ce: https://de.wikipedia.or g/wiki/Regler
Picture 5: derivative term, step response graph

29

w @ AIRBUS

DEFENCE & SPACE

3.2.5 Combination of all terms. PID controller
If al three previously described terms are combined a PID controller is build.
Demo: http://www.rentanadviser.com/en/pid-fuzzy-logic/pid-fuzzy-logic.aspx

The proportional term considers how far the current process variable is from the setpoint and changes the CO to reach
the setpoint as fast as possible. The derivatie term acts against the oscillations caused by the proportional term, because
it considers how fast the (t) is changing. Theintegral term considers how long and how far PV has been from SP by
continually summing e(t) over time, so it acts like a moving bias that eliminates the offset.

u(t) = Kpe(t) + K; [e(x)dz + Kp 2t

A
u())

Picture 6: PID step response graph

3.3 Algorithm

@ Most of the code presented in this section was originally written for arduino, thus the type double has the
same meaning as float.

Basically the same algorithm is used asin the previous Documentation. A really simple implementation of an PID
controller is the following code:

/*wor ki ng vari abl es*/

unsi gned | ong | ast Ti ne;

doubl e I'nput, Qutput, Setpoint;

doubl e errSum lastErr;

doubl e kp, ki, kd; // set this to the appropriate val ues
voi d Conput e()

{

/*How | ong since we |ast cal cul ated*/

30

w @ AIRBUS

DEFENCE & SPACE

unsi gned | ong now = millis();
doubl e tinmeChange = (double)(now - |astTine);

/*Conpute all the working error variabl es*/

doubl e error = Setpoint - |nput;
errSum += (error * tineChange);
double dErr = (error - lastErr) / tineChange;

/*Conput e PI D Qut put*/
Qutput = kp * error + ki * errSum + kd * dErr;

/ *Renenber sone variables for next tinme*/

lastErr = error;
lastTimre = now,

Source: http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-introduction/

To be more robust some improvements are done:

3.3.1 Derivative kick problem
The formulafor the derivative term is the derivation of the error value.

delt)
dt
Since the error value is defined by:

elt) = SP — PV (t)
it means the following for the derivative:

de(t) d(SP — PV (t))

dt dt
When it comes to a setpoint change, the error increases rapidly and resultsin a spike of the deriative, as shown in
picture 6. It is called the derivative kick.

Due to the fact, that the derivative part only needs to consider the change of the process variable, the derivative kick
can be prevented by eliminating SP from the formula.
de(t) d(—PVI(t)) dPV

SP=0— ZA
dt dt elt

That means that the derivative depends only on the last input. Thisis called "Derivative on Measurement”. In picture 7
you can see that the setpoint change doesn't cause spikes anymore.

31

@ AIRBUS

Q

DEFENCE & SPACE

Setpaist Inpul

J Oulpuit Spikes

i —

Qi it

Picture 7: derivative kick

=

i

i

]

w

NoOutpat Spikes

i

8

-

i.:' Because setpoint change has
= n impact on Inpult Derivative
£

3

Picture 8: Correction of derivative kick

In our code it looks like:

Derivation kick prevention

/*wor ki ng vari abl es*/
doubl e errSum | astlnput;

[-..]
voi d Conput e()
{
[-.]
/*Conmpute all the working error variabl es*/
doubl e error = Setpoint - |nput;
errSum += error;
doubl e dlnput = (Input - lastlnput);

/ *Conput e PI D Qutput*/
Qutput = kp * error + ki * errSum- kd * dlnput;

/ *Renmenber sone variables for next tinme*/
lastlnput = | nput;

(-1

32

w @ AIRBUS

DEFENCE & SPACE

3.3.2Windup reduction

One possible problem during controlling is the windup.

If the setpoint is not reachable by the CO (e.g. due arestriction in the engine controller), after awhile the integral adds
up to avery large number. Because of that, the CO grows to exceed the restriction and the desired value isn't reachable
by the controller hardware. Thisis called windup. As a consequence, the controller can't regulate the process until the
error changes sign and the integral term shrinks sufficiently so that the CO value isin the range again. Therefore the
controller reacts much later on a setpoint change, so it leads to a windup-induced lag as shown in picture 8.

Setpoint / Input

N\

What pid thinks it"s sending

\

_f ‘F"‘Whntcmlnlly getssent \

Picture 9: windup lag

Output

Still no Lag

/
N

Setpoint / Input

What pid thinks it's sending
=What actually gets sent

Picture 10: Correction of windup lag

To prevent the windup it is necessary to let the controller know about the restriction in output. Thiscan beina
different unit as the actual restriction due conversionsin the system output loop (e.g. in our system the limit isthe
motor voltage but for the control loop it can be aimaginary restriction as the output is formatted, recalculated to both
engines, send to speed controller and then it is the actual voltage).

33

L

@ AIRBUS

DEFENCE & SPACE

Implementation is simply clamp the cal culation to the restriction as suggested:

W ndup reduction

[..

-]

doubl e outM n, out Max;
voi d Conput e()

{

[...]

| Termt= (ki * error);

//************* HERE khkhkhkkkkkkkkkk
if(ITerm> out Max) | Ter m= out Max;

else if(l Termk outMn) | Ternr outM n;
doubl e dlnput = (lnput - lastlnput);

/ *Conput e PI D Qut put*/
Qutput = kp * error + | Term- kd * dlnput;

[Frxx K xRk kR xxx HERE * Xk kkkkkkxk ko

i f(Qutput > outMax) Cutput = out Max;
else if(Qutput < outMn) CQutput = outMn;

voi d Set QutputLimts(double Mn, double Mx)

{

if(Mn > Max) return;
outMn = Mn;
out Max = Max;

//**‘k*********‘k HERE kkhkkkkhkkkkkkkk*x

i f(Qutput > outMax) Qutput = out Max;
else if(Qutput < outMn) CQutput = outMn;

if(ITerm> out Max) | Ter m= out Max;
else if(l Termk outMn) | Ternr outM n;

3.3.3 Sampletime awar eness

The presented code is designed to be called in aregular interval. If the environment can't guarantee this the
implementation should be aware of the sample time and handle it accordingly. Thisis necessary asthe | and D part

relies on the time. The Blog suggests to handle interval generation by the controller itself:

Sanpl e tine awar eness

[..

-]

int SanmpleTime = 1000; //1 sec
voi d Conput e()

{

w @ AIRBUS

DEFENCE & SPACE

unsigned | ong now = millis();

int timeChange = (now - |astTine);

i f (ti meChange>=Sanpl eTi ne)

{

[...] Compute [...]

}
}
voi d Set Tuni ngs(doubl e Kp, double Ki, double Kd)
{

[...1]

Ki

kd

Ki * Sanpl eTi nel nSec;
Kd / Sanpl eTi el nSec;

In our time triggered environment this method isn't applicable. If the call of the controller istoo irregular apossible
implementation like the suggested is to calculate the exact Ki value (asin line 14-15) in each loop based on the time
sincethelast call. But thisway isn't preferred - we should do anything to archive aregular call time.

3.4 Adjustable PID parametersduring runtime

One improvement mentioned in the previous Documentation isto adjust the control parameters on the fly. In our view
it is necessary to archive this to be able to find appropriate values for the ACD.

Thefirst ideawas to use an additional serial port on the STM 32 as control port. But this may cause timing issues and
adds unknown amount of complexity. An additional approach is to use some Hardware to change the parameters on the
fly. An other solution is to add a potentiometer and use the digitalized value to select a value from arange of possible
values. This approach is better controllable and fits better into the time triggered architecture with time slots. To gain
optimal flexibility we add three potentiometers to the microcontroller and assign them to each parameter. To get the
actual values a button is added which toggles between to system states: Running and Maintenance. The switch between
the two modes is done by switching two main loops. Thisis done by FreeRTOS Group. In the Maintenance Loop we
will print the actual PID Parameters to the control serial port.

3.4.1 Setup

The used STM 32 microcontroller board has an additional button for general purposes. This button islabeled as"B1
(USER)", has the color Blue on the Board and is available as PC13 on the STM 32 (see Pictures adjacent). The fina
implementation should toggle the mode between Running and Maintenance with each button press.

For the Running mode is characteristic that every task has to meet the time slot requirements. In the Maintenance mode
this constrain does not apply. Therefore the "slow" output of the parametersis only there possible.

Scaling is done by following formula (assuming R is the input value and P the parameter):

(PEnd — Pstart) - R
P(R) = —=~ — 4“‘” + Pstare

Thisisdonefor the P, | and D parameter.

35

w @ AIRBUS

DEFENCE & SPACE

For simplicity the start and end values are hardcoded - as improvement it could be done in maintenance mode through
command console.

