Higher Mathematics 4
Prof. Dr.-Ing. Dieter Kraus
 
14. 
Partial
Differential Equations (pdf)
   14.1 Fundamental Terms
   14.2 Solution Methods for the Wave Equation
         
14.2.1 Initial Value Problem of the Wave Equation
         
14.2.2 Initial Value and Initial Boundary Value Problem of the Wave Equation
   14.3  Solution Methods for the Heat Concuction Equation
   14.4 Solution of the
Laplace Equation in specific regions
         
14.4.1 Solution of the
Laplace Equation in a Disc
         
14.4.2 Solution of the
Laplace Equation in a Sphere
          14.4.3 Solution of the
Laplace Equation in a Cylinder
15. 
Function Theory
(pdf)
   15.1 Complex Number Plane
         15.1.1 Sequences and Series in C
         15.1.2 Curves in C
         15.1.3 Regions in C
   15.2 Complex Functions
        
15.2.1 Conitnuity of Complex Functions
        
15.2.2 Elementary Complex Functions 
        
15.2.3 Differentiability of Complex Functions
        
15.2.4 Inverse Functions
         15.2.5 Conformal Mappings
   15.3 Complex Integration
        
15.3.1 Complex Line Integrale
        
15.3.2 Cauchy's Integral Theorem
         15.3.3 Cauchy's Integral Formulae
        
15.3.4 Primitives
   15.4 Series Expansion of Complex Functions
        
15.4.1 Power Series
        
15.4.2 Laurent Series
         15.4.3 Isolated Singularities
   15.5
Residue Theorem and its Applications
        
15.5.1 Residue Theorem
        
15.5.2 Calculation of real Integrals using the Residue Theorem
        
15.5.3 Calculation of the inverse Laplace Transform using the Residue Theorem
16. 
Numerical Mathematics
(pdf)
   16.1 Linear Equation Systems
        
16.1.1 Gaussian Elimination
        
16.1.2 Accuracy Considerations, Error Estimation
        
16.1.3 Cholesky Decomposition
   16.2 Nonlinear
Equation Systems
        
16.2.1 Introduction
        
16.2.2 Newton Method
        
16.2.3 Damped Newton Method
        
16.2.4 Application Example, Calculation of Extrema
   16.3
Eigen Value Calculation for Matrices
        
16.3.1 Basics
        
16.3.2 von Mises Method
        
16.3.3 Wielandt Mehtod
   16.4
Interpolation
         16.4.1 Lagrange Interpolation
        
16.4.2 Approximation of a Function by Interpolation Polynomials
        
16.4.3 Newton Interpolation
         16.4.4 Hermite Interpolation
         16.4.5 Spline Interpolation
   16.5
Numerics of Partial Differential Equations
         16.5.1 Difference Methods
17. 
Probability Calculus
(pdf)
   17.1 Definitions,
Examples
   17.2 Conditional Probabilities,independent Events
   17.3 Random Variables and Distribution Functions
   17.4 Mean Value and Variance
   17.5 Examples for Distribution Functions
         17.5.1 Bernoulli Distribution
         17.5.2 Binomial Distribution
         17.5.3 Poisson Distribution
         17.5.4 Hypergeometric Distribution
         17.5.5 Rectangular/Uniform Distribution
         17.5.6 Exponential Distribution
         17.5.7 Normal Distribution