Higher Mathematics 4
Prof. Dr.-Ing. Dieter Kraus
14.
Partial
Differential Equations (pdf)
14.1 Fundamental Terms
14.2 Solution Methods for the Wave Equation
14.2.1 Initial Value Problem of the Wave Equation
14.2.2 Initial Value and Initial Boundary Value Problem of the Wave Equation
14.3 Solution Methods for the Heat Concuction Equation
14.4 Solution of the
Laplace Equation in specific regions
14.4.1 Solution of the
Laplace Equation in a Disc
14.4.2 Solution of the
Laplace Equation in a Sphere
14.4.3 Solution of the
Laplace Equation in a Cylinder
15.
Function Theory
(pdf)
15.1 Complex Number Plane
15.1.1 Sequences and Series in C
15.1.2 Curves in C
15.1.3 Regions in C
15.2 Complex Functions
15.2.1 Conitnuity of Complex Functions
15.2.2 Elementary Complex Functions
15.2.3 Differentiability of Complex Functions
15.2.4 Inverse Functions
15.2.5 Conformal Mappings
15.3 Complex Integration
15.3.1 Complex Line Integrale
15.3.2 Cauchy's Integral Theorem
15.3.3 Cauchy's Integral Formulae
15.3.4 Primitives
15.4 Series Expansion of Complex Functions
15.4.1 Power Series
15.4.2 Laurent Series
15.4.3 Isolated Singularities
15.5
Residue Theorem and its Applications
15.5.1 Residue Theorem
15.5.2 Calculation of real Integrals using the Residue Theorem
15.5.3 Calculation of the inverse Laplace Transform using the Residue Theorem
16.
Numerical Mathematics
(pdf)
16.1 Linear Equation Systems
16.1.1 Gaussian Elimination
16.1.2 Accuracy Considerations, Error Estimation
16.1.3 Cholesky Decomposition
16.2 Nonlinear
Equation Systems
16.2.1 Introduction
16.2.2 Newton Method
16.2.3 Damped Newton Method
16.2.4 Application Example, Calculation of Extrema
16.3
Eigen Value Calculation for Matrices
16.3.1 Basics
16.3.2 von Mises Method
16.3.3 Wielandt Mehtod
16.4
Interpolation
16.4.1 Lagrange Interpolation
16.4.2 Approximation of a Function by Interpolation Polynomials
16.4.3 Newton Interpolation
16.4.4 Hermite Interpolation
16.4.5 Spline Interpolation
16.5
Numerics of Partial Differential Equations
16.5.1 Difference Methods
17.
Probability Calculus
(pdf)
17.1 Definitions,
Examples
17.2 Conditional Probabilities,independent Events
17.3 Random Variables and Distribution Functions
17.4 Mean Value and Variance
17.5 Examples for Distribution Functions
17.5.1 Bernoulli Distribution
17.5.2 Binomial Distribution
17.5.3 Poisson Distribution
17.5.4 Hypergeometric Distribution
17.5.5 Rectangular/Uniform Distribution
17.5.6 Exponential Distribution
17.5.7 Normal Distribution