3.4.2 Parameter tuning

To adapt the PID controller to the hardware system, the parameters used in the controller functions must be adapted to
the system. One way of doing thisisto add hardware to the system, which makes it possible to adjust the parameters
during runtime. For this purpose potentiometers were used (Picture 14 and Picture 15) which influence the parameters
Kp, Ki and Kd of the used control loop.

The potentiometers are connected as voltage divider. Each tap is connected to one analog input. The voltageis divided
intherange [0,..,3.3V]. After digitalizing the software sees the 12 bit representation [0,1,...,4096]. This valueis used to
scale the parameters in a defined range.

MBED
Enabled

Picture 11: NUCLEO STM32-L152RE Board with
USER Button marked

UsA

A0 PAO 4 26 PBO A3
At PAl 5 ::ﬁ? I‘B]!VREEE 27 SB6 — PBI
6 | pa2 PB2 |25 2 SB65 — AVDD 5885
7 . 55 3 D3 - Defaulf open
PA3/SAR_VREF+ PB3 SWO
AZ Ad - 56 4 D5
PA4 PB4
D13 A5 1 PAS PRS 57 5 D4
D12 Al 22 58 B& D10
o PAG PBG6
D11 AT 23 PAT BT 59 BT
o7 AR 41 PAR PBR [BR D15
D8 Al 42 PAQ 62 B9 D14
D2 AlD 43 PAID PB10/PES 29 B10/PE8 D6 F373:PE8 Ceramic capacitor (Low ESR, ESR<1ohm)
All 44 P 30 B11/PE9 C26_||__4.7uF F373.PES & F401/F411:VCAP1
PAlL PBII/VCAPI {3 1 I
AlZ__ 45 ; 33 SEH . —_ [Vi F373:SD_VREF+
T PAI2 PB12SD VREF+ [5 A AV -
Al3 4 PALS PHI3/PB14 34 F373.PB14 SH3T.—~ PB12
Ald 49 PALZ PRI4/PBIS 35 F373.:PB15 BT — PBI3 F3035i3
PAIS 50 PALS PBISPDR 36 F373:PD8 B26.— PR14 F305D12 VDD
A5 Co 8 PCO PCg 39 _8 F308011 .
AL Cl 9 40 -9 0
PC1 PC9
C2 10 51 ~10 4K
5 PC2 PC10 T
C3 11 52 11
] PO PCIL (5 o
] PC4 PC12 = &
(.; :7 PC5 PC13 = SE} | og ™
— T PCh PC14-0SC32 IN | - I
D9 ST = T 15]
— PC7 PC15- 0SC32_OUT 3 ——C15
MCU LQFP64 Bl 100nH
ABS25-32.76} USER (Blue)
|| R20
100

Picture 12: Schematic of B1

36

a2 @ AIRBUS

DEFENCE & SPACE

2
. 1~ﬂ X
e STM-ANALOG

GND

Picture 13: Connection of potentiometer

Picture 14:
Potentiometer for analog pin 0 to 2

37

a2 @ AIRBUS

DEFENCE & SPACE

N8 www.st.com/stm32nucleo!

Picture
15: Potentiometer connected to the system

3.4.3 Problems changing parametersduring run time

Using the basic code presented above and changing parameters during run time results in spikes in the output. Thisis
due the change of multiplier in calculation formula. For example changing the | parameter to half will cause the
errSum be halved.

Qutput = kp * error + ki * errSum+ kd * dErr;

To prevent this error the errSum should aready contain the scaled value.

| Term+= (ki * error);
Qutput = kp * error + I Term- kd * dlnput;

Now changing the | Parameter will slowly take effect and will not cause ajump in output.

3.5 Implementation

38

a2 @ AIRBUS

DEFENCE & SPACE

3.5.1 Read analog valuesfrom ADC

To be able to read analog values, the analog inputs must first be activated in the project. For this purpose, as shown in
Picture 16, in the STM32CubeM X project under the tab "Pinout" under "Peripherals',"ADC" the analog inputs have to
be activated, from which the readout should be possible. If it's done correctly, the selected pins should be marked as
green and pinned. In this case "INO", "IN1" and "IN4".

Iél---Px_eﬁpherals
2 ADC

..... INl

E Dizable v

----- IN3 Channel Speed | Dizable e

""" Oz Bl [Blue PushButton]

""" INg | Disable v RCC_0SC32_IN
""" ING Channel SDEEd Dizable o RCC OSC32 OUT

""" (] g RCC_0SC_IN
""" [N RCC_OSC_OUT

..... D IN20 ADC_INO

_____ [mei ADC_INI
USART_TX

5

LDZ [Green Led] [z

=
=
m
=
3
=
(]
=0
AT}
=3
=
il
3

PAG

--Conversion Trigger | Disable w
B

[+ & COMP2
[

£

ADC_ING [REES

USART_RX |

i 8 CRC
-9 DAC

Picture 16: Configure analoge pinouts

If this has been done, you can make some settings under the tab "Configuration” in the field "Analog" - "ADC", which
are needed for the readout procedure used here. Picture 17 and Picture 18 show the settings made.

39

T

@ AIRBUS

DEFENCE & SPACE

& ADC Configuration

Configure the below parameters :

ot

o Parameter Settings o/ User Constants /7 NVIC Settings /7 DMA Settings &/’ GPIO Settings

Search :| Search (CrH+F) w4k
=] ADC_Settings L

Clack Prescaler Asynchronous cock made divided by 1

Bank to use Bark A

Resolution ADC 12-bit resolution

Data Alignment Right alignment

Scan Mode Dizabled

Continuous Conversion Mode Disabled

Discontinuous Conversion Mode Disabled

DMA Continuous Requests Enabled

End Of Conwversion Selection End of sequence conversion

Low Power Auto Wait Dizabled

Low Power Auto Off Disabled 9

Restore Default

Apply Ok

Cancel

Picture 17: ADC-Configuration parameter setting

40

T

@ AIRBUS

DEFENCE & SPACE

@ ADC Configuration

cgf? Parameter Settings c{'} User Constants c{'} MVIC Settings ‘Qﬁ DMA Settings qg"} GPIO Settings

ot

DMA Request Channel

DMA1 Channel 1

Direction

Priority

DMA Request Settings

Mode | Circular w

Festore Default

Increment Address

Data Width

Add Delete
Peripheral Memory
L]
Half Word w Half Ward w
Apply Ok Cancel

Picture 18: ADC-Configuration DMA-Settings

A method readAnal ogPotis (Codeblock "Read analog values") was created to read out the analog values. This method
has a return value as a structure in which the three values are stored.
First, the respective ADC pin is selected alternately with afunction, followed by the readout of the available value and
writing into an array by means of HAL_ADC_Start_ DMA.

Read anal og val ues

[---]

poti Readi ngs_t readAnal ogPotis() {
poti Readi ngs_t returnVal ues;
short ADClconvertedVal ues[3];
Sel ect AdcO(hadc) ;

i f (HAL_ADC St art_DMA(&hadc, (short*)ADClconvertedVal ues,

returnVal ues. potil = 0;
returnVal ues. poti 2 = 0;
returnVal ues. poti 3 = 0;

}
Sel ect Adc1(hadc);

i f (HAL_ADC Start_DMA(&hadc, (short*)ADClconvertedVal ues,

returnVal ues. potil = 0;
returnVal ues. poti 2 0;
returnVal ues. poti 3 = 0;

3) 1= HAL_OK){

3) 1= HAL_OK){

41

w @ AIRBUS

DEFENCE & SPACE

Sel ect Adc4(hadc);

i f (HAL_ADC_St art _DMA(&hadc, (short*)ADClconvertedVal ues, 3) != HAL_OK){
returnVal ues. potil = O;
returnVal ues. poti2 = 0;
returnVal ues. poti 3 = 0;

}

returnVal ues. poti 1 = ADClconvert edVal ues[0];

returnVal ues. poti 2 ADClconvert edVal ues[1] ;

returnVal ues. poti 3 = ADClconvertedVal ues[2] ;

return returnVal ues;

Sel ect an anal og port

(-]
voi d Sel ect AdcO() {
ADC_Channel Conf TypeDef sConfi gO0;
sConfi g0. Channel = ADC_CHANNEL_O;
sConfig0. Rank = 1;
sConfi g0. Sanpl i ngTi ne = ADC_SAMPLETI ME_4CYCLES;
i f (HAL_ADC Confi gChannel (&adc, &sConfig0) != HAL_OK)
{
_Error_Handler(_FILE__, __LINE_);

}
}
(-]

3.5.2 Structural overview of final code

The codeis divided into three different main "regions" (each onein asinglefile). To help others to understand this
construct we will introduce every region shortly here:

* "pid_controller_interna": Thisfile contains the main logic of PID controller. The function "Compute(..)"
contains the part of code described earlier - but adjusted to match the requirements on the loop in this project.

® "pid_controller: Thisfileisthe "control and interface” file for the PID controller. Here are clamps cal cul ated,
analog values read and the underlying functions are called. If anyone needs a PID controller he could use these
two files and implement it in his design.

® "pid_wrapper.c": Thisfileisawrapper around pid_controller to meet special requirementsfor ACL 2.1. It
serves as swtiching layer between the communication with global variables and the concept of passing all
values used in the implemented PID controller. It isthe interface for the scheduler (the function "void
RunGlobal ()" reads and sets the global values) and to the message dispatcher.

3.5.3 Values Required and provided by PID controller

The controller needsin thisimplementation some values to work properly (valuesin [] are internal stored values and
not passed from outside):

® X - Acceleration (2 Bytes)

42

a2 @ AIRBUS

DEFENCE & SPACE

® Z - Acceleration (2 Bytes)

* Max - Engine value (2 Bytes)
® [current engine 1 (2 Bytes)]

® [current engine 2 (2 Bytes)]

As return values the controller provides:

* Enginel (2 Bytes)
® Engine 2 (2 Bytes)

3.6 Useful Links

® Used Board: NUCLEO-L152RE
® http://www.st.com/content/st_com/en/products/eval uation-tool §/product-eval uati on-toolsymcu-eval -tools
/stm32-mcu-eval-tool 'stm32-mcu-nucl eo/nucl eo-1152re.html
® Used Microcontroller: STM32-L152RE
® http://www.st.com/en/microcontrollers/stm321152re.html
¢ Basic datatypes on ARM processors
® http://www.keil.com/support/man/docs/armcc/armcc_chr1359125009502.htm

3.7 Sources

[Pont2001] : http://www.safetty.net/download/pont_pttes 2001. pdf

[Wikipedia] : https://en.wikipedia.org/wiki/PID_controller

Picture 1: https://en.wikipedia.org/wiki/Control_theory#/media/File:Feedback loop_with descriptions.svg, Last Visit:
18.12.17

Picture 3: https://de.wikipedia.org/wiki/Regler#/media/File:ldedler_P_Sprungantwort.svg, Last Visit: 18.12.17
Picture 4: https://de.wikipedia.org/wiki/Regler#/media/File:ldealer | Sprungantwort.svg, Last Visit: 18.12.17
Picture 5: https://de.wikipedia.org/wiki/Regler#/media/File:ldealer D_Sprungantwort.svg, Last Visit: 18.12.17

Picture 6: https://www.researchgate.net/figure/289531077_fig22_Figure-24-Step-Response-of-a-Proportional -Integral -
Derivative-PID-Controller, Last Visit: 18.12.17

Picture 7: http://brettbeauregard.com/blog/2011/04/improving-the-beginner%E2%80%99s-pid-derivative-kick/, Last
Visit: 18.12.17

Picture 8: http://brettbeauregard.com/blog/2011/04/improving-the-beginner%E2%80%99s-pid-derivative-kick/, Last
Visit: 18.12.17

Picture 9: http://brettbeauregard.com/blog/2011/04/improving-the-beginner%e2%80%99s-pid-reset-windup/, Last
Visit: 18.12.17

a2 @ AIRBUS

DEFENCE & SPACE

Picture 10: http://brettbeauregard.com/blog/2011/04/improving-the-begi nner%e2%80%99s-pid-reset-windup/, Last
Visit: 18.12.17

Picture 11: http://www.st.com/content/ccc/fragment/product_related/rpn_information/board_photo/9e/75/14/86/ee/4a
143/78/nucleo-Lx.jpg/files/nucleo-Lx.jpg/_jcr_content/transl ations/en.nucleo-Lx.jpg, Last Visit: 11.12.2017

Picture 12: http://www.st.com/resource/en/schematic_pack/nucleo_64pins_sch.zip, Last Visit: 11.12.2017

w @ AIRBUS

DEFENCE & SPACE

4 Driver for Arduino-compatible Microcontroller

In this section we describe the arduino drivers for the two motors " Crazyflie Nano Quadcopter", the attitude sensor
"MPU-6050" and the RS232 Driver.

4.1 Contents

¢ Contents
® Attitude Sensor MPU-6050
® Configuration
* |nterfacesfor Sensor Operation
® Usage
® Timeout
® Example Program for Reading Sensor Values
® Grove- 12C Motor Driver V1.3
® Re-engineering of existing Motor Driver
® [nterfacesfor Motor Operation
® Usage
® Timeout
* Mapping of the motor values
® Error Handling
® RS232 Driver
® Test of Serial Connection
® Sending data
® STM32L152 Nucleo-64
® RS232 Communication Protocol
® Testing the data transfer between Arduino and STM

4.2 Attitude Sensor M PU-6050

Authors; Christian Zdller, Eike Diekmann, Hermann Wafo

4.2.1 Configuration
We use the following registers of the 12C device as MPU-6050 Configuration.

Register 0x6B/107 — Power Management 1

Bits Name Description Configuration Justification

7 DEVICE_RESET When set to 1, this 1 1 to reset the sensor initially.
bit resets al internal

45

L

@ AIRBUS

DEFENCE & SPACE

Bits

6

5

3

2,10

Name

SLEEP

CYCLE

TEMP_DIS

CLKSEL[2:0]

Description Configuration

registersto their
default values.

When set to 1, this 0
bit puts the MPU-

60X 0 into sleep

mode.

When thisbit is set 0
toland SLEEPis
disabled, the MPU-
60X0 will cycle
between sleep mode
and waking up to
take asingle sample
of datafrom active
sensors at arate
determined by

LP_ WAKE_CTRL
(register 108).

When set to 1, this 1
bit disables the
temperature sensor.

3-bitunsignedvalue. 0
Specifies the clock
source of the device.

Register 0x1C/28 — Accelerometer Configuration

Bits

7

43

2,10

Name

XA_ST

YA_ST

ZA_ST

AFS SEL[L:
0]

Description

When set to 1, the X- Axis accelerometer performs
self test.

When set to 1, the Y- Axis accelerometer performs
self test.

When set to 1, the Z- Axis accelerometer performs
self test.

2-bit unsigned value. Selects the full scale range of
accelerometers.

Justification

0 since we want to receive sensor
data repetitively.

0 since we want to receive sensor
data repetitively and control the
timing on our own.

1 since we don't need the
temperature.

0 for "Internal 8MHz oscillator".

Configuration Justification

0 No self test.
0 No self test.
0 No self test.
Ofor £ 2g Not specified yet

46

r ©

AIRBUS

DEFENCE & SPACE

Register 0x1B/27 — Gyroscope Configuration

Bits

7

4,3

2,10

Name Description Configuration Justification

XG_ST Setting this bit causes the X axis gyroscopeto performself 0 No self test.
test.

YG_ST Setting this bit causesthe Y axis gyroscopeto performself 0 No self test.
test.

ZG ST Setting this bit causes the Z axis gyroscopeto performself 0 No self test.
test.

FS SEL[1: 2-bit unsigned value. Selects the full scale range of + 250 °/s Not

0] gyroscopes. specified yet

4.2.2 Interfacesfor Sensor Operation

Code

class SensorDriver {

private:

/~k

*/

public:

SensorDriver(12C & 2c, const uint8_t tinmeout);
/**

* initializes Sensor

*/

void init();

/**

* Get X-axis acceleration reading

* @eturn X-axis accel eration neasurenent in 16 bit 2's conpl enent fornat.
*/

int16_t getAccelerationX();

/**

* Get Y-axis acceleration reading

* @eturn Y-axis acceleration nmeasurenent in 16 bit 2's conplenent fornat.
*/

int16_t getAccel erationY();

/**

* Get Z-axis acceleration reading

* @eturn Z-axis acceleration neasurenent in 16 bit 2's conplenment fornat.
*/

int16_t getAccel erationZ();

| **

* Updat e sensordata.

47

w @ AIRBUS

DEFENCE & SPACE

*/
voi d update();

/**

* Get return status

* @eturn return status, 0 = success
*/

uint8_t getReturnStatus();

Usage

This classis optimized for using within a scheduler.

For instantiation there will be needed the 12C and a maximum time (timeout) thistask is allowed to get sensor data.
The scheduler first calls update() to get current sensor values.

After updating, sensor values can received by calling getAccelerationX() and/or getAccelerationY() and/or
getAccelerationZ().

Calling getReturnStatus() reveals whether there occured an error or not. O = no Error.

Timeout

The scheduler runs the sensor driver and is awaiting an answer within a certain time. If the sensor driver can't receive
an answer it must not block the software.

Therefore there is a Timeout. The Timeout is defined by the Scheduler and commited to the Sensor Driver Constructor.
If the defined time is over, the Sensor Driver stops the attempt receiving any further data.

If atimeout or an error occured can be read by calling the method getReturnStatus().

4.2.3 Example Program for Reading Sensor Values

To figure out which values are relevant to distinguish the direction of the tilt a simple program was created. It prints
the read acceleration values of X, Y, Z and converted valuesto angles.

Code

/ *Begi ni ng of Auto generated code by Atnel studio */
#i ncl ude <Ardui no. h>
/*End of auto generated code by Atnel studio */

#include "12C/12C. h"
#i ncl ude "SensorDriver/ SensorDriver.h"

/'l Declared in |2C Library globally
extern 12C | 2c;

SensorDriver sensorDriver = SensorDriver(l2c, 100);

voi d setup()

{
Seri al . begi n(115200);

}

48

w @ AIRBUS

DEFENCE & SPACE

voi d | oop()

{
Serial.print("Start");
sensorDriver. update();

int16_t accel X = sensorDriver. get Accel erationX();
Serial.print(" | X="); Serial.print(accel X);

int1l6_t accelY = sensorDriver.getAccel erationY();
Serial.print(" | Y ="); Serial.print(accelY);

intl16_t accel Z = sensorDriver.getAccel erationZ();
Serial.print(" | Z="); Serial.print(accel?);

intl6_t returnStatus = sensorDriver.getReturnStatus();
Serial.print(" | returnStatus = "); Serial.print(returnStatus);

Serial.print(" | Gad X

"); Serial.print((RAD_TO DEG * (atan2(-accelY, -accelz) + Pl))

-180);

Serial.print(" | Gad Y ="); Serial.print((RAD TO DEG * (atan2(-accel X, -accelzZ) + Pl))
-180);

Serial.print(" | Gad Z = "); Serial.println((RAD TO DEG * (atan2(-accelY, -accel X) + PI
)) -180);

del ay(200);
}
@ Example

This exampleislocated at acd/Arduino/examples/ExampleSensorData.

4.3 Grove-12C Motor Driver V1.3

Authors: Christian Zdller, Eike Diekmann, Hermann Wafo

4.3.1 Re-engineering of existing Motor Driver

Since the existing motor driver doesn't meet realtime systems requirements, it has been necessary to think about using
appropriate 12C library with functionalities that have got optimized for our purpose. The selected 12C library needsto
fit the structure and functionalities of the existing motor driver, so it brings us to the point of writing needed functions
within it. Then we rewrote the existing motor driver using fitted 12C library.

The resulting structure of the motor driver differsjust alittle bit from the existing one, but the most important
functionalities are well-covered.

4.3.2 Interfacesfor Motor Operation

class MdtorDriver {

49

w @ AIRBUS

DEFENCE & SPACE

private:
%0 %]
public:

Mot or Driver (1 2C & 2c, const uint32_t tineout);

voi d initMtors(void);

/1l Initialize 12C with an |2C address you set on Grove - |12C Mdtor Driver v1.3
/] default i2c address: O0xOf

voi d begi n(unsi gned char i2c_add);

/1 Set the direction of both notors

/1 _direction: BothC ockW se, BothAnti Cl ockW se

uint8_t direction(unsigned char _direction);

/| Sets speed for Mtors.

uint8_t setSpeed(uint8_t speedLeft, uint8_t speedRight);

/' Update speed of Mdtor with set speed

voi d update();

//get returnStatus: returns ErrorCode: 0 -> No Error, >0 Error
uint8_ t getReturnStatus();

/'l Set the frequence of PWMcycle length = 510, system clock = 16Miz)
/'l F_3921Hz is default

/1 _frequence: F_31372Hz, F_3921Hz, F_490Hz, F_122Hz, F_30Hz

uint8_t frequence(unsigned char _frequence);

/1 Stop nmotors

void stop();

Usage

This classis optimized for using within a scheduler.

For instantiation there will be needed the 12C and a maximum time (timeout) thistask is allowed to get sensor data.
The scheduler first calls update() to get current sensor values.

After updateing, sensor values can set by calling setSpeed(uint8_t speedL eft, uint8_t speedRight) where speedL eft and
speedRight is speciefied as the speed of correspondig motor (0-255).

Calling getReturnStatus() reveals whether an error occured or not. 0 = no Error.

Timeout

The scheduler runs the sensor driver and is awaiting an answer within a certain time. If the sensor driver can't receive
an answer it must not block the software.

Therefore there is atimeout. The timeout is defined by the scheduler and passed to the Motor Driver Constructor.

If the defined time is exceeded, the Motor Driver stops the attempt sending any further data.

If atimeout or an error occured it can be read by calling the method getReturnStatus().

4.3.3 Mapping of the motor values

The speed range of the two motors(Motor Crazyflie Nano Quadcopter) is the same 0 to 255. Both motors speeds can be
accessed from outside and setted directly using the speed function, that returns a status 0 when the function successful
completed without timeout occured. Statuses 1 to 7 are a so returned when waiting for completion/ACK/NACK while
adressing slave, sending/receiving data to/from slave. It's also possible to get other statuses 8 to OxFF which are well-
documented in the datasheet of the used 8-hit Mikrocontroller ATmega2560.

50

w @ AIRBUS

DEFENCE & SPACE

Asillustration, we can take alook at the following simple example for testing of the rewritten motor driver:

Exanpl e of setting notors speeds using the notor driver
#i ncl ude <Ardui no. h>

#i nclude "12C 1 2C. h"
#i ncl ude "MotorDriver/MtorDriver.h"

/Il Declared in |12C-Library globally
extern 12C | 2c;

Mot or Driver nmotorDriver = MdtorDriver(l2c, 200); // bind the scheduler tinmeout delay to
notor Dri ver instance

voi d setup()

{
Seri al . begi n(115200);
nmotorDriver.initMtors();
}
voi d | oop()
{

Serial .wite("Status returned by update function: ");

nmot or Dri ver. set Speed(63, 127); // map notor left with 25 percent duty cycle and notor right
with 50 percent duty cycle

uint8_t returnStatus = notorDriver.update(); // update notor |eft and right now, and |oad
the returned status to a local variable

Serial.println(returnStatus); // print for debugging this local variable to the serial
noni t or

del ay(1000);

@ Path for motor driver example code

A much more complete example is located at acd/Arduino/ExampleM otorDriver/ExampleM otorDriver
/ExampleM otorDriverData/ExampleM otorDriverData.cpp

4.3.4 Error Handling

To alow proper error handling there is a getReturnStatus() method in the SensorDriver and the MotorDriver as well.
Both return to following status codes:

Code Type Description

0 Success Function executed with no errors

1 Timeout = Waiting for successful completion of a Start bit

2 Timeout Waiting for ACK/NACK while addressing slave in transmit mode (M T)

51

w @ AIRBUS

DEFENCE & SPACE

Code Type Description

3 Timeout Waiting for ACK/NACK while sending data to the slave

4 Timeout Waiting for successful completion of a Repeated Start

5 Timeout Waiting for ACK/NACK while addressing slave in receiver mode (MR)
6 Timeout Waiting for ACK/NACK while receiving data from the slave

7 Timeout = Waiting for successful completion of the Stop bit

8-0xFF Other See datasheet of microcontroller for exact meaning

4.4 RS232 Driver

Authors: Sercan Catalkaya, Daniel Kunde

In this section of the project, you can find information about the Arduino Serial library and whether an interrupt is
required outside of the Serial .begin() and Serial.end() functions.

Arduino Serial library

The Seria library is used for communication between Arduino Board and FreeRTOS device with the interface RS-232.
https://www.arduino.cc/reference/en/language/f unctions/communication/serial/

These following functions are important for the RS-232 Driver:

Serial.begin(): Setsthe transmission rate in baud and opens the serial port.
https://www.arduino.cc/en/Serial/Begin

Serial.end(): Closethe seria port.

https.//www.arduino.cc/en/Serial/end

Serial.setTimout(time): Set the maximum wait time for serial data before the connection closed.
https://www.arduino.cc/en/Serial/SetTimeout

Serial.read(): Reads received serial data.

https.//www.arduino.cc/en/Serial /read

Serial.print(): Prints ASCII text to serial port.

https://www.arduino.cc/en/Serial/print

Interrupts:

We presume that there will be no additional interrupts used outside of the Serial.begin() and Serial.end() functions.

52

w @ AIRBUS

DEFENCE & SPACE

https://www.aulis.hs-bremen.de/goto.php?arget=file 853355 download& client_id=hsbremen

4.4.1 Test of Serial Connection

RS-232 was tested via USB and the Serial1 interface on ports RX1 and TX 1. Both were tested with baudrate 9600
using the following c-code:

Seri al Test

voi d setup() {
Seri al 1. begi n(9600) ;
Seri al . begi n(9600) ;
}

void loop() {
Seriall.println("Hello");
Serial.println("Hello");
del ay(200);

Sending data

To test the communication between the Arduino ATmega2560 and the computer, we first had to connect them using
the RS232 cable.

Using the INCT_PC03 computer, we failed to receive any meaningful data from the Arduino. We used the L ogicPort
USB Logic Anayzer to verify the cause for thisissue.

We tested the connection between the Arduino-LogicPort and the PC-LogicPort. In the first step we tested the PC-
LogicPort connection. So we connected the RS232 interface of the PC with the LogicPort.

We used Putty to send data from the PC to the LogicPort and we were able to receive the datain Keil Uvision.

To test the Arduino-LogicPort conenction we connected the cables of the LogicPort with the pin 18 (Tx1) and pin 19
(Rx1) of the Arduino. The Serial Test scetch above was running on the Arduino during this test.

The Keil Uvision settings were not changed for the Arduino-LogicPort and it was not possible to receive any
meaningful data.

Thereason for thisis, that the PC is using negative logic and the Arduino is using positive logic.

After adjusting the settings in Keil Uvison for the RS232 interpreter, by changing it to positive logic, we were able to
receive the data from the Serail Test scetch. We reported our findings to the STM microntroller group, so that they
could verify which logic their microcontroller uses.

4.4.2 STM32L 152 Nucleo-64

Author: Kai Nortmann, Arthur Guz

53

w @ AIRBUS

DEFENCE & SPACE

To establish a communication between the STM 32 and the Arduino board, a serial RS232 connection will be used.

To verify, how the STM 32 communicates over RS232, we tested the serial connection with the LOGICPORT logic
analyzer. This was necessary to make sure, that the communication between the two boards will work without any
inverter. We set up the STM 32 with following parameters:

huart1. | nstance = USART1; // use USART1, which neans TxD=PalO and RxD=Pa9
huart1.1nit.BaudRate = 9600;

huart1.1nit.WrdLength = UART_WORDLENGTH 8B;

huartl.lnit.StopBits = UART_STOPBI TS 1;

huartl.lnit.Parity = UART_PARI TY_NONE;

huart1.1nit. Mode = UART_MODE_TX_RX;

huart1.Init. HwFl owCt | = UART_HWCONTROL_NONE;

huart1.1nit.OverSanpling = UART_OVERSAMPLI NG_16;

The result of the test was, that the STM 32 microcontroller communicates the same way as the Arduino board does.
This means, that the boards can communicate with each other without any further inverter hardware needed.

4.4.3 RS232 Communication Protocol
Authors: Daniel Kunde, Sercan Catalkaya

After confirming that both microcontroller use positive logic, we developed the driver for the RS232 interface. The
driver provides a function to open the serial connection with 115200 Baud, a function to send and receive data and
another function to close the connection.

RS232Dr i ver
#i ncl ude <Ardui no. h>
uint8_t message;

voi d RS232_serial _init(){
Serial 1. begi n(115200);
}

voi d RS232_sendMessage(ui nt8_t nmessage){
Serial 1. wite(nmessage);

}

voi d RS232_readByte(){
message = Serial 1.read();

}

voi d RS232_endSeri al () {
Serial 1. end();
}

uint8_t RS232_get Message(){
return message;

}

w @ AIRBUS

DEFENCE & SPACE

Das Protokoll speichert die empfangenen daten in einem array, sodass der message dispatcher sie abholen kann. Die
festgelete groRe der empfangs und send arrays wurde mit den entsprechenden gruppen abgesprochen und betragt 5.

Our protocol stores the received data from the STM microcontroller in an array. The message dispatcher gets the data
from these arrays. The required sizes of the dataReceive and sendData arrays were discussed with the other groups and
setto 5.

RS232Pr ot ocol

/* RS232 Protocol

*

* author: Sercan Catal kaya, Dani el Kunde

*

*/
#i ncl ude "RS232_driver.h"

#defi ne nRecei veBytes 5
#defi ne nSendBytes 5

uint8_t dat aRecei ve[nRecei veByt es] ;
uint8_t sendDat a[nSendByt es] ;

/'l Receive Data from STM and save then to array variabl e dataRecei ve
voi d recei veDat aFr onSTM) {
int count=0;
whi |l e(Serial.available() > 0){
RS232_readByte();
dat aRecei ve[count] = RS232_get Message();
count ++;

/'l send data to STM
voi d sendDat aToSTM) {
for(int i=0; i<sizeof(sendData);i++){
RS232_sendMessage(sendData[i]);

/] Getter method for the received bytes
uint8_t * getReceiveBytes(){
return dataRecei ve;

/1 Setter - Wich Bytes to send
voi d set SendData(uint8_t * dataToSend){
for(int i = 0; i<sizeof(dataToSend);i++){
sendDat a[i] =dat aToSend[i];

55

w @ AIRBUS

DEFENCE & SPACE

Testing the data transfer between Arduinoand STM

We connected the Arduino and STM microcontroller using an RS232 cable and tested our protocols. The
communication between both microcontrollers worked out and we were able to receive and send data

Appendix

LOGICPORT project file

56

w @ AIRBUS

DEFENCE & SPACE

5Hardware

Authors: Tim Niebuhr, Andre Sarich

5.1 Contents

®* Qverview
® Hardware components
® STM NUCLEO-32L152RE
® Microcontroller
* Motor driver
® Motors
® Attitude sensor

57

T

@ AIRBUS

DEFENCE & SPACE

5.2 Overview

58

@ AIRBUS

DEFENCE & SPACE

PC

Moaotor left side

STM32L152RE

USB (RS-232)

Power
(via usb)

TTL Serial (RS-232)

Microcontroller

I>C

Power
(via external
power adapter)

L —

Motor driver

e Attitude sensor

Motor right side

59

@ AIRBUS

DEFENCE & SPACE

5.3.1 STM NUCLEO-32L 152RE

60

w @ AIRBUS

DEFENCE & SPACE

Name: STM NUCLEO-32L152RE

Data sheet: http://www.st.com/content/ccc/resource/technical/document/user_manual/98/2e/fal4b/e0/82/43/b7
/DM 00105823.pdf/filess DM 00105823.pdf/jcr:content/transl ations/en.DM 00105823. pdf

Connector layout shown in data sheet at page 34.

A table with connectors and Pinsis shown at page 50.

5.3.2 Microcontroller

Name: Arduino mega 2560

Data sheet: http://www.robotshop.com/media/files/PDF/ArduinoM ega2560D atasheet. pdf

5.3.3 Motor driver

Name: Grove 12C Motor Driver V1.3

Data sheet: http://wiki.seeed.cc/Grove-12C_Motor_Driver V1.3/

5.3.4 Specifications

Item Min Typical Max Unit
Working 6 - 15 VDC
Voltage

Max Output 05 A
Current per

channel

Maximum 10 A

Total current

I nput/output 5 \Y,
voltageon 12C
bus
Communication 12C /
protocol

5.3.5 Features

® Grove Compatible

61

w @ AIRBUS

DEFENCE & SPACE

® |2C Interface Grove- |2C Motor Driver V1.3
* Adjustable motor speed and rotation direction
® Changeable slave address by hardware

5.3.6 Motors
Name: DC Motor Crazyflie Nano Quadcopter
Data sheet: http://www.watterott.com/de/Crazyflie-Nano-Quadcopter-6x15-mm-spare-motor-BC-CM-01-A

There are two equal motors (one left and one right on the rotating beam). Both are controlled by the Motor driver
Grove 12C Motor Driver V1.3,

5.3.7 2x Motor Crazyflie Nano Quadcopter with each 1 x Propeller

Spare 6x15 mm DC coreless motor for the Spare counter rotating propellers for the
Descri pti on Crazyflie Nano Quadcopter Crazyflie Nano Quadcopter
ifi) ® Diameter: 6 mm ® Size: 45mm
Specifications e Length: 15mm
* Shaft length: 3.5 mm ® Fitsshaft: 0.8 mm
® Shaft diameter: 0.8 mm
* Weight: 1.7 g

® Kv: 12000 rpm/V

* Rated voltage: 4.2V

® Rated current: 810 mA
* Wirelength: 67 mm

5.3.8 Attitude sensor
Name: Invensense MPU-6050
Data sheet: https.//www.invensense.com/wp-content/uploads/2015/02/M PU-6000-Datasheet 1. pdf

Register Map and Descriptions: https://www.invensense.com/wp-content/upl oads/2015/02/M PU-6000-Register-Map1.
pdf

62

@ AIRBUS

DEFENCE & SPACE

6 IDE for Arduino - Atmd Studio 7.0

Authors. Daniel Kunde, Sercan Catalkaya

6.1 Contents

Contents
Requirements
Installation Atmel Studio 7.0
® |nstallation: Arduino IDE
® Configuration: Atmel Studio
® Configuring an external tool in Atmel Studio 7 for the Arduino Mega 2560:
® Creating and testing a sketch with Atmel Studio on Arduino Mega 2560
Sources

For thelnstallation on Labor PC

We need the IDE on 5 lab. computers. PC number inct_01-05
Usage of Atmel Studio in our project environment

There should be anew VM named "winl0_projekt" on your Linux-Desktop which has the Atmel Studio IDE
installed.

The username for the VM is stud and the password should be known.

If you need to transfer data between the VM and Linux computer, there is a shared folder that you can use:
/home/stud/Win_Linux_Share

If you need to use a USB device within the project environment, you have to use the VM option "Geréte
USB" and select your USB device.

About Atméd Studio 7

http://www.atmel.com/microsite/atmel -studio/

6.2 Requirements

Before installing Atmel Studio 7.0 check, if you meet the follow minimal system requirements. [Atmel Studio 2017]

Supported Operating Systems

63

w @ AIRBUS

DEFENCE & SPACE

® Windows 7, Service Pack 1

* Windows 8/8.1

* Windows 10

® Windows Server 2008 R2 Service Pack 1 or higher

* Windows Server 2012 and Windows Server 2012 R2

Supported Architectures

* 32-Bit (x86)
* 64-Bit (x64)

Hardware Requirements

® 1.6 GHz or faster processor
* RAM:

* 1GB RAM for x86

® 2GB RAM for x64

® Anadditiona 512 MB RAM if running in a Virtual Machine
® 6 GB of available hard disk space

The Arduino IDE needs to beinstalled as well, if we want to be able to use their librariesin Atmel Studio.

6.3 Installation Atmel Studio 7.0

Download the newest version of Atmel Studio 7 from the official website. In our example we use Atmel Studio 7.0.
After the download, open the .exe file and follow the installation guide.

@ AIRBUS

DEFENCE & SPACE

Atmel Studio

Atmel Studio 7.0 @ Read and agreeto the licenseterms.

You must agree the license terms and conditions before you can
install Atmel Studio 7.0.

ATMEL STUDIO -

END USER LICENSE AGEEEMENT I

IT IS IMBCRTANT THAT YOU REARD THIS AGREEMENT
CAREFULLY AND COMPLETELY. This End User License
Agreement {"Rgresment™) is a legally Dbinding
agreement betws=en, on cne hand, either your employer
{if you are acting on behalf of your employer) or
you (if wou are acting on your own behalf)
{"Licensee™), and on the ather hand, Atmel
Corporaticn ("Atmel™). By clicking the "I Accept"™
kutton on this page or by downloading, installing or
uzing any of the scftware available for download on
this page ("Licensed Software"), you are indicating ~

| agree to the license terms and conditions.

CA\Program Files (xB86)\AtmelStudic, ‘

[send anonymous information to help improve the user experience.

Atmel Studio

Atmel Studio 7.0 @ With the next step you can select
the ar chitecture which Atmel Studio

Select Architecture

will use. There arethree options.

AVR 8-bit MCU For our case we usethe Arduino

Mega 2560 which is an 8-bit microcontroller.

AVR 32-bit MCU So we have the option to only select

“AVR 8-bit MCU” .[Arduino 2017]
SMART ARM MCU

65

a2 @ AIRBUS

DEFENCE & SPACE

Atmel Studio
Atmel Studio 7.0 @ [Optional] If you want the Atmel Software
frameworks and example Project, then
Selact extensions choose
Atmel Software Framework and this option. The Atmel Softwar e framework

Example PrOJeCtS contains a softwarelibrary and embedded

software. [ASR 2017]

Atmel Studio

Atmel Studio 7.0 @ Atmel Studiowill check your system

validation. All pointsin thistable must be
System validation

I At

Installer Or WindowsUpdate Running
Operating System Version
Windows Update

AN N NN

Running applications

66

a2 @ AIRBUS

DEFENCE & SPACE

Atmel Studio

Atmel Studio 7.0 @ Install Atme Studio by clicking on install.

Important notes

Device Header File Versions
Some of the device headers are updated. To install different versions, use

the Device Pack Manager in the Tools menu. To set a version for a project,
apen the Companents tab in the project properties.

m m cance'

67

@ AIRBUS

! DEFENCE & SPACE

=] Windows-Sicherheit x

Mochten Sie diese Gerdtesoftware installieren?

Mame: Microchip Technolegy, Inc.,
Herausgeber: Microchip Technology Inc.

Installieren I Micht installieren

Software von "Microchip Technology Inc.” immer
vertrauen

[Sie sollten nur Treibersoftware von vertrauenswiirdigen Herausgebern installieren. Wie kann festgestellt
werden, welche Gerdtesoftware bedenkenlos installiert werden kann?

=] Windows-Sicherheit

Mdchten Sie diese Gerdtesoftware installieren?

Mame: Atmel Corporation
Herausgeber: Atrmel Morway

Installieren Micht installieren

Software von "Atrmel Morway" immer vertrauen

[Sie sollten nur Treibersoftware von vertrauenswiirdigen Herausgebern installieren. Wie kann
festgestellt werden, welche Gerdtesoftware bedenkenlos installiert werden kann?

68

w @ AIRBUS

DEFENCE & SPACE

Atmel Studic - X

Atmel Studio 7.0 @ Ccomplete! Theingtallation isfinished.

Installation complete

Thank you for choosing Atmel Studio 7.0

Launch Atmel Studio 7.0

6.3.1 Installation: Arduino IDE

There are two waysto install the Arduino IDE on Windows. One way is afull installation with an installer and the
other isazip file, which doesn’t require admin rights. For our project, we use the zip file, version 1.8.5. Download the
file from the official Arduino website with the following link:

https.//www.arduino.cc/en/main/software

After you downloaded the zip file, extract the file in adirectory of your choice.

6.3.2 Configuration: Atmel Studio

Atmel Studio provides an option to create a project from an Arduino sketch file. It is necessary to create a sketch filein
Arduino, which will be used as the basis by Atmel Studio for the created project.

Creating a Project in Atmel Studio 7 for the Arduino Mega 2560

1. Click on “File -> New -> Project” or alternatively use the shortcut Ctrl+Shift+N

2. Make surethat you are on the tab “Install” and the selected language is C/C++ and click on “ Create project
from Arduino sketch”

3. Name your project and choose the location, confirm with “ OK”

4. Select the path to the Arduino sketch file

69

w @ AIRBUS

DEFENCE & SPACE

5. Select the Arduino IDE path

6. Choose the board type “ Arduino/Genuino Mega or Mega 2560”
7. Select the device “ ATmega2560 (Mega 2560)”

To be able to upload the project file to the Arduino Mega 2560 microcontroller, you will have to configure an external

tool in Atmel Studio. But first, you will need to make sure that the “ Advanced Mode” is enabled in the IDE. The
option for that isin the top right corner of the IDE.

| Advanced Mode] W1 | Quick Launch [Ctrl+ Q) P o B x

Itisalso necessary to know which COM port is being used by the Arduino board. Y ou can look it up by opening the

Device Manager in Windows and then opening the tab "Ports’. After plugging in the Arduino board into an USB port
of the computer, the device and used COM port should show up.

-
A Computer Management

] oL VN N BV = 1
File Action Miew Help
+=| 2 HBE &
$ Computer Management {Local | a = destroyer Actions
Pl [f‘!; System Tools - {8 Computer Device Manager -
> @ Task Scheduler >y Disk drives
> @ Event Viewer - B Display adapters More Actions
> | Shared Folders » oy DVD/CD-ROM drives
» #% Local Users and Groups > ‘,’9:3 Human Interface Devices
> IZ?EIZ\ Performance - 25 Imaging devices
«=n Device Manager > - Jungo Connectivity
4 5 Storage > 2 Keyboards
=¥ Disk Management 3 jﬂ Mice and other pointing devices
» T Services and Applications - B Monitors

- ¥ Network adapters

2 77 Ports (COM & LPT)
‘?’ Arduine Mega 2560 (COM3)

TF Communications Port (COMI)

75" ECP Printer Port (LPT1)

- |2 Processors

- % Sound, video and game controllers

- & Storage controllers

- M| System devices

> - § Universal Serial Bus controllers

[DeviceMa 2017]

Configuring an external tool in Atmel Studio 7 for the Arduino M ega 2560:

1. Click on “Tools-> External Tools...”

2. Click on“Add” and name the title “ Arduino Mega 2560” (Y ou may choose the as you will)

3. Provide the path to the avrdude.exe in the “ Command:” text box. It isusually located in C:\Program Files (x86)
\Arduino\hardware\tool s\avr\bin\avrdude.exe

4. Putinthe following parameters and valuesin the “ Arguments.” text box: [Arduino on Atmel 2017]

70

w @ AIRBUS

DEFENCE & SPACE

Arguments Discription

-C Path_to_avrdude.conf — a path to avrdude.conf, you can find this filein Arduino IDE’sinstallation
directory. Ensure you enter the path in quotes in case there are any spacesin your path.

-p part number — AVR processor model

-C programmer type — programmer type being used to program the board

-P port — COM port you should have noted in stage 2

-b baud rate — baud rate for the programmer

-D disables auto erase for flash memory (required for wiring programmer used with Arduino Mega 2560)
-U <memorytype>:<operation>:<path to HEX file>:<format> — thisis where you should leverage Atmel

Studio’ s variables to always point to freshly complied and generated HEX file. List of variables and
their descriptions can be found at Atmel’ s help page.

In our case, theinput for the “ Arguments’ text box looks like this:

. Depending on where the Arduino IDE has been installed, the path to the avrdude.conf might differ.

@ -C"C:\Program Files (x86)\Arduino\hardware\tool s\avr\etc\avrdude.conf" -patmega2560 -cwiring -P\.
\COM3 -b115200 -D -Uflash:w:"$(ProjectDir)Debug\$(TargetName).hex":i

5. Leavethe “Initial directory” text box blank and deselect the checkbox options below

6. To save the configuration click on apply and close the window by clicking on OK

71

w @ AIRBUS

DEFENCE & SPACE

External Tools ? >

Menu contents:

Arduino Mega 2560 Add
Delete
Move Up

Mowve Down

Title: | Arduino Mega 2560 |

Command: | C:\Users‘uSva-rcanKDesktDp\arduinu:uJ.E.S‘\hardwar|

Arguments: | -C"C:\Users\Sercan\Desktop\arduinu:u-1.S.ﬁ\hard|]

Initial directory: | | »

[JUse Output window [] Prompt for arguments

Treat output as Unicode [] Close on exit

Now you are able to upload your project to the Arduino Mega 2560 board by clicking on it on the tab “Tools ->
Arduino Mega 2560"

Creating and testing a sketch with Atmel Studio on Arduino Mega 2560

The communication and upload between Arduino and Atmel Studio should be tested. Wetest it with asimple LED
sketch. The Arduino contains a LED on board and can selected by pinnumber 13. This LED should blink for aduration
of 1 seclow and high.

Here is the example sketch:

Bl i nk Sketch
const int ledPin = 13;

void setup() {
pi nMode(| edPi n, OUTPUT);
}

voi d loop() {
digitalWite(ledPin, H GH);
del ay(1000); //ns
digital Wite(ledPin, LOWN;
del ay(1000); //ns

To test this sketch in Atmel Studio do the following steps:

72

w @ AIRBUS

DEFENCE & SPACE

® Create anew sketch filein Arduino IDE and copy the example sketch text in our new sketch file.

® Then create anew project in Atmel Studio based on the description “ Creating a Project in Atmel Studio 7 for
the Arduino Mega 2560" and select the new sketch file.

® Compileyour project by selecting build -> build solution or aternatively press F7

® Program the Arduino board by selecting tools -> Arduino Mega 2560

6.4 Sour ces

[Arduino 2017]:

Datasheet Arduino:

http://web.archive.org/web/20170711121845/http://www.atmel .com/Images/Atmel -2549-8-hit-AV R-Microcontrol ler-
ATmegab40-1280-1281-2560-2561_datasheet. pdf

[Atmel 2017]:

http://www.atmel.com/tool s/atmel studio.aspx

[ASR 2017]:

http://www.atmel .com/tool §/avrsoftwareframework.aspx

[Arduino on Atmel 2017]
https://dlightlyovercomplicated.com/2015/11/13/programming-ardui no-with-atmel -studio-7/
[DeviceMa 2017]

https://dightlyovercomplicated.files.wordpress.com/2015/11/device_manager_com3.png

73

w @ AIRBUS

DEFENCE & SPACE

7 Time-Triggered, co-oper ative scheduling

Authors: Tim Niebuhr, Andre Sarich

7.1 Contents

® |ntroduction
¢ Co-operative scheduling
® Scheduling in multiprocessor systems
® Clock synchronisation
¢ Datatransfer
® Error handling
® Project code

7.2 Introduction

7.2.1 Co-oper ative scheduling

We will be using co-operative scheduling, which means, that each process called by the sceduler will work
uninterrupted until it finishes. This causes the scheduler to run processes sequentially, only one at atime. This
contrasts the method of preemptive scheduling, which allows processes to be interrupted in favor of higher-priority
ones.

We prefer co-operative scheduling, since we want the system to work under real-time conditions. The validaion of
these is made possible by co-operative scheduling. The main concern is the length of the processes: Every process
needs to fulfill its real-time conditions, so that the CPU can handle other processesin time. For this purposeit is
advantageous for every process to not use up too much time.

Extensive explanation of cooperative scheduling: http://www.safetty.net/download/pont_pttes 2001.pdf (p. 246f)

Example code of cooperative scheduling with function pointers: http://www.safetty.net/download/pont_pttes 2001.pdf
(p. 256ff)

Example code of splitting tasks into simpler subtasks: http://www.safetty.net/download/pont_pttes 2001.pdf (p. 316ff)

7.2.2 Scheduling in multiprocessor systems

Clock synchronisation

We will be using co-operative scheduling on both the Arduino and the STM 32. Since we have two processors, we heed
to synchronize them. That can be done by clock synchronisation. First we designate a"master”, which sets a clock for

74

w @ AIRBUS

DEFENCE & SPACE

the "dlave" to use. (In our case the STM Board takes the role of the master, while the Arduino board isthe slave.) The
master will send periodic tick-messages, dictated by its own clock, to the lave, which uses these ticks in place of its
clock.

Drafted solutions for Clock Synchronisation: http://www.safetty.net/download/pont_pttes 2001.pdf (p. 555ff)

Data transfer

Any potential datathat needs to be transmitted from master to slave will be contained in the tick message, which is sent
by the message dispatcher. Likewise, the dave responds to the tick-message with an acknowledge-message which
contains data that needs to be transmitted back to the master.

Drafted solutions for Data Transfer: http://www.safetty.net/download/pont_pttes 2001.pdf (p. 583ff)

Error handling

We need error handling in case the connection between master and slave is cut or malfunctions otherwise. By
measuring the time between two tick messages, the slave can detect when the ticks don't arrive in the desired
timeframe. If that happens, the slave may react accordingly by going into a safe state, in our case by stopping the
motors.

The master does error handling in case an acknowledge message is missing. It first stops sending tick messages (thus
putting the dlave into a safe state), then adresses the error by either shutting down; restarting the network by restarting
itself; or engaging a backup slave.

Drafted solutions for Error Handling: http://www.safetty.net/downl oad/pont_pttes 2001.pdf (p. 596ff)

75

AIRBUS

DEFENCE & SPACE

Project code

=
-1 KNk

[t
[T e

[TSR

-1 m

T PR 7 T TR P PRI P TR TR SR U SR SR O SR R
LI . A T Y S X R S R Y

[

[T ST TS
= R T

s
o

50

-
[TSI R

1M

")

/* data structure for Scheduler: */
f* “f

/* Type for Indices of the arrays with the Tasks: */
typedef unsigned char taskRange t;

/* management information for a Task: */
Eltypedef struct {
/* pointer on the task Function: */
const woid (* task) (void);
= f* Timer-Ticks to repeatly execute the Task.
L *f
delay_t period;
= /* Timer-Ticks to current execute the Task:
0: Task doesn't execute.
1: Task execute on the next Timer-Tick.
»1: Task execute on number of Timer-Ticks.
L *f
delay_t delay’
-} taskInfoElem t;

f* array withe the management information.*/

Estatic taskInfoElem t taskInfo[] = {
= Ve

* task, period, delay
I *f
{NULL, 1, 2 1.
{NULL, 1 2 1.
{NULL, 1 1 1.
{NULL, 1, 1 1.
{NULL, 1, 1 1.
{NULL, 1 1.
{NULL, 0y 0 }

=}

/f/ Task calls

wold callTask(ArduinoSlaveMassageDispatcher messageDispatcher, int index)

{

E switch(index) {

case
messageDispatcher.DataReceive () ;
break;

case
messageDispatcher.getMotorDriver () ;
break;

case
messageDispatcher.getSensorDriver () ;
break;

case
messageDispatcher.DataSend() ;
break;

case <:
messageDispatcher.Send() ;
break;

case o:
messageDispatcher.Receive () ;
break;

/* the Scheduler: */

[Flwoid SchedulerArduino (ArduinoSlaveMassageDispatcher &messageDispatcher) {

taskRange t index;

(1] = while (messageDispatcher.getmtick()== 1} { ff Timer Tick = 1, execute scheduler.
1 = for (index=0; index<=¢; index++) { // gone through the Array.

82 = if (taskInfo[index].delay) {
3 = if (--({taskInfo[index].delay) == 0} { ff delay -1, delay = 0 execute task.
4 callTask(messageDispatcher, index); // command for execute the task.
5 taskInfo[index] .delay = taskInfo[index] .period; ff £ill delay time with periode time.
6 }

}
}
& }
=11 }
Sources:

76

a2 @ AIRBUS

DEFENCE & SPACE

http://www.safetty .net/download/pont_pttes 2001.pdf, Chapter 14-16, 25-27
https.//www.safetty.net/download/pont_eres?2 2016 _extract.pdf, Chapter 2, 9, 12

Code examples can be found at https://www.safetty.net/publications/the-engineering-of -reliable-embedded-sy stems-
second-edition/ttrds

77

w @ AIRBUS

DEFENCE & SPACE

8 Conclusions at the End of Winter Term 2017/18

Author: Prof. Dr. Jan Bredereke
This project achieved its main goals. However, due to lack of time, we could not complete the actual implementation.
The main teaching goal for the students was:

* How to construct a hard real-time and distributed embedded system by using a distributed time-triggered
architecture.

The main goals of the project organizers were:

® Togain practical experience with the real-time operating system FreeRTOS, and
® togain practical experience with the micro-controller STM 32

for atime-triggered architecture.

A secondary goal of the project organizers was:
® To gain experience on how to use Custom Off-The Shelf Driversin atime-triggered architecture.

We summarize our experiences with regard to these aspects in the following subsections. Furthermore, we describe
what is still missing, and what is necessary to complete the implementation.

8.1 Using FreeRTOSfor a Time-Triggered Architecture

The open-source real-time operating system FreeRTOS turned out to be well suited for use in atime-triggered
architecture. Its documentation firstly describes a use in an event-triggered architecture. But the concepts and features
necessary for atime-triggered architecture are provided and documented as well.

Concerning the documentation support for time-triggered versus event-triggered systems, FreeRTOS exeeds the
commercial real-time operating system QNX. We investigated QNX in last year's project [Bre+17]. There, it turned out
that designing atime-triggered architecture with QNX appears to be very well feasible. But you have to know well the
concepts you want to apply. Otherwise, the QNX documentation can be misleading easily.

Thetool chain worked well for us. We used the System Workbench for STM32. It is afree, multi-OS software
development environment based on Eclipse. Furthermore, we used the graphical configuration tool STM32CubeMX. It
isavailable without cost for all major desktop operating systems. It provided considerable help to configure a software
project for our microcontroller board.

8.2Usingan STM 32 for a Time-Triggered Architecture

Using a microcontroller requires a suitable Board Support Package (BSP) containing the nessary drivers and interface
line definitions. The BSP is necessary for accessing and making use of all the hardware components of the
microcontroller.

78

w @ AIRBUS

DEFENCE & SPACE

In the current project, this went entirely smooth for the STM32 microcontroller with the FreeRTOS operating system.
There was a current and mature BSP available.

This was a better experience than in last year's project [Bre+17]. There, we attempted to use Airbus's e.Cube computer
which is suitable for space. We did this with QNX. However, it turned out that the most current BSP by the board
manufacturer was for QNX version 6.4.1, while at that time QNX already was at version 6.6.0. There did not appear to
be hope for a more current BSP by the manufacturer. We therefore switched from the e.Cube to a Beagle Bone Black
microcontroller. But the BSP for the BeagleBone Black did not have the quality we expected, either.

8.3 Using Custom Off-The Shelf Driversin a Time-Trigger ed
Architecture

In the project of the previous year [Bre+17], we found that often it is not possible to use a Custom Off-The-Shelf
(COTS) driver in atime-triggered architecture. All the COTS driver libraries we wanted to use then were based on
interrupts. Therefore they were based on the event-triggered paradigm. This kind of interrupts does not integrate into
the scheduling scheme of atime-triggered system. Furthermore, the time-triggered, cooperative approach demands that
each task must yield the processor after aafixed and, in particular, after a short period of time. If necessary, the task
must be organized such that it continuesits work in the next time slot. None of the COTS drivers used was designed in
thisway. This required us to redesign them from scratch.

While preparing for the current project, we specifically looked for COTS drivers providing a mode of operation based
on timeouts instead on interrupts. And indeed, we found suitable low-level driversfor al relevant interfaces. We had to
rewrite the high-level drivers which are using these low-level drivers. But this was no problem because of the
simplicity of the functionality of the high-level drivers used here.

To summarize, we were able to solve the problem of COTS drivers suitable for atime-triggered architecture by
looking early in the project for such drivers.

8.4 Incomplete Implementation of the Angle Control
Demonstrator

The students did not compl ete the implementation of the Angle Control Demonstrator. The main reason for this
concerned the self-organization while working on the project. The work in small groups mostly went well. But the
definition and the communication of the interfaces went less well. Similarly, the students learned that they should have
felt more responsible for planning and testing the integration of the system.

The teacher took the risk for this deliberately. He could have provided more guidance, but this would have prevented
the students from making their own, valuable experience.

79

w @ AIRBUS

DEFENCE & SPACE

8.5 Outlook

This project report contains awealth of information about the individual components. Therefore, the next steps are not
about finding suitable components or about writing entirely new code. Instead, the components need to be fitted
together in the right way. In order to continue work on the Angle Control Demonstrator, first one will need:

® precise specifications of the interfaces between the components, suitable for the time-triggered paradigm

® aplan on how to validate that the components meet their specifications, including at least a rough estimate of
their temporal properties

® aplan on how to integrate the components, and on how to validate that the integrated system meetsits
reguirements

® aprocessto ensure that the plans make progress as intended, in order to enable corrective measures where
necessary

After all of this has been established, the (mostly) existing code can be re-cast into the new casting moulds of the now
matching interfaces.

8.6 References

[Bre+17] Jan Bredereke, Julian Greilich, Benjamin Hesseln, Jan Lehrke, Nils Mller, Jonas Pufahl, Jens Sager, Markus
Salomon, Benjamin Schéfer, Tobias Schmitz, Maximilian Schonenberg, Nikolas Schreck, Peter Tschubij, Mirco
Wittrien, and Rico Thiele (Feb. 2017): A Time-Triggered Architecture For an Attitude Control System With Space
Technology. http://homepages.hs-bremen.de/~jbredereke/downl oads/wp_embeds-projektbericht-time-triggered-2017.
pdf (last visited 2 Mar. 2018).

80

w @ AIRBUS

DEFENCE & SPACE

9 Appendix: Structure of the oral presentation

1. EinfUhrung/Aufgabenstellung (Prof. Jan Bredereke)
2. Winkelsteuerungsmodell (Henrik Giessel, Kai Nortmann)
¢ 3. PID-Regelung (Marvin Pdperny, Olga Tschernobai, Hans Martin Pfennig)
® 4. Zeitgesteuertes Scheduling (Tim Nibuhr, André Sarich)
® 41. Allgemein
® 42 Verteilte Systeme
® 4.3. Unser System und Protokoll
® 5. Arduino und zeitgesteuerte Treiber (Christian Zdller, Eike Diekmann, Hermann Wafo)
6. freeRTOS (Rene Wanzow, Arthur Guz)
® 6.1. Wasist das? Was stellt es zur Verfliigung?
® 6.2. Warum nutzt man es?
® 6.3. Praktische Erfahrungen (Installation, BSP, Dokumentation)
® 6.4. RTOS und zeitgesteuerte Verarbeitung + Treiber
® 7. Zusammenfassung und Ausblick (Daniel Kunde, Sercan Catalkaya)

Prasentation:

https://docs.googl e.com/presentation/d/1TkSozreX IWnY vx_sCWPMF-C5MHaXit3JY SlygCr_Sjgedit#slide=id.p

81